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Introduction

The 2017 Shared Task on Extrinsic Parser Evaluation (EPE 2017) is a joint initiative of the Fourth
International Conference on Dependency Linguistics (DepLing 2017) and the 15th International
Conference on Parsing Technologies (IWPT 2017), which are co-located in Pisa (Italy) from September
18 to 22, 2017. EPE 2017 forms part of the joint programme for the two conferences on September 20,
2017, and is expected to give rise to a more informed comparison of dependency representations both
empirically and linguistically.

This volume presents the proceedings from the shared task, which are published as a companion to
the IWPT 2017 proceedings. The task was organized around a generalized notion of syntacticto-
semantic dependency representations, implemented as a uniform interchange format to three state-of-
the-art downstream applications, viz. biomedical event extraction, negation resolution, and fine-grained
opinion mining. Nine teams submitted parser outputs for end-to-end evaluation against these downstream
evaluation.

The developers of each downstream application as well as each of the participating teams were invited
to submit a system description for the EPE 2017 proceedings volume. Seven of the teams followed
this invitation, where two teams (Paris and Stanford, who had also coordinated preparation of their
submissions) opted to prepare a joint system description. All submissions were reviewed by three
reviewers, which were recruited from the task co-organizers, members of the participating teams, and
a few externals. The final proceedings volume comprises ten papers: a high-level task summary, three
application descriptions for the downstream systems, and six system descriptions.

The complete EPE 2017 open-source infrastructure is available to the public; training and evaluation
data, the three downstream systems, various conversion and evaluation tools, all parser outputs from
participating teams, as well as end-to-end system outputs and scores can be obtained from the following
address:

http://epe.nlpl.eu

We gratefully acknowledge the funding and technical contributions from the Nordic e-Infrastructure
Collaboration (NeIC) through its Nordic Language Processing Laboratory (NLPL), as well as the support
we have received from the DepLing and IWPT 2017 chairs, Simonetta Montemagni, Joakim Nivre,
Yusuke Miyao, and Kenji Sagae.
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Abstract

The 2017 Shared Task on Extrinsic Parser
Evaluation (EPE 2017) seeks to provide
better estimates of the relative utility of
different types of dependency representa-
tions for a variety of downstream applica-
tions that depend centrally on the analysis
of grammatical structure. EPE 2017 de-
fines a generalized notion of lexicalized
syntactico-semantic dependency represen-
tations and provides a common interchange
format to three state-of-the-art downstream
applications, viz. biomedical event extrac-
tion, negation resolution, and fine-grained
opinion analysis. As a first step towards
building a generic and extensible infras-
tructure for extrinsic parser evaluation, the
downstream applications have been gener-
alized to support a broad range of diverese
dependency representations (including di-
vergent sentence and token boundaries)
and to allow fully automated re-training
and evaluation for a specific collection of
parser outputs. Nine teams participated
in EPE 2017, submitting 49 distinct runs
that encompass many different families
of dependency representations, distinct ap-
proaches to preprocessing and parsing, and
various types and volumes of training data.

1 Introduction & Motivation

Natural language parsing, computing syntactico-
semantic structure according to the rules of gram-
mar, is widely considered a prerequisite technique
to most forms of language ‘understanding’. These
very broadly comprise applications of natural lan-
guage processing (NLP) that require an analysis of
(among other things) ‘who did what to whom’—as
for example diverse types of information extraction

or relation and event detection tasks.
Computational parsing of natural language has

made great advances over time. For example, the
crisp benchmark of replicating parts of the En-
glish phrase structure annotations in the venerable
Penn Treebank (PTB; Marcus et al., 1993) allows
a quantitative comparison spanning more than two
decades: Magerman (1995), one of the early pars-
ing accuracy reports against the PTB using the Par-
sEval measure of Black et al. (1991) recorded a
score for constituent labeling precision and recall
of 84.2 F1 points.1 At 91.0 F1, the parser of Char-
niak and Johnson (2005) appeared to mark a PTB
parsing plateau for some time, but neural advances
in recent years have led to ParsEval F1 levels of
93.8 (Andor et al., 2016).

Quantitative measures of parsing success in
terms of (degrees of) similarity with a gold-
standard target representation constitute intrinsic
parser evaluation and have been a central driv-
ing force in much research and engineering on
syntactico-semantic parsing. Intrinsic measures,
however, cannot predict the contribution of a token
parser to a specific NLP application, say relation de-
tection over syntactic analyses. Therefore, quanti-
tative intrinsic benchmarking or historic reflections
on parsing progress like the above do not imme-
diately inform us about corresponding advances
in natural language ‘understanding’ capabilities—
arguably the ultimate motivation for long-term re-
search interest in natural language parsing.

Another parameter that inhibits comparability
1This report is against Section 00 of the PTB, whereas

much subsequent work standardized on Section 23 for bench-
marking. More importantly, however, Magerman (1995) ex-
cluded from the evaluation test sentences above forty words in
length, a simplification that has been dropped in more recent
PTB parsing research. Under the plausible assumption that
longer sentences are, if anything, not easier for the parser to
analyze correctly, the score reported by Magerman (1995)
probably overestimates the performance level of the time,
when compared to current PTB reports.
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and broader judgment of scientific progress is vari-
ability in the target representations for natural
language parsing. Dependency-based syntactico-
semantic representations have received much atten-
tion in parsing research of at least the past decade,
in part because they offer a comparatively easy-
to-use interface to grammatical structure. Over an
even longer period, the formal and linguistic foun-
dations of syntactico-semantic dependency analy-
sis have continously evolved, and there is consid-
erable variation across representations schemes in
use today—even within a single language.

For English, for example, variations of the so-
called LTH scheme (named after the Faculty of
Engineering at Lund University) defined by Johans-
son and Nugues (2007) were used for the 2007,
2008, and 2009 shared tasks of the Conference
on Natural Language Learning (CoNLL). Subse-
quently, the family of Stanford Dependencies (SD)
proposed by de Marneffe and Manning (2008) has
enjoyed wide popularity. And more recently, the
Universal Dependencies (UD; McDonald et al.,
2013; de Marneffe et al., 2014; Nivre et al., 2016)
and Semantic Dependency Parsing (SDP; Oepen
et al., 2014, 2016) representations further increase
diversity—as target representations for the 2017
CoNLL shared task and for parsing tasks at the
2014 and 2015 Semantic Evaluation Exercises (Se-
mEval), respectively.

For each of these representations (and others),
detailed intrinsic evaluation reports are available
that allow one to estimate parser performance (for
example in terms of average dependency accuracy
and speed) for different types of input text. These
reports, however, are difficult to compare across
types of representations (and sometimes different
selections of test data), and they fail to provide in-
sights into the actual utility of the various represen-
tations for downstream tasks that use grammatical
analysis as a preprocessing step.

The purpose of the 2017 Shared Task on Extrin-
sic Parser Evaluation (EPE 2017) was to shed more
light on the downstream utility of various represen-
tations (at the available levels of accuracy for differ-
ent parsers), i.e. to seek to contrastively isolate the
relative contributions of each type of representa-
tion (and corresponding parsing systems) to a selec-
tion of state-of-the-art downstream applications—
which use different types of text, i.e. exhibit broad
domain and genre variation.

2 Syntactico-Semantic Dependencies

Figure 1 shows a representative sample of different
dependency representations for the sentence:2

A similar technique is almost impossible
to apply to other crops.

Two ‘classic’ syntactic dependency trees are pre-
sented in 1a and 1b, viz. the target representations
from the 2008 CoNLL shared task (Surdeanu et al.,
2008) and so-called basic Stanford Dependencies
(de Marneffe et al., 2006), respectively. Both are
obtained by conversion from the phrase structure
annotations in the PTB, combining heuristic head
finding rules in the tradition of Collins (1999) with
either an interpretation of PTB functional annota-
tions, in the CoNLL case,3 or with rules targeting
specific constructions (e.g. passives or attributive
adjectives) in the case of the Stanford Dependen-
cies. While related in spirit, the two analyses differ
widely in both their choices of heads vs. arguments
and the inventory of dependency types. Where
CoNLL tends to view functional words as heads
(e.g. the predicative copula or infinitival particle to),
the Stanford scheme capitalizes more on substan-
tive heads (e.g. the predicative adjective or main
verb apply).

The Universal Dependencies (UD) in Figure 1c
(Nivre et al., 2016) derive from the Stanford Depen-
dencies but generalize beyond the study of English
and integrate several parallel initiatives for cross-
linguistically valid morphological (Zeman, 2008;
Petrov et al., 2012) and syntactic dependency an-
notation (McDonald et al., 2013; Rosa et al., 2014).
UD takes the tendency to select substantive heads
one step further, analyzing the prepositional com-
plement crops as a head, with the preposition itself
as a dependent case marker.4 This representation
was employed in the CoNLL 2017 shared task (Ze-

2This example is a simplification of a sentence from Sec-
tion 02 of the PTB and has first been discussed in detail for a
broad range of dependency representations by Ivanova et al.
(2012) and Oepen et al. (2016).

3Johansson and Nugues (2007) discuss the specifics of
the conversion for CoNLL 2008, which was implemented as
one of several variants in the so-called LTH PennCoverter
software.

4Through its so-called ‘enhanced’ dependency layer, UD
relaxes the constraint that syntactic dependency representa-
tions be trees (in the formal sense of connecting each node to
the root via a unique directed path): In 1c, for example, tech-
nique is both a subject dependent of impossible and an object
dependent of apply, marking a reentrancy into this graph node.
To date, however, hardly any UD treebanks or parsers support
such enhanced dependencies.
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A similar technique is almost impossible to apply to other crops .
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(a) CoNLL: 2008 variant of LTH Dependencies
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(b) SB: Stanford Basic Dependencies

A similar technique is almost impossible to apply to other crops .
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(c) UD: Universal Dependencies (enhanced in red)

A similar technique is almost impossible to apply to other crops .
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(d) DM: DELPH-IN MRS Bi-Lexical Dependencies
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(e) PAS: Enju Predicate–Argument Structures
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(f) CCD: CCGbank Word–Word Dependencies

Figure 1: Selection of syntactico-semantic dependency representations at EPE 2017.

3



man et al., 2017), which was devoted to UD parsing
from raw text for more than 40 different languages.

