
Unification-Based
Grammar Engineering

Dan Flickinger
Stanford University & Redbird Advanced Learning

danf@stanford.edu

Stephan Oepen
Oslo University
oe@ifi.uio.no

ESSLLI 2016; August 15–19, 2016

Dative Shift: A Productive Process

{hand1, give1, send1, ...}

HEAD verb
SPR 〈· · ·〉

COMPS
〈

phrase

HEAD noun
SPR 〈〉
COMPS 〈〉

,

phrase

HEAD noun
SPR 〈〉
COMPS 〈〉

〉

{hand2, give2, send2, ...}

HEAD verb
SPR 〈· · ·〉

COMPS
〈

phrase

HEAD noun
SPR 〈〉
COMPS 〈〉

,

phrase

HEAD
prep

PFORM to

SPR 〈〉
COMPS 〈〉

〉

ABabcdfghiejkl esslli — -aug-

Grammar Engineering (2)

Lexical Variation: Lexical Rules

• Dative shift, passivization, et al. are systematic processes in the lexicon;

• use of monotonic inheritance is insufficient to relate give1 and give2;

• lexical rules are unary grammar rules that operate ‘within the lexicon’;

• take as input a lexical sign (expression) and output a derived lexical sign.

Rough Approximation of Passive Lexical Rule

HEAD 1
SPR

〈
2

〉
COMPS 3

ARGS
〈

HEAD 1
SPR

〈
phrase

[
HEAD noun

]〉

COMPS

FIRST 2

phrase

[
HEAD noun

]

REST 3

〉

ABabcdfghiejkl esslli — -aug-

Grammar Engineering (3)

Orthographemic Variation: Inflectional Rules

%(letter-set (!s abcdefghijklmnopqrtuvwxyz))

noun-non-3sing_irule :=

%suffix (!s !ss) (!ss !ssses) (ss sses)

non-3sing-word &

[HEAD [AGR non-3sing],

ARGS < noun-lxm >].

noun-3sing_irule :=

3sing-word &

[ORTH #1,

ARGS < noun-lxm & [ORTH #1] >].

dog

dogs

bus

busses

pass

passes

ABabcdfghiejkl esslli — -aug-

Grammar Engineering (4)

The Lexeme vs. Word Distinction
'

&

$

%

lex-item

word

3sing-word non-3sing-word

lexeme

intransitive-lxm

noun-lxm intransitive-verb-lxm

· · ·

• Lexical entries are uninflected ; cannot enter syntax by themselves;

• inflectional rules ‘make’ word from lexeme, possibly with ‘null’ suffix.

ABabcdfghiejkl esslli — -aug-

Grammar Engineering (5)

Recursion in the Type Hierarchy

• Type hierarchy must be finite after type inference; illegal type constraint:
list := *top* & [FIRST *top*, REST *list*].

• needs additional provision for empty lists; indirect recursion:

list := *top*.

ne-list := *list* & [FIRST *top*, REST *list*].

null := *list*.

• recursive types allow for parameterized list types (‘list of X’):

s-list := *list*.

s-ne-list := *ne-list* & *s-list &

[FIRST expression, REST *s-list*].

s-null := *null* & *s-list*.

ABabcdfghiejkl esslli — -aug-

Grammar Engineering (6)