Whereas the three first representations are syn-
tactic in nature, there has been some interest in
recent years in so-called semantic dependency rep-
resentations, which necessarily take the form of
unrestricted directed graphs. Figures 1d and 1e,
for example, show DELPH-IN MRS Bi-Lexical
Dependencies (DM; Ivanova et al., 2012) and
Enju Predicate–Argument Structures (PAS; Miyao,
2006), respectively. Both are semantic in the
sense of using dependency labels that correspond to
‘deep’ argument positions of the predicates (rather
than to surface grammatical functions) and in treat-
ing (most) modifiers and determiners as heads—
leading to high degrees of graph reentracies, for
example at the technique node. DM and PAS were
among the target representations in a series of pars-
ing tasks at the 2014 and 2015 SemEval confer-
ences. Finally, the CCD word–word dependencies
in 1f, which are derived from CCGBank (Hock-
enmaier and Steedman, 2007; Oepen et al., 2016),
arguably range somewhere inbetween the primarily
syntactic (CoNLL, SB, and UD) and the more se-
mantic dependency graphs (DM and PAS), as their
dependency labels identify argument positions in
the CCG lexical categories. Among the selection of
dependency representations in Figure 1, DM stands
out in (a) leaving semantically vacuous nodes (the
copula, infinitival particle, and case-marking prepo-
sition) unconnected and (b) its correspondingly
lower edge density. Kuhlmann and Oepen (2016)
quantitatively contrast these and other dependency
representations in terms of a range of formal graph
properties.

3 Methodological Challenges

For extrinsic evaluation to provide useful feedback
to parsing research, it is necessary to try and tease
apart the various contributions to observable end-
to-end results. When evaluated as a component
of a complex downstream application, the parser
proper is but one of many factors that determine
extrinsic evaluation performance. Thus, EPE 2017
seeks to capitalize on an initial selection of down-
stream applications that are understood to depend
centrally on grammatical structure—in that they all
seek to recognize complex and interacting relations
where the component pieces often are syntacticto-
semantic constituents whose interactions are medi-
ated by grammar.

Second, extrinsic evaluation will be most infor-
mative when performed at or near state-of-the-art
performance levels, i.e. reflecting the current best
choice of downstream approaches. The ‘state of the
art’ is, of course, both a moving target and inher-
ently correlated with progress in parser engineering.
However, at implausibly lower performance levels
it could be hard to ascertain, for example, whether
failure of a substantive change in the parser to cause
an observable end-to-end effect renders the revision
irrelevant (to this specific downstream application),
or whether the application merely lacks sensitivity
as a measurement tool. The EPE 2017 downstream
applications all perform at current state-of-the-art
levels,5 and end-to-end results observed in § 8 be-
low compare favorably to published prior art.

Third, the ultimate focus of the EPE 2017 ini-
tiative is to enable comparison across different
syntactico-semantic dependency representations.
In principle, all our downstream systems are based
on machine learning and are automatically re-
trained for each different submission of parser
outputs—i.e. customized to the specifics of each
distinct representation and parser. In preparing the
systems for use in the EPE 2017 context, feature
templates or heuristics that were specialized to one
specific scheme of syntactico-semantic analysis
(e.g. targeting individual PoS tags or dependency
types) have been generalized or removed.6 How-
ever, as all three systems were originally developed
against one specific type of dependency represen-
tation, there is remaining room for hidden ‘bias’
there: Original feature design and selection (based
on experimental results) have quite possibly been
influenced by the linguistic properties of the spe-
cific variant of dependency representation targeted
at the time. Short of manual tuning, error analy-
sis, and optimization for at least each distinct type
of syntactico-semantic dependency representation

5For the Sherlock negation resolution system of Lapponi
et al. (2012, 2017), the subsequent studies by Packard et al.
(2014) and Fancellu et al. (2016) suggest slight performance
advances. However, these systems would not be immediately
suitable for extrinsic parser evaluation across frameworks be-
cause they are highly specialized to one type of semantic
representation, on the one hand, or very constrained in their
utilization of syntactico-semantic analyses, on the other hand.
Moreover, the top-performing submissions to EPE 2017 ap-
pear to again advance the state of the art moderately.

6For two of the downstream systems, we have confirmed
that ‘pseudonymizaton’ of parser outputs by systematic re-
naming of tags and edge labels has no or only neglible effects
on end-to-end results. In future use of the EPE infrastructure,
we plan to make pseudonymizaton an automated part of the
extrinsic evaluation pipeline.
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submitted to the task, there is no practical way of
fully eliminating such bias. In generalizing their
sytems for EPE 2017, the application developers
have sought to reduce such affinity to individual
dependency schemes, but end-to-end results (see
§ 8) suggest that more work will be required. By
making all three systems (and all submitted parser
outputs, together with end-to-end results) publicly
available, we hope that parser developers will be
enabled to apply more in-depth error analysis and,
ideally, also to adapt and extend the downstream
systems accordingly.

Finally, among the participating parsers there are
multiple dimensions of variation at play, besides
differences in their choices of syntactico-semantic
output representation. One such dimension is the
parser itself, i.e. whether it internally targets tree-
or graph-shaped target representations; whether
it parses directly into bi-lexical dependencies or
into, say, constituent trees that are converted to
dependencies; whether it employs ‘classic’ ma-
chine learning or neural techniques; whether there
is a layer of (typically heuristic) post-processing
and ‘enhancement’ of dependencies after parsing
proper; and of course its overall ‘maturity’ and
level of output accuracy. Submissions to the task
also differ widely in the amount of training data
used in constructing the parser, ranging from a few
hundred thousand to almost two million tokens of
annotated text. Last but not least, the EPE 2017
task opts to break with a long tradition of CoNLL
and SemEval parsing competitions that start from
preprocessed inputs—by assuming parser inputs
where segmentation into sentences and tokens (and
sometimes also PoS tagging and lemmatization)
have been applied beforehand. In contrast, for a
more ‘realistic’ interpretation of the parsing prob-
lem, the EPE 2017 task starts from original docu-
ments of ‘raw’ running text, such that participating
systems will also differ in how they prepare these
inputs prior to parsing.7

4 Related Work

Even though the bulk of work on parser evaluation
focuses on intrinsic output quality metrics, there
have been a few previous studies devoted to ex-
trinsic parser evaluation. Several studies compare

7To enable participation by teams who might not have a
pipeline for English sentence splitting and tokenization readily
available, the task co-organizers also provided a preprocessed
secondary variant of all parser inputs, which about a third of
all submissions used as a matter of convenience.

different parsers using the same syntactic represen-
tation in downstream tasks such as machine trans-
lation (Popel et al., 2011) and sentiment analysis
(Gómez-Rodríguez et al., 2017), but in the follow-
ing we will focus on studies devoted to the com-
parison of different types of syntactico-semantic
representations in downstream evaluation.

Miyao et al. (2008) compare the performance
of constituent-based, dependency-based, and deep
linguistic parsers on the task of identifying protein–
protein interactions (PPI) in biomedical text. The
dependency parsers assign CoNLL-style analyses
and are compared to PTB-style constituent parsers
and to the HPSG-based Enju parser, where the au-
thors find comparable results for all three repsenta-
tions while emphasizing the importance of domain
adaptation for all parsers.

Johansson and Nugues (2008) also contrast
constituent-based PTB and dependency-based
CoNLLrepresentations in the downstream task
of semantic role labeling. They find that the
dependency-based systems perform slightly bet-
ter in the sub-problem of argument classifica-
tion, whereas the constituent-based parsers achieve
slightly higher results in argument identification.

Buyko and Hahn (2010) compare the 2007 and
2008 CoNLL schemes and Stanford Basic De-
pendencies for the task of event extraction from
biomedical text. They find that the more function-
ally oriented CoNLL representations largely out-
perform the content-oriented Stanford scheme for
this task.

In a SemEval 2010 shared task on Parser Eval-
uation Using Textual Entailments (Yuret et al.,
2010), widely different syntactic frameworks—
PTB constituent trees, CCG analyses, and depen-
dency representations—are compared in the down-
stream task of textual entailment recognition. A
small dataset was constructed containing entail-
ments that rely on syntactic information (such as
active vs. passive sentences). The participants were
then required to create their own entailment recog-
nition system, a step which the parser developers
solved with varying degrees of success, where the
two top-performing systems for this task both em-
ployed a CCG parser.

The previous work that perhaps is most simi-
lar to EPE 2017 is that of Elming et al. (2013),
where the focus is on comparison of different types
of dependency representations and their contribu-
tions over several different downstream tasks: nega-
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tion resolution, semantic role labeling, statistical
machine translation, sentence compression, and
perspective classification. They contrast the per-
formance of the same parser trained on various
dependency conversions of the Penn Treebank: the
Yamada–Matsumoto scheme, the CoNLL 2007 and
2008 target representations,8 and the annotation
scheme used in the English Web Treebank (an ex-
tension of basic Stanford Dependencies). Elming
et al. (2013) find that the choice of dependency
representation has clear effects on the downstream
results and furthermore that these effects vary de-
pending on the task. For negation resolution for in-
stance, the Yamada–Matsumoto scheme performs
best, whereas the Stanford and LTH schemes lead
to superior SRL performance.

5 Shared Task Set-Up

The EPE 2017 task was sponsored jointly by
the Fourth International Conference on Depen-
dency Linguistics (DepLing) and the 15th Interna-
tional Conference on Parsing Technologies (IWPT).
Parser inputs were released in mid-March 2017,
system submissions due in mid-June, and results
presented on September 20, 2017, as part of the
overlapping programme for DepLing and IWPT.
Further details on the task schedule, technical in-
frastructure, and results are available from the task
web site at:�



�
	http://epe.nlpl.eu

The following sections briefly discuss aspects of
the task set-up that are of broader methodological
interest.

Dependency Representations The term (bi-
lexical) dependency representation in the context
of EPE 2017 is interpreted as a graph whose nodes
are anchored in surface lexical units, and whose
edges represent labeled directed relations between
two nodes. Each node corresponds to a sub-string
of the underlying linguistic signal (input string),
identified by character stand-off pointers. Node
labels can comprise a non-recursive attribute–value
matrix (or ‘feature structure’), for example to en-
code lemma and part of speech information. Each
graph can optionally designate one or more ‘top’
nodes, broadly interpreted as the root-level head or

8Specifically, the output from the LTH converter of Johans-
son and Nugues (2007), using its -conll07 and -oldLTH
options, respectively.

highest-scoping predicate (Kuhlmann and Oepen,
2016). This generalized notion of dependency
graphs encompasses both ‘classic’ syntactic depen-
dency trees as well as structures that relax one or
more of the ‘treeness’ assumptions made in much
syntactic dependency parsing work, as is the case,
for example, in various types of semantic depen-
dency graphs (see § 2 above).

Defining nodes in terms of (in principle arbi-
trary) sub-strings of the surface signal makes the
EPE 2017 view on dependency representations in-
dependent of notions of ‘token’ or ‘word’ (which
can receive divergent interpretations in different
types of dependency representations). Furthermore,
the above definition does not exclude overlapping
or ‘empty’ (i.e. zero-span) node sub-strings, as
might characterize more weakly lexicalized depen-
dency graphs like Elementary Dependency Struc-
tures (EDS; Oepen and Lønning, 2006) or even Ab-
stract Meaning Representation (AMR; Banarescu
et al., 2013), if aligned to surface sub-strings. How-
ever, current EPE 2017 downstream systems only
have limited (if any) support for overlapping or
empty dependency nodes and, hence, may not im-
mediately be able to take full advantage of these
more weakly lexicalized types of semantic (depen-
dency) graphs.

EPE 2017 is (regrettably) limited to parsing En-
glish text. For each downstream application, sep-
arate training, development, and evaluation data
has been provided as ‘running’ clean text (i.e. with-
out information about sentence and token bound-
aries). There are no limitations on which parsing
approaches and resources can be put to use, as long
as the output of the parsing system is a dependency
representation in the above sense (and the parser is
wholly independent of the evaluation data).

Interchange Format To generalize over a broad
variety of different dependency representations and
to provide a uniform interface to the various down-
stream applications, EPE 2017 defines its own in-
terchange format for morpho-syntactico-semantic
dependency graphs. Unlike a venerable string of
tabular-separated (CoNLL-like) file formats, the
EPE serialization of dependency representations
is tokenization-agnostic (nodes can correspond
to arbitrary and potentially overlapping or empty
sub-strings of the underlying document), has no
hard-wired assumptions about the range of admis-
sible annotations on nodes, naturally lends itself
to graphs transcending rooted trees (including dif-
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ferent notions of ‘roots’ or top-level ‘heads’), and
straightforwardly allows framework-specific exten-
sions.

The EPE interchange format serializes a se-
quence of dependency graphs as a stream of
JSON objects, using the newline-separated so-
called JSON Lines convention. Each dependency
graph has the top-level properties id (an integer)
and nodes, with the latter being an (ordered) ar-
ray of node objects. Each node, in turn, bears its
own (unique) id (an integer), form (a string, the
surface form), and start and end character ranges
(integers); all but the id property are optional (e.g.
to be able to represent ‘empty’ or elided nodes).
Furthermore, nodes can have properties and edges,
where the former is a JSON object representing an
(in principle) arbitrary attribute–value matrix, for
example containing properties like pos, lemma, or
more specific morpho-syntactic features.

The encoding of graph structure in the EPE in-
terchange format is by virtue of the edges prop-
erty on nodes, whose value is an array of edge
objects, each with at least the following properties:
label (a string, the dependency type) and target
(an integer, the target node). Thus, edges in the
EPE encoding are directed from the head (or pred-
icate) to the dependent (or argument). Unlike for
nodes, there is no meaningful ordering information
among edges, i.e. the value of the edges property
is interpreted as a multi-set. Conversely, encoding
each edge as its own JSON object makes possible
framework-specific extensions; for example, a fu-
ture UD parser could output an additional boolean
property, to distinguish so-called ‘basic and ‘en-
hanced’ dependencies.

Finally, adopting the terminology of Kuhlmann
and Oepen (2016), the EPE interchange format sup-
ports the optional designation of one or more ‘top’
nodes. In classic syntactic dependency trees, these
would correspond to a (unique and obligatory) root,
while in the SDP semantic dependencies, for ex-
ample, top nodes correspond to a semantic head or
highest-scoping predicate and can have incoming
edges. In the JSON encoding, nodes can bear a
boolean top property (where absence of the prop-
erty is considered equivalent to a false value).

Software Support To lower the barrier to entry,
the EPE infrastructure makes available a software
utility to (a) convert common file formats for de-
pendency representations into the EPE interchange
format and (b) preprocess the ‘raw’ parser inputs

into sentence and token units with PoS tagging and
lemmatization applied.

Format conversion supports the file formats from
the 2007, 2008, 2009, and 2017 CoNLL shared
tasks, from the 2014 and 2015 SDP parsing tasks at
SemEval, as well as from a couple more specialized
parser output format (as specified by participating
teams). Most pre-existing formats fail to record
sub-string character offsets, but these are required
for the generalized interface to EPE 2017 down-
stream applications. Thus, the converter builds on
the robust alignment tool developed by Dridan and
Oepen (2013), essentially recovering token-level
character offsets by post-hoc anchoring against the
original ‘raw’ document.

For optional preprocessing of running text into
pre-segmented parser inputs, the EPE utility im-
plements a ‘baseline’ stack of simple, yet state-
of-the-art preprocessing tools for sentence split-
ting, tokenization, part of speech tagging, and
lemmatization—essentially the same integration
of off-the-shelf components described by Velldal
et al. (2012). Starting with a re-release of the parser
inputs in mid-April 2017, a readily preprocessed
variant of the EPE 2017 document collection has
been available to prospective participants, to fur-
ther lower the barrier to entry in the task, say for
teams who do not readily have the preprocessing
tools for English available.

6 Downstream Applications

For the EPE 2017 task, an initial set of three state-
of-the-art downstream applications is supported.

6.1 Biological Event Extraction

Event extraction refers to the detection of complex
semantic relations. It differs from pairwise relation
extraction in that events (a) have a defined trigger
word (usually a verb), (b) can have 1 to n argu-
ments, and (c) can act as arguments of other events,
leading to complex nested structures.

The Turku Event Extraction System (TEES) is a
machine learning tool developed for the detection
of events in biomedical texts (Björne, 2014). In the
EPE context, the event dataset used for training and
evaluation is the GENIA corpus from the BioNLP
2009 Shared Task, for which TEES was originally
built (Kim et al., 2009). This corpus defines nine
types of biochemical events annotated for over ten
thousand sentences. A typical GENIA annotation
could for example take the form of a nested two-
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event structure REGULATION(A, BINDING(B, C))
for a sentence like:

Protein A regulates the binding of pro-
teins B and C

Similarly to dependency parses, events can also be
seen as graphs, with triggers and other entities as
the nodes, and event arguments as the edges. The
trigger entity acts as the root node of the subgraph
that is a single event, and as the child node for
argument edges of any nesting events. TEES is
built around the event graph concept, treating event
extraction as a graph prediction task implemented
with consecutive SVM classification steps.

TEES event prediction proceeds in three main
steps. First, entities are detected by classifying
each surface token into one of the entity classes, or
as a negative. Second, event argument edges are
predicted for each valid pair of detected entities. In
the resulting graph there can be only one entity per
word token, but multiple events can be annotated
for a single word. Therefore, the final step con-
sists of unmerging predicted, overlapping events
to produce the final event graph. As an optional
fourth step, binary modifiers (such as negation or
speculation) can be predicted for each event.

TEES relies heavily on dependency parses for
machine learning example generation. The depen-
dency parse graphs and the event annotation graphs
are aligned at the level of word tokens, after which
the prediction of an event graph for a sentence
can be thought of as converting the syntactic depen-
dency parse into the semantic event graph. In entity
detection, features include PoS tags, information
about nearby tokens in the linear order, but also
token and dependency n-grams built for all depen-
dency paths within a limited distance, originating
from the candidate entity token. In edge detection,
the primary features are built from n-grams con-
structed from the shortest path of dependencies.

Annotated event entities may not correlate ex-
actly with the syntactic tokenization, so entities are
aligned with the parses by using a heuristic to find
a single head token for each entity. This means that
in addition to the dependency graph, and PoS and
dependency type labeling, the granularity of the
tokenization can influence TEES performance.

6.2 Opinion Analysis

The opinion analysis system by Johansson and
Moschitti (2013) marks up expressions of opinion

and emotion in running text. It uses the annota-
tion model and the annotated corpus developed in
the MPQA project (Wiebe et al., 2005). The main
component in this annotation scheme is the opin-
ion expression, which can be realized linguistically
in different ways. Examples of opinion expres-
sions are enjoy, criticize, wonderful, or threat to
humanity. Each opinion expression is connected
to an opinion holder, a lingustic expression refer-
ring to the person expressing the opinion or expe-
riencing the emotion. In some cases, this entity is
not explicitly mentioned in the text, for instance
if it is the author of the text. Furthermore, every
non-objective opinion expression is tagged with a
polarity: positive, negative, or neutral.

To exemplify, in the sentence

“The report is full of absurdities,” Xirao-
Nima said.

the expressions full of absurdities and said are opin-
ion expressions with a negative polarity, and Xirao-
Nima the opinion holder of these two expressions.

The system by Johansson and Moschitti (2013)
required a number of modifications in order to
make it more robust to variation in the structure
of the input representation. The original implemen-
tation made strong assumptions that the input con-
forms to the linguistic model of the 2008 CoNLL
shared task (Surdeanu et al., 2008), which rep-
resents sentences using two separate dependency
graphs (syntactic and semantic). For this reason,
feature extraction functions needed to be reengi-
neered so that they do not assume a particular set
of dependency edge labels or part-of-speech tags,
or that the dependency graph has any particular
structure. Most importantly, this relaxation has
an impact on features that represent syntactic rela-
tions via paths in the dependency graph: Since the
graph is not necessarily a tree, the revised model
represents a set of shortest paths instead of a single
unique path.

Evaluation Metrics In the EPE task, we evalu-
ated submissions in three different sub-problems,
corresponding to the metrics of Johansson and Mos-
chitti (2013):

• marking up opinion expressions in the text,
and determining their linguistic subtype; for
instance, in the example the expression full
of absurdities) is an expressive-subjective el-
ement (ESE) and said a direct-subjective ex-
pression (DSE);
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• determining the opinion holder for every ex-
tracted opinion expression; for instance, that
Xirao-Nima is the holder of the two expres-
sions in the example; and
• determining the polarity of each extracted sub-

jective expression, for instance that the two
expressions in the examples are both negative.

For each of the above, precision and recall mea-
sures were computed. As explained by Wiebe et al.
(2005), the boundaries of opinion expressions can
be hard to define rigorously, which motivates the
use of a ‘softer’ method for computing the preci-
sion and recall: For instance, if a system proposes
just absurdities instead of the correct full of absur-
dities, this is counted as partially correct.

Furthermore, for the detailed analysis we evalu-
ated the opinion holder extractor separately, using
gold-standard opinion expressions. We refer to this
task as in vitro holder extraction. The reason for
investigating holder extraction separately is that
this task is highly dependent on the design of the
dependency representation, and as we will see in
the empirical results this is also the sub-problem
where we see most of the variation in performance.
In vitro holder extraction scores were used for the
overall ranking of submissions when averaging F1

across the three downstream applications.

6.3 Negation Resolution
The negation resolution system (Sherlock; Lapponi
et al., 2012, 2017) determines, for a given sentence,
the scope of negation cues. The system is built on
the annotations of the Conan Doyle negation cor-
pus (CD; Morante and Daelemans, 2012), where
cues can be either full tokens (e.g. not) or subto-
kens (un in unfortunate) and their scopes, i.e. the
(sub-)tokens they affect. Additionally, in-scope
tokens are marked as negated events or states, pro-
vided that the sentence in question is factual and
the events in question did not take place. In the
example

Since {we have been so} 〈un〉{fortunate
as to miss him} [. . . ]

the prefix cue (in angle brackets) negates the propo-
sition we have been so fortunate as to miss him (i.e.
its scope, in braces), and fortunate (underlined) is
its negated event.

Sherlock looks at negation resolution as a classi-
cal sequence labeling problem, using a Conditional
Random Field (CRF) classifier. The token-wise

annotations in CD contain multiple layers of infor-
mation. Tokens may or may not be negation cues
and they can be either in or out of scope; in-scope
tokens may or may not be negated events, and are
associated with each of the cues they are negated
by. Moreover, scopes may be (partially or fully)
overlapping, with cues affecting other cues and
their scopes. Before presenting the CRF with the
annotations, Sherlock flattens the scopes, convert-
ing the CD representation internally by assigning
one of six labels to each token: out-of-scope, cue,
substring cue, in-scope, event, and negation stop
(defined as the first out-of-scope token after a se-
quence of in-scope tokens), respectively.

The feature set of the classifier includes different
combinations of token-level observations, such as
surface forms, part-of-speech tags, lemmas, and
dependency labels. In addition, we extract both
token and dependency distance to the nearest cue,
together with the full shortest dependency path.
After classification, the hierarchical (overlapping)
negation structures are reconstructed using a set
of post-processing heuristics. It is important to
note that one of these heuristics in previous Sher-
lock versions targeted a specific morpho-syntactic
property directly, to help with factuality detection:
When a token classified with as a negated event ap-
peared within a certain range of a token tagged as
a modal (the MD tag), its label was changed from
negated event to in-scope. In order to accommodate
arbitrary PoS tag sets, this step was removed.

Standard evaluation measures for Sherlock in-
clude scope tokens (ST), scope match (SM), event
tokens (ET), and full negation (FN) F1 scores. ST
and ET are token-level scores for in-scope and
negated event tokens, respectively, where a true
positive is a correctly retrieved token instance of the
relevant class. The remaining measures are stricter,
counting true positives as perfectly retrieved full
scopes, either including (FN) or excluding negated
events (SM).

7 Participating Teams

Of the nine participating teams, eight submitted
complete, well-formed entries. In the following,
we list the teams in the order of their overall rank
and briefly characterize their different entries.

The collaborating Paris and Stanford teams
(Schuster et al., 2017) test two different parsing
strategies, treated as separate submissions to the
task: The Stanford–Paris entry is a text-to-tree
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parser followed by rule-based augmentation result-
ing in a graph representation, whereas the Paris–
Stanford entry is a direct text-to-graph parser. The
team experiments with eight different representa-
tions, of which six are derived from Stanford and
Universal Dependencies, and the remaining two
are the semantically-oriented DM and PAS repre-
sentations. The Szeged team (Szántó and Farkas,
2017) which ranked between the two entries from
Paris and Stanford, tests three different represen-
tations. The first representation builds a graph
from top-k parse trees weighting each edge ac-
cording to its frequency. The second represen-
tation is a combination of dependency and con-
stituency analyses, and the third and final repre-
sentation collapses dependency labels that are not
useful for the downstream tasks. The Universitat
Pompeu Fabra (UPF) team (Mille et al., 2017) sub-
mitted three entries whose representations range in
depth from a surface syntactic tree to a predicate–
argument graph. The surface-syntactic tree is ob-
tained with an off-the-shelf transition-based parser,
while the latter representations are produced us-
ing a series of graph transductions of the surface
syntactic tree. The team from the East China Nor-
mal University (ECNU) (Ji et al., 2017) use a
neural network–based parser trained on the Uni-
versal Dependencies English treebank. The team
tested five versions of their pipeline, varying the
tagging component in the pipeline as well as the
use of pre-trained embeddings. The Peking team
(Chen et al., 2017) experimented with three archi-
tectures: tree approximation, transition-based, and
maximum subgraph parsing.9 The Prague team
(Straka et al., 2017) participated with the UDPipe
neural transition-based parser trained on several
different versions of the Universal Dependencies
English data. Finally, the University of Washington
(UW) team submitted a single run in the DM repre-
sentation, produced using a neural network–based
parser (Peng et al., 2017).

Among them, the eight teams submitted 48 dis-
tinct ‘runs’ (parser outputs for one specific configu-
ration), whose results we summarize in the follow-
ing section.

9Owing to a technical error in the submission from Peking
which was only detected late, the official scores do not include
evaluation results for the transition-based parser. End-to-end
scores on the development segments are, however, available
for all downstream applications, suggesting that the Peking
transition-based parser performs comparably to their other two
parsers.

8 Experimental Results

Table 1 shows a summary of the experimental re-
sults, for each downstream task as well as over-
all average across the three tasks along with rank,
broken down by participating team and individual
runs. Table 1 further includes information on the
type of dependency representation used in the vari-
ous runs for each team, along with information on
training data used to train the parsers and its input
data: raw text (‘txt’) or the supplied segmented and
tokenized version of the data (‘tt’). The system
with the overall best result was the Stanford–Paris
system with an overall score of 60.51, followed
by the Szeged (58.57) and Paris–Stanford (56.81)
teams. The Stanford–Paris system also has the best
results for the event extraction and negation reso-
lution subtasks, whereas the Szeged system is the
top performer in the opinion analysis subtask.

Dependency Schemes As we can see from Ta-
ble 1, the participating systems employ a variety
of different dependency representations. We ob-
serve both syntactic dependency representations
(CoNLL, SSyntS, Stanford, UD) and more abstract,
semantic (to various degrees) dependency represen-
tations (CCD, DM, DSyntS, PAS, PredArg). The
overall best performing team (Stanford–Paris) ex-
periment with both basic Stanford Dependencies,
UD version 1 (basic and enhanced) dependencies,
as well as with various modifications of the latter.
Their overall best result is obtained using UD en-
hanced dependencies. This also gives the overall
best result for negation resolution, while for event
extraction the run employing Stanford Basic De-
pendencies works marginally better. In comparing
the two main UD representation (basic versus en-
hanced), it is clear that the enhanced representation
actually fares better across all three downstream ap-
plications for this system. Note, however, that this
generalization is dependent on the use of a large
training set (WSJ, Brown, and Genia).

As mentioned previously, the syntactic depen-
dency representations can often be subdivided into
function-oriented versus content-oriented represen-
tations, where CoNLL is an example of the former
and Stanford and UD are examples of the latter. In
the shared task, only the Szeged system employed
the CoNLL representation. This system is the top
performing system for opinion analysis, a result
that might in principle indicate a remaining bias
in this downstream system, as it was originally
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Event Extraction Negation Resolution Opinion Analysis

Team Run Dependencies Train In P R F P R F P R F Avg #

ECNU

0 UD2 UD2 tt 49.48 39.00 43.62 99.17 45.45 62.33 60.27 57.42 58.81 54.92
1 UD2 UD2 tt 50.72 38.97 44.08 99.17 45.45 62.33 62.86 60.04 61.42 55.94
2 UD2 UD2 tt 52.24 40.23 45.46 99.17 45.45 62.33 62.15 59.75 60.93 56.24 5
3 UD2 UD2 tt 54.53 35.58 43.06 99.18 45.83 62.69 62.11 58.17 60.08 55.28
4 UD2 UD2 tt 60.69 35.76 45.00 99.15 43.94 60.89 63.32 61.07 62.17 56.02

Paris
and

Stanford

0 DM WSJ SDP txt 59.11 37.71 46.04 99.12 42.80 59.78 65.04 51.32 57.37 54.40
1 PAS WSJ SDP txt 52.39 40.98 45.99 99.09 41.29 58.29 65.80 52.73 58.54 54.27
2 UD1B WSJ SDP txt 55.79 44.56 49.55 99.04 39.02 55.98 65.87 61.30 63.50 56.34
3 UD1E WSJ SDP txt 57.48 41.64 48.29 99.06 39.77 56.75 66.22 62.43 64.27 56.44
4 UD1Ep WSJ SDP txt 58.55 39.50 47.17 99.03 38.64 55.59 65.10 61.75 63.38 55.38
5 UD1EpD WSJ SDP txt 55.58 43.37 48.72 99.03 38.64 55.59 66.62 62.03 64.24 56.18
6 UD1EpDm WSJ SDP txt 58.11 39.19 46.81 99.06 39.77 56.75 64.21 60.27 62.18 55.25
7 UD1B WSJ, B, G txt 57.69 42.80 49.14 99.05 39.39 56.36 65.78 60.96 63.28 56.26
8 UD1E WSJ, B, G txt 54.90 44.75 49.31 99.07 40.15 57.14 65.59 62.42 63.97 56.81 3
9 UD1Ep WSJ, B, G txt 58.03 43.02 49.41 99.04 39.02 55.98 66.77 61.04 63.78 56.39

10 UD1EpD WSJ, B, G txt 59.88 40.19 48.10 98.97 36.36 53.18 65.86 60.92 63.29 54.86
11 UD1EpDm WSJ, B, G txt 58.92 40.07 47.70 99.06 39.77 56.75 64.90 60.56 62.65 55.70

Peking

0 DM WSJ SDP tt 59.28 34.22 43.39 99.15 43.94 60.89 65.63 53.64 59.03 54.44
1 CCD WSJ SDP tt 58.26 40.07 47.48 99.15 44.32 61.26 66.57 54.55 59.96 56.23 6
2 DM WSJ SDP tt
3 CCD WSJ SDP tt
4 DM WSJ SDP tt 55.42 40.95 47.10 99.10 41.67 58.67 65.74 53.66 59.09 54.95
5 CCD WSJ SDP tt 54.73 42.17 47.64 99.12 42.42 59.41 66.97 54.84 60.30 55.78

Prague

0 UD2 UD2 txt 53.84 36.61 43.58 99.10 41.83 58.83 62.61 57.21 59.79 54.07
1 UD2 UD2 tt 56.35 38.21 45.54 99.16 44.70 61.62 62.31 59.74 61.00 56.05 7
2 UD2 UD2, L, P txt 53.22 37.87 44.25 99.12 42.97 59.95 63.45 54.63 58.71 54.30
3 UD2 UD2 txt 51.91 36.27 42.70 99.12 42.97 59.95 61.26 56.72 58.90 53.85
4 UD1 UD2 txt 51.71 37.12 43.22 98.90 34.22 50.85 61.00 56.25 58.53 50.86

Stanford
and

Paris

0 SB WSJ, B, G txt 56.93 45.03 50.29 99.22 48.48 65.13 67.26 60.54 63.72 59.71
1 UD1B WSJ SDP txt 57.59 40.76 47.73 99.19 46.21 63.05 67.47 61.30 64.24 58.34
2 UD1E WSJ SDP txt 57.24 40.98 47.76 99.20 46.97 63.75 67.69 61.02 64.18 58.57
3 UD1Ep WSJ SDP txt 56.76 42.74 48.76 99.21 47.35 64.10 67.43 61.58 64.37 59.08
4 UD1EpD WSJ SDP txt 58.86 40.51 47.99 99.19 46.21 63.05 66.68 61.95 64.23 58.42
5 UD1B WSJ, B, G txt 58.75 42.21 49.13 99.22 48.11 64.80 68.18 61.56 64.70 59.54
6 UD1E WSJ, B, G txt 58.36 44.09 50.23 99.24 49.62 66.16 68.86 61.81 65.14 60.51 1
7 UD1Ep WSJ, B, G txt 62.30 41.55 49.85 99.20 46.97 63.75 68.44 62.25 65.20 59.60
8 UD1EpD WSJ, B, G txt 57.47 44.47 50.14 99.21 47.73 64.45 67.64 62.57 65.01 59.87
9 UD1EpDm WSJ SDP txt 55.29 43.21 48.51 99.16 44.70 61.62 66.68 61.42 63.94 58.02

10 UD1EpDm WSJ, B, G txt 57.22 42.83 48.99 99.22 48.48 65.13 67.30 62.01 64.55 59.56

Szeged

0 CoNLL WSJ 02–21 tt 60.20 39.69 47.84 99.17 45.08 61.98 66.73 65.04 65.87 58.57 2
1 CoNLL++ WSJ 02–21 tt 59.09 39.53 47.37 99.14 43.56 60.53 67.04 65.63 66.33 58.07
2 CoNLL−− WSJ 02–21 tt 57.93 39.13 46.71 99.15 44.32 61.26 66.05 60.45 63.13 57.03
3 CoNLL++ WSJ 02–21 tt 55.14 40.48 46.69 99.12 42.80 59.78 65.35 61.28 63.25 56.57
4 CoNLL++ WSJ 02–21 tt 55.12 39.41 45.96 99.11 42.05 59.05 63.37 61.66 62.50 55.84

UPF
0 SSyntS WSJ 02–21 txt 53.21 41.36 46.54 99.12 42.80 59.78 66.25 61.19 63.62 56.65 4
1 DSyntS WSJ 02–21 txt 54.06 39.94 45.94 98.15 20.08 33.34 64.65 56.71 60.42 46.57
2 PredArg WSJ 02–21 txt 56.37 39.63 46.54 97.96 18.18 30.67 61.03 51.50 55.86 44.36

UW 0 DM WSJ SDP tt 54.86 35.14 42.84 99.06 39.77 56.75 67.31 54.41 60.18 53.26 8

Table 1: Summary of results. The columns show, left to right: team name, run number enumerating
multiple team submissions, type of dependency representation, training data used for the parser, input
mode (tokenized or running text), precicion, recall, and F1 across the three downstream applications,
average F1 across applications, and finally the overall rank of the best run for each team. The representation
type is indicated by the following codes: UD1 and UD2 (UD version 1 or 2, respectively), B (basic), E
(enhanced), Ep (enhanced plus-plus), D (diathesis), Dm (diathesis minus-minus), SB (Stanford Basic),
DM (DELPH-IN MRS Dependencies), PAS (Enju Predicate–Argument structure). The training data is
indicated using the following codes: UD2 (English Universal Dependency treebank 2.0), B (Brown), G
(Genia), WSJ sections of the PTB, SDP (SDP subset of WSJ sections 00–20), L (LinES), and P (ParTUT).
The best F1 scores for each team for each task are indicated in bold, while the globally best scores are
indicated with bold and italics.

11



developed towards this representation. It is not
possible, however, to perform a fair comparison
of function-oriented and content-oriented represen-
tations, since no systems contrast these in their
individual runs.

The shared task also features parsers that pro-
duce semantic dependency representations (e.g.
DM, PAS, and CCD), more specifically the Paris–
Stanford, Peking, and UW systems and even
though the semantic representations do not lead
to top results in any of the downstream tasks, there
are still some interesting observations to be gleaned
from the results. The Peking system contrasts
the DM and CCD representations and the Paris–
Stanford system submitted runs both using seman-
tic dependencies (DM and PAS), as well as syn-
tactic dependencies (various UD representations).
The UW system submitted only one run of their
system (DM), which ranked eighth overall. The
Paris–Stanford system thus enables comparison of
(one type of) syntactic versus semantic dependency
representations. Here we observe a clear differ-
ence in the three downstream applications: For
the arguably semantic subtask of negation resolu-
tion, the run producing DM dependencies actually
performs better than the other (syntactic and se-
mantic) variants, whereas the UD basic and UD
enhanced representations give superior results for
event extraction and opinion analysis, respectively.
For the negation task, we also observe that the DM
representation outperforms the other semantic rep-
resentation produced by the Paris–Stanford parser.
For the Peking parser, conversely, we find that the
CCD representations perform slightly better across
all three subtasks compared to DM.

Finally, the Szeged submissions fully embrace
the generalized EPE 2017 interface format and
present a range of ‘hybrid’ dependency representa-
tions for end-to-end evaluation, e.g. merging graphs
from multiple parsers and presenting k-best lists
of analyses in one graph. In general, the resulting
graphs are likely denser and one could plausibly
hope to see positive downstream effects, for exam-
ple increased recall while maintaining comparable
precision levels. Among the current set of Szeged
runs, this expectation is not quite met: Their off-
the-shelf baseline system (using CoNLL-style de-
pendencies and the comparatively simple parser of
Bohnet, 2010) achieves the best Szeged results, av-
eraged across the three subtasks, and ranks second
in the overall competition.

Preprocessing Systems also differ in their
choice of preprocessing. Whereas the Stanford–
Paris, Paris–Stanford, Prague, and UPF systems
make use of their own preprocessors, the rest of the
teams rely on the segmented and tokenized versions
of the data supplied by the task organizers. Only
the Prague runs contrast the two different types of
preprocessing. From their results (comparing runs
0 and 1), we observe a clear performance difference
in all three downstream tasks by varying the pre-
processing strategy, where the parser applied to the
supplied preprocessed data (‘tt’) outperforms the
parser that uses the Prague in-house preprocessing
scheme on raw text (‘txt’). We find that the effect
of preprocessing is even stronger than the addition
of more training data (run 2) for this parser.10

Training Data As we see in Table 1, the sys-
tems also make use of different training data for
their parsers. The training data vary along sev-
eral dimensions, most notably size and domain.
The choice of training data is to a certain extent
governed by the availability of data for a certain
type of dependency representation. The parsers
producing semantic dependencies invariably em-
ploy the data sets released with the SemEval tasks
on semantic dependency parsing, which comprise
sections 00–20 of the Wall Street Journal (Oepen
et al., 2014, 2016) and around 800,000 tokens. In
comparison, the parsers that rely only on the En-
glish UD treebanks (ECNU and Prague) train their
systems on a little more than 200,000 tokens. In
order to assess the influence of training data on
results, we focus here on the systems that system-
atically vary the data sets used for the training of
their parsers (Stanford–Paris, Paris–Stanford and
Prague). For both the Stanford–Paris and Prague
parsers, a larger training set has a clear positive
effect on results. The Paris and Stanford systems
employ the largest training set out of all partici-
pating systems: a concatenation of the Wall Street
Journal, Brown, and GENIA data sets, which in to-
tal comprises 1,692,030 tokens. They contrast the
use of this large data set with the use of WSJ data in
isolation, and find that the best performance across
all three subtasks is obtained with the larger data
set. Regarding the influence of domain, we can not
draw any firm conclusions: The GENIA dataset is

10Note however, that the added training data only com-
prises the additional English UD treebanks LinES and Par-
TUT, for an additional 87,630 tokens. The additional data sets
employed by e.g. the Stanford–Paris team are considerably
larger.
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taken from the biomedical domain, hence could be
seen to provide an element of domain adaptation
for the event extraction subtask. However, even
though the Stanford–Paris team does achieve the
best result for this subtask with the large, aforemen-
tioned training data set, it is not possible to isolate
the effect of the domain from the size of the data
set based on the submitted runs for this parser.

Reflections In general, it is difficult to compare
results across different teams due to the fact that
these vary along several dimensions: the parser
(and its output quality), the representation, input
preprocessing, and the amount and domain of train-
ing data. The top-ranking system clearly has the
advantage of having one of the currently best per-
forming parsers for English, in terms of intrinsic
evaluation (Dozat et al., 2017), in addition to a very
large training set. It is not always straightforward,
however, to correlate published intrinsic evaluation
scores with the EPE 2017 end-to-end results, of-
ten due to divergent experimental settings along
the above dimensions of variation. We see a few
cases where intrinsic performance appears to pat-
tern with extrinsic, end-to-end results. Both the
Paris–Stanford and Peking parsers (albeit possibly
in earlier variants) participated in the 2014 SDP
task (Oepen et al., 2014), where Peking scored
midly better for the DM target representation—
which appears reflected in higher extrinsic scores,
in particular for the negation resolution and opin-
ion analysis subtasks. Conversely, the UW parser
for the DM target representation currently defines
the intrinsic state of the art (Peng et al., 2017),
but its performance in the EPE 2017 context is
not competetive. UW only submitted one parsing
run and did not provide a system description for
the task; seeing as they worked from the prepro-
cessed EPE 2017 inputs, we conjecture that there
may well be a technical mismatch with what their
parser assumes of its input, for example regarding
lemmatization conventions.

9 Conclusion & Outlook

In our view, the EPE 2017 task marks a success-
ful first step towards a flexible and freely available
infrastructure for extrinsic parser evaluation. We
provide all software, data, submissions, and re-
sults for public download, in the hope of continued
community-driven work in this direction. For ex-
ample, the wealth of empirical results available
from the 2017 task calls for additional error analy-

sis, for example a contrastive, quantitative study of
which downstream items are particularly ‘hard’ or
‘easy’ to all or sub-sets of participating parsers. In
a similar spirit, in-depth qualitative error analysis
of individual runs will likely help identify remain-
ing bias in downstream systems for specific types
of dependency representations, e.g. in the form of
suggesting revisions or additions of features for the
various machine learning components. Finally, it
would likely be instructive to quantitatively con-
strast formal graph properties across submissions,
e.g. various indicators of ‘treeness’ and graph ‘den-
sitity’ (Kuhlmann and Oepen, 2016).

Follow-up experimentation should seek to iso-
late some of the interacting factors that make in-
terpretation of EPE 2017 results across teams chal-
lenging, for example by constructing additional
run series like those of the Paris and Stanford
teams, or by contrasting these parsers with addi-
tional baselines—which could include ‘empty’ or
mechanically produced, nearly content-free depen-
dency graphs as well as parsers that intrinsically
have fallen behind the state of the art. Pushing in
a different direction, we hope to start experimenta-
tion with more abstract dependency representations
(e.g. concept graphs like EDS or AMR), where
graph nodes need not correspond (one-to-one) to
surface tokens.

Looking ahead, inclusion of additional down-
stream systems would immediately strengthen the
EPE infrastructure, of course, and it would natu-
rally drive development towards further automation
of the extrinsic evaluation workflow, ideally maybe
through a self-help portal that transparently sub-
mits user-contributed parser outputs for end-to-end
evaluation on a suitable HPC system. The task co-
organizers will jointly continue to try and engage
a larger community of parser developers and push
the EPE infrastructure towards an actively used and
community supported extrinsic benchmark.
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Abstract

The First Shared Task on Extrinsic Parser
Evaluation (EPE 2017) compares different
dependency representations by evaluating
their impact on downstream applications
that utilize these parses for other text min-
ing tasks. In the Biomedical Event Extrac-
tion downstream task parses are evaluated
by using the Turku Event Extraction Sys-
tem (TEES) with the BioNLP’09 Shared
Task as the model challenge. The partic-
ipants parse the BioNLP’09 dataset, af-
ter which the TEES system is run, using
the parses as features for predicting events
on which the parses are compared. Eight
teams submitted a total of 48 runs gen-
erated with various parsers, and an addi-
tional 13 runs were produced with parsers
available via the TEES preprocessing sys-
tem. Although the TEES system has
been developed and optimized using the
Stanford Dependencies parsing scheme,
among the EPE submissions good perfor-
mance on the TEES system was achieved
also with the Universal Dependencies ver-
sion 1 scheme.

1 Introduction

The goal of the The First Shared Task on Ex-
trinsic Parser Evaluation (EPE 2017)1 is to evalu-
ate different dependency representations by com-
paring their performance on different downstream
systems (Oepen et al., 2017). Three downstream
applications are used, 1) Biomedical Event Ex-
traction, 2) Fine-Grained Opinion Analysis and
3) Negation Scope Resolution. In this paper we
present the results for the Biomedical Event Ex-
traction downstream application and describe the

1http://epe.nlpl.eu/

work on upgrading the TEES system to process
the varying parse schemes submitted for the task.

Biomedical Event Extraction refers to the pro-
cess of automatically detecting specific statements
of interest from biomedical scientific publica-
tions. The biomedical literature is expanding at
a rapid pace, with the central PubMed publication
database containing as of 2017 over 27 million ci-
tations2. Text mining is required to search this
mass of literature and to extract and summarize
the common themes across the millions of publi-
cations. Common tasks in biomedical text mining
include named entity recognition and normaliza-
tion (detection of mentions of e.g. genes and map-
ping them to standardized database ids) as well
as interaction extraction (detection of statements
of e.g. molecular interactions), where the result-
ing information can be applied for tasks such as
biochemical pathway curation.

In earlier work, biomedical interaction extrac-
tion has usually been approached through relation
extraction, where all pairs of named entities de-
tected within a span of text (usually a sentence)
can either have or not have a stated (sometimes
typed and directed) interaction linking them to-
gether. On the other hand, events consist of a trig-
ger word (often a verb) and 0–n related arguments,
some of which can be other events, allowing com-
plex nested structures. For example, the sentence
“Protein A regulates the binding of proteins B and
C” can be annotated with a two-event nested struc-
ture REGULATION(A, BINDING(B, C)).

2 TEES Overview

The Turku Event Extraction System was originally
developed for participation in the BioNLP’09
Shared Task on Biomedical Event Extraction. This
task utilized the GENIA corpus, which was the

2https://www.ncbi.nlm.nih.gov/pubmed/

17



first large-scale, annotated resource (+10,000 sen-
tences) for biomedical events (Kim et al., 2008).
In total, 24 teams participated in this task, with
TEES achieving the first place with 51.95 F-score
(Kim et al., 2009). The TEES system has later
reached several first places in further shared tasks
and has been used as the engine behind sev-
eral PubMed-scale text mining resources (Björne,
2014).
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Figure 1: Event extraction. Before event extrac-
tion, (A) the text is split into sentences and parsed
to produce dependency parse graphs. Relying on
this information (B) keywords of interest (entities)
are detected in the parsed sentences, after which
(C) interaction edges can be detected between the
entities. The graph is then (D) unmerged into indi-
vidual events for which (E) various modifiers can
be detected. Finally, the generated events can be
(F) exported into the BioNLP Shared Task format.
Figure adapted from (Björne et al., 2012).

The TEES system was built around the ap-
proach of modelling events as a graph. With re-
lation extraction, graph-based approaches, such as
the graph-kernel, have demonstrated good perfor-
mance (Airola et al., 2008). If the word tokens
of the sentence are thought of as the nodes of a
graph, the relations can then be seen as edges.
This formalism can be extended for events by con-
sidering the trigger word as the root node of the

entire event, and all arguments as the outgoing
edges of this node. Arising from this model of
events as graphs, the TEES system is defined as
a pipeline of multiclass-classification steps (us-
ing SVMmulticlass; Tsochantaridis et al., 2005),
the first of which detects word entities of interest
(nodes), the second the arguments between these
nodes (edges) and finally an unmerging step dupli-
cates certain nodes to separate overlapping events.
Optionally, a modifier detection step can be used
to detect event labels such as negation and specu-
lation (See Figure 1).

Dependency parses can similarly be modelled
as graphs, with tokens as nodes and the dependen-
cies as the edges. By starting from an automated
dependency analysis, the TEES event extraction
process can be seen as converting the syntactic
dependency parse graph into the semantic event
graph, the two graphs being linked via the shared
token nodes. However, while the tokens form di-
rectly the nodes of the dependency graph, the en-
tity and trigger nodes of the event graph may not
follow the same tokenization, and can often cover
multiple tokens (such as “human protein actin”).
To align the graphs, TEES uses a heuristic to map
each entity to the head token of the span of text
covered by that entity.

In the context of the EPE task, there are three
main attributes that determine the performance of
a parse when used with TEES. First, the tokeniza-
tion will determine at how fine-grained a level en-
tities get mapped to tokens. Second, the depen-
dencies determine the shortest path between any
two tokens, the primary source for features such
as the n-grams used by TEES to detect event ar-
gument edges. Finally, the labeling of the depen-
dency graph affects the features generated: TEES
uses the dependency types for edge detection and
the token POS tags for entity detection. For the to-
ken POS tags, EPE participants could either use a
generic POS attribute, or alternatively define both
XPOS and UPOS attributes. If both XPOS and
UPOS were used, the TEES system was run sepa-
rately for both tag types and the higher performing
result was used as the final result for that submis-
sion.

3 Adapting TEES for EPE

A number of improvements were developed for
the TEES system in order to more easily apply it
for the EPE task. In order to utilize the partici-
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pants’ submissions, the system was updated to im-
port the JSON EPE file format.

3.1 Importing the EPE parses

The EPE JSON format is the common interchange
file format for the EPE task, allowing the partici-
pating parses to be used with the different down-
stream applications. As with the Interaction XML
format used in TEES, dependency parses are mod-
elled as graphs in the EPE format, with word to-
kens becoming the nodes and the dependency rela-
tions the edges of the graph. Each node must also
be bound unambiguously to the source text with
character offsets. While importing the EPE for-
mat is quite straightforward, challenges arise from
the variation in the valid ways in which parses can
be stored in this format.

For example, several of the participating sys-
tems produce parses where only tokens of interest
have defined nodes. Previously, all parses used by
TEES had annotated each word token in the sen-
tence, leading to several mechanisms that relied
on this implicit assumption to be true. In order to
handle the parses which provide only partial tok-
enization, the TEES parse importer was updated to
whitespace-tokenize and generate dummy tokens
for the spans of text not part of partially tokenized
parses.

TEES detects events by aligning the depen-
dency parse graph with the event graph, using the
parse tokens as shared nodes. However, the origi-
nal nodes of the event graph are the annotated en-
tities, which may consist of spans of text longer
than single tokens. In order to align the graphs,
each entity is mapped to a single head token using
a heuristic for detecting the syntactic head of the
parse subgraph contained within the entity. This
heuristic assigns each token initial scores (0 for to-
kens with no dependencies, 1 for tokens connected
by dependencies and -1 for special character to-
kens that should never be the head). After this, the
score of each governor token of a dependency is
increased to be higher than the score of the depen-
dent token, until scoring no longer changes or a
loop cutoff count is reached.

The variation in the parse schemes used by the
EPE task participants means that the downstream
applications can no longer rely on any parse spe-
cific information, such as conventions in POS tag
or dependency type naming. In earlier TEES ver-
sions the likelihood of loops happening in head to-

ken detection was reduced by only considering a
subset of primary dependency types for the itera-
tive scoring. Since these dependency types were
specific for the Stanford collapsed dependencies
scheme they could no longer be used with the var-
ious dependencies submitted for the EPE task, so
the limitation on dependency types was removed,
with only the loop count cutoff now terminating
loops if they happen. In practice, the impact on
performance was minimal and the new system no
longer depends on the specific naming of Stanford
collapsed dependency types.

3.2 Parse Format Conversion

In addition to importing the EPE format parses
TEES was updated to also export them. The pur-
pose of this update was to utilize the TEES pre-
processor for converting various parser output for-
mats into the common EPE interchange format, so
the number of supported import formats was also
extended. By using the Interaction XML format
as the intermediate representation, the TEES parse
converter can now reasonably well convert back
and forth between the EPE, Penn TreeBank, Stan-
ford Dependencies, CoNLL, CoNLL-X, CoNLL-
U and CoreNLP formats. However, reliable con-
version from non-text bound formats (which lack
token character offsets) into text bound ones is
limited by difficulties in aligning some parser out-
puts with the original text, due to text modifica-
tions in the parser output files.

Most parsers do not provide the character off-
sets in the original text for the generated tokens,
and this becomes a problem when such parsers
also modify the input text. Common modifica-
tions include file format related escapings such as
converting left and right parentheses into -LRB-
and -RRB- tags. Such modifications can be de-
tected and reversed relatively easily, but unfor-
tunately many parsers perform also more unpre-
dictable modifications, such as replacing British
spellings with American ones (such as “labour”
becoming “labor”).

Detecting the full list of such modifications
would be an open ended problem, so in order to
have a decent chance of aligning most modified
tokens with the input text the TEES preproces-
sor now uses the Needleman-Wunsch global align-
ment algorithm (Needleman and Wunsch, 1970).
A fast shortcut for aligning unmodified tokeniza-
tions that differ from the original text only in
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whitespace is tried at first, with reversals of vari-
ous common parser modifications then being tried
consecutively, with the alignment with the least
mismatches being the chosen one. In this man-
ner, the updated TEES preprocessor can convert
most parse formats into text-bound ones, although
parses with extensive modifications of the original
text can still be difficult to align fully.

3.3 Updating the Preprocessor

In the TEES system, importing parses, parsing
and other preliminary tasks such as named entity
recognition are performed with the TEES prepro-
cessor tool. In previous versions, the preproces-
sor was implemented as a fixed pipeline of steps.
These steps were, in order, conversion of plain
text or the BioNLP Shared Task format to the In-
teraction XML format (the file format used inter-
nally by TEES), sentence splitting (with the GE-
NIA sentence splitter; Sætre et al., 2007), named
entity recognition (with BANNER; Leaman and
Gonzalez, 2008), constituency parsing (with the
BLLIP parser; Charniak and Johnson, 2005), de-
pendency conversion (with the Stanford Tools; de
Marneffe and Manning, 2008), named entity to-
ken splitting, entity syntactic head detection and
division into train, devel and test sets. Individual
steps in the pipeline could be turned off or modi-
fied with parameters, but the pipeline itself could
not be redefined.

For the EPE task, the TEES preprocessor was
updated into a fully configurable pipeline. The
user can now define with the command line inter-
face any list of consecutive steps, with the only
limitations imposed by the input and output for-
mats of these steps. Most steps take as both input
and output an Interaction XML structure, but e.g.
beginning steps can convert an input in the form
of a directory of txt files into an Interaction XML
structure, and final export steps can likewise con-
vert an Interaction XML structure into a number
of output formats.

In earlier TEES versions, parameters could be
passed for the individual steps with a separate
parameter option, using the step name (e.g. --
steps A,B,C --parameters A.parameter=value). In
the fully customizable pipeline the same step may
appear multiple times, so the command line in-
terface was updated to use regular Python syn-
tax, evaluated at run-time, to configure both
the steps and their parameters (e.g. --steps

A(parameter=value),B,C). This approach allows
not only using the same step multiple times in the
pipeline, but also a consistent way of passing arbi-
trarily complex Python data structures as parame-
ters for any preprocessing step.

Input Data

Preprocessing

Event Extraction

Output Data

Corpus (XML)

LOAD

Parses (EPE)

IMPORT_PARSE

REMOVE_ANALYSES

REMOVE_HEADS

MERGE_SENTENCES

SPLIT_NAMES

FIND_HEADS

SAVE

ENTITIES

EDGES

UNMERGING

MODIFIERS

Events

Figure 2: The TEES Preprocessor. The TEES
Preprocessor is a fully configurable pipeline,
which in the example shown in this figure is used
to import an EPE task parse submission from
the EPE interchange format and insert it into the
BioNLP’09 Shared Task corpus from which exist-
ing parse information is removed. Once the parse
is inserted, other preprocessing steps such as entity
head token detection and entity token splitting are
performed to prepare the parsed corpus for event
extraction. The Interaction XML output from the
Preprocessor is used as the input for Event Extrac-
tion, which finally generates the predicted events
on which the different parses are evaluated in this
EPE downstream task.

The updated TEES Preprocessor can now be
used to perform a larger number of supporting
tasks useful for event extraction. For example,
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the default parses for the BioNLP’09 Shared
Task GENIA corpus (installed with TEES) can
be exported to the EPE JSON format with the
pipeline [LOAD(corpusName=’GE09’), EX-
PORT(formats=’epe’)]. The original TEES
preprocessing pipeline was designed to pre-
pare an unparsed corpus for event extraction
by parsing it, and this same preprocessing
can now be performed with the customized
pipeline [LOAD, GENIA SPLITTER, BLLIP BIO,
STANFORD CONVERT, SPLIT NAMES,
FIND HEADS, SAVE]. These steps correspond to
the fixed preprocessing pipeline of earlier TEES
versions.

In evaluating the EPE task, pregenerated
parses provided by the participants need to
be inserted instead of running a parser (See
Figure 2). This can be achieved by changing
a few of the preprocessing steps, resulting in
the pipeline [LOAD, REMOVE ANALYSES,
REMOVE HEADS, MERGE SENTENCES, IM-
PORT PARSE(parseDir=’x’), SPLIT NAMES,
FIND HEADS, SAVE]. Here, existing parse in-
formation and the sentence division based on the
parse are removed from the loaded corpus using
the REMOVE ANALYSES, REMOVE HEADS
and MERGE SENTENCES steps. A new parse is
loaded (for example from a directory containing
files in the EPE JSON format) using the IM-
PORT PARSE step, and the rest of the pipeline
performs the named entity token splitting, syn-
tactic head detection and saving steps used in
the normal parsing pipeline. In this manner,
preprocessing steps can be freely combined to
quickly define new experimental setups.

4 EPE 2017 Results and Discussion

In total, 48 runs were submitted by eight teams for
the event downstream task. In addition, 13 “base-
line” runs were generated by the organizers using
the various parsers available via the TEES prepro-
cessing pipeline, leading to a total of 61 individual
parses for the biomedical event downstream task
(See Table 1, Appendix A).

4.1 Baselines

The baseline runs were generated by parsing the
BioNLP’09 corpus with parsers available via the
TEES preprocessing pipeline, then converting the
output to the EPE format, and finally running it
through the same EPE evaluation pipeline as the

participants’ submissions. Therefore, these base-
lines are not to be seen necessarily as baselines in
terms of performance, but as additional points of
comparison that could easily be generated by us-
ing publicly available parsing tools.

The first baseline in Table 1, the BioNLP’09
Analyses, uses the official, BioNLP’09 organizer
provided syntactic analyses from 2009. The anal-
yses used were the PTB trees produced with the
BLLIP parser using David McClosky’s biomedi-
cal parsing model and the dependency parses gen-
erated with the Stanford Converter (Kim et al.,
2009). The TEES preprocessor was used to insert
these supporting resources into the BioNLP’09
corpus, followed by exporting them to the EPE
format for evaluation as with the other baselines.
Running the event extraction system using these
official parses resulted in an F-score of 47.87,
somewhat lower than the official UTurku result of
51.95 from 2009. The difference is most likely
explained by the fact that the 2009 system in-
cluded e.g. two parallel entity detection systems
combined into an ensemble system and used a
more corpus-specific, rule-based unmerging sys-
tem. Therefore, the official BioNLP’09 UTurku
result is not directly comparable with the baselines
and the EPE submissions, all of which are evalu-
ated using the current version of TEES.

The other baselines use various combinations of
the BLLIP parser (commit 558adf6, Jan 9, 2016;
Charniak and Johnson, 2005), the Stanford Con-
verter (version 2012-03-09; de Marneffe and Man-
ning, 2008 and the SyntaxNet parser (using the
Parsey McParseface and Parsey Universal models;
Andor et al., 2016). The BLLIP parser is used with
either the standard English model, or David Mc-
Closky’s biomedical parsing model (McClosky,
2009). The highest performance of 50.48 is
achieved with the TEES default parsing settings,
using BLLIP with the McClosky biomodel, fol-
lowed by Stanford conversion using the CCPro-
cessed output format. The BLLIP biomodel parses
outperform every other baseline parse regardless
of the type of Stanford conversion used, showing
a consistent gain from domain adapted parsing.
At 47.52 F-score, the SyntaxNet Parsey McParse-
face model has the best performance out of all the
non-biomodel baseline parses, but the Parsey Uni-
versal (Universal Dependencies) model is behind
all other baselines by several percentage points at
42.79 F-score.

21



4.2 Submissions

A wide variety of submissions were provided
by the task participants, using several different
parsers and parsing approaches (See Table 1,
Appendix A). The event extraction performance
when using the various parses ranged from 42.70
to 50.26 F-score. The highest performance of
50.26 F-score was reached by the Stanford and
Paris run 0, using the Stanford Basic scheme with
the XPOS POS tag type. This parse, like nine
out of the ten best submissions (48.99–50.26) was
adapted for the biomedical domain by training also
on the GENIA corpus.

However, Paris and Stanford run 2, which was
trained only on the WSJ corpus, reached a perfor-
mance of 49.55, less than a percentage point be-
low the best performing domain adapted results.
Although too many conclusions cannot be drawn
from this single result, it is encouraging to see im-
proved performance for general English parsers on
this biomedical text mining task, perhaps indicat-
ing less need in the future for time-consuming and
resource-dependent domain adaptation.

For the 14 submissions that did not mention us-
ing a Universal Dependencies (Nivre et al., 2016,
2017) model, performance was in the range 42.84–
50.29. The 21 UD v1.x parses resulted in per-
formances in the range 43.22–50.23, and the nine
UD v2.0 submissions were in the range 42.70–
45.54. At least on the basis of these results, the UD
v1.x scheme can achieve very good performance
with an event extraction system such as TEES
which was originally developed on the Stanford
collapsed dependencies scheme. The UD v2.0
demonstrates overall lower performance, perhaps
partially explained by this newer scheme diverg-
ing further from the underlying dependency pars-
ing paradigms on which TEES still relies.

5 Conclusions

The First Shared Task on Extrinsic Parser Evalua-
tion (EPE 2017) explored the feasibility of evalu-
ating different parsers in light of the performance
of downstream applications that use these parses
as supporting analyses for some other text min-
ing task. For the TEES downstream task, 48 par-
ticipant submissions and 13 internally generated
parses were compared.

While the best performance was achieved with
the Stanford and Paris run 0, using the Stanford
Basic dependencies scheme, also the UD v1.x

scheme proved to work effectively with the exist-
ing event extraction framework. However, more
work is still needed to make use of the UD v2.0
parses for event extraction. In evaluating the
results for the EPE biomedical event extraction
downstream challenge, it is important to remem-
ber that the TEES system has been developed and
optimized since 2009 using Stanford collapsed de-
pendencies parses.

Even if TEES is not bound to any single parse
scheme, the iterative development and optimiza-
tion using Stanford collapsed dependencies has no
doubt biased the system to some degree towards
parsing schemes similar to those collapsed depen-
dencies. Such “overfitting” is of course an issue
for any downstream task developed originally us-
ing a specific parser, but in any case means that
these results must not be assumed to be completely
objective evaluations of parser performance or
suitability for biomedical event extraction.

The work on adapting the TEES system to not
only use the EPE file format, but to work effi-
ciently with the varying schemes of the different
parsers, is published as part of the TEES open
source project3. The improvements to the pre-
processing system and the increased robustness in
handling different parse schemes should make the
system increasingly suitable for more varied text
mining tasks. The organizers’ work in adapting
the downstream applications to use the EPE for-
mat, as well as the participants’ efforts to export
their parses in this common interchange format,
build a strong foundation for continued shared
evaluation of parsers using downstream text min-
ing applications.

Acknowledgments

We thank Dr. Matthew Shardlow and Professor
Sophia Ananiadou of the National Centre for
Text Mining (Manchester Institute of Biotechnol-
ogy, University of Manchester)4, OpenMinTeD
project5, for assistance with using the BioNLP’09
test set for the purpose of evaluating the EPE task
submissions. We also thank CSC – IT Center for
Science Ltd for computational resources.

3http://jbjorne.github.io/TEES/
4http://www.nactem.ac.uk/
5http://openminted.eu

22



References
Antti Airola, Sampo Pyysalo, Jari Björne, Tapio

Pahikkala, Filip Ginter, and Tapio Salakoski. 2008.
All-paths graph kernel for protein-protein interac-
tion extraction with evaluation of cross-corpus learn-
ing. BMC bioinformatics 9(11):S2.

Daniel Andor, Chris Alberti, David Weiss, Aliaksei
Severyn, Alessandro Presta, Kuzman Ganchev, Slav
Petrov, and Michael Collins. 2016. Globally Nor-
malized Transition-Based Neural Networks. CoRR
abs/1603.06042. http://arxiv.org/abs/1603.06042.

Jari Björne. 2014. Biomedical Event Extraction with
Machine Learning. Ph.D. thesis, University of
Turku.

Jari Björne, Filip Ginter, and Tapio Salakoski. 2012.
University of Turku in the BioNLP’11 shared task.
BMC bioinformatics 13(11):S4.

Eugene Charniak and Mark Johnson. 2005. Coarse-
to-fine n-best parsing and MaxEnt discriminative
reranking. In Proceedings of the 43rd Annual Meet-
ing on Association for Computational Linguistics.
Association for Computational Linguistics, pages
173–180.

Jin-Dong Kim, Tomoko Ohta, Sampo Pyysalo, Yoshi-
nobu Kano, and Jun’ichi Tsujii. 2009. Overview of
BioNLP’09 Shared Task on Event Extraction. In
Proceedings of the Workshop on Current Trends in
Biomedical Natural Language Processing: Shared
Task. Association for Computational Linguistics,
Stroudsburg, PA, USA, BioNLP ’09, pages 1–9.
http://dl.acm.org/citation.cfm?id=1572340.1572342.

Jin-Dong Kim, Tomoko Ohta, and Jun’ichi Tsujii.
2008. Corpus annotation for mining biomedical
events from literature. BMC Bioinformatics 9(1):10.
https://doi.org/10.1186/1471-2105-9-10.

R. Leaman and G. Gonzalez. 2008. BANNER: an exe-
cutable survey of advances in biomedical named en-
tity recognition. Pacific Symposium on Biocomput-
ing pages 652–663.

David McClosky. 2009. Any Domain Parsing: Au-
tomatic Domain Adaptation for Natural Language
Parsing. Ph.D. thesis, Department of Computer Sci-
ence, Brown University.

Marie-Catherine de Marneffe and Christopher Man-
ning. 2008. The Stanford typed dependencies
representation. In COLING Workshop on Cross-
framework and Cross-domain Parser Evaluation.

Saul B Needleman and Christian D Wunsch. 1970. A
general method applicable to the search for simi-
larities in the amino acid sequence of two proteins.
Journal of molecular biology 48(3):443–453.
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A Biomedical Event Extraction Results

Development Set Evaluation Set

Team Run Representation Training POS P R F P R F

UTurku in BioNLP’09 55.62 51.54 53.50 58.48 46.73 51.95

BioNLP’09 Analyses BL 61.83 45.33 52.31 60.06 39.79 47.87
BLLIP-Bio, SF-Conv BL CCprocessed 60.70 52.04 56.04 58.80 44.22 50.48
BLLIP-Bio, SF-Conv BL basic 59.69 49.30 54.00 57.18 44.78 50.23
BLLIP-Bio, SF-Conv BL collapsed 59.84 51.70 55.47 58.10 43.75 49.91
BLLIP-Bio, SF-Conv BL collapsedTree 61.33 50.59 55.44 59.06 43.21 49.91
BLLIP-Bio, SF-Conv BL nonCollapsed 58.73 49.13 53.50 56.87 43.81 49.49

BLLIP, SF-Conv BL CCprocessed 56.20 45.16 50.08 55.18 41.04 47.07
BLLIP, SF-Conv BL basic 54.52 47.96 51.03 52.68 42.93 47.31
BLLIP, SF-Conv BL collapsed 64.51 42.93 51.55 58.23 37.15 45.36
BLLIP, SF-Conv BL collapsedTree 58.60 45.00 50.91 55.46 39.75 46.31
BLLIP, SF-Conv BL nonCollapsed 55.15 48.52 51.62 53.36 41.99 47.00

SyntaxNet BL 57.41 46.62 51.46 55.73 41.42 47.52
SyntaxNet BL UD 49.33 47.07 48.17 46.99 39.28 42.79

ECNU

0 UD v2.0 English 2.0 upos 54.12 45.61 49.50 49.48 39.00 43.62
1 UD v2.0 English 2.0 upos 54.43 43.66 48.45 50.72 38.97 44.08
2 UD v2.0 English 2.0 upos 52.91 45.28 48.80 52.24 40.23 45.46
3 UD v2.0 English 2.0 upos 57.85 41.87 48.58 54.53 35.58 43.06
4 UD v2.0 English 2.0 upos 62.90 43.66 51.54 60.69 35.76 45.00

Paris
and

Stanford

0 DM WSJ 00–20 (SDP Sub-Set) 58.26 43.43 49.76 59.11 37.71 46.04
1 PAS WSJ 00–20 (SDP Sub-Set) 51.29 46.73 48.90 52.39 40.98 45.99
2 UD v1 basic WSJ 00–20 (SDP Sub-Set) 54.71 48.13 51.21 55.79 44.56 49.55
3 UD v1 enh WSJ 00–20 (SDP Sub-Set) 56.45 47.23 51.43 57.48 41.64 48.29
4 UD v1 enh++ WSJ 00–20 (SDP Sub-Set) 61.53 46.00 52.64 58.55 39.50 47.17
5 UD v1 enh++ dia WSJ 00–20 (SDP Sub-Set) 54.84 49.13 51.83 55.58 43.37 48.72
6 UD v1 enh++ dia-- WSJ 00–20 (SDP Sub-Set) 57.98 43.94 49.99 58.11 39.19 46.81
7 UD v1 basic WSJ, Brown, GENIA 61.05 49.02 54.38 57.69 42.80 49.14
8 UD v1 enh WSJ, Brown, GENIA 55.62 49.86 52.58 54.90 44.75 49.31
9 UD v1 enh++ WSJ, Brown, GENIA 58.68 49.58 53.75 58.03 43.02 49.41

10 UD v1 enh++ dia WSJ, Brown, GENIA 60.04 46.84 52.62 59.88 40.19 48.10
11 UD v1 enh++ dia-- WSJ, Brown, GENIA 61.63 44.77 51.86 58.92 40.07 47.70

Peking

0 DM SDP 2015 54.46 41.31 46.98 59.28 34.22 43.39
1 CCD SDP 2016 56.15 45.72 50.40 58.26 40.07 47.48
2 DM SDP 2015 55.06 48.69 51.68
3 CCD SDP 2016 55.78 47.79 51.48
4 DM SDP 2015 52.81 47.79 50.17 55.42 40.95 47.10
5 CCD SDP 2016 55.39 48.91 51.95 54.73 42.17 47.64

Prague

0 UD v2.0 English 2.0 xpos 52.86 38.85 44.78 53.84 36.61 43.58
1 UD v2.0 English 2.0 xpos 55.70 42.09 47.95 56.35 38.21 45.54
2 UD v2.0 English, LinES, ParTUT 2.0 xpos 52.69 42.15 46.83 53.22 37.87 44.25
3 UD v2.0 English 2.0 xpos 53.44 39.58 45.48 51.91 36.27 42.70
4 UD v1.2 English 2.0 xpos 52.96 41.53 46.55 51.71 37.12 43.22

Stanford
and

Paris

0 Stanford Basic WSJ, Brown, GENIA xpos 55.75 49.92 52.67 56.93 45.03 50.29
1 UD v1 basic WSJ 00–20 (SDP Sub-Set) xpos 60.73 46.73 52.82 57.59 40.76 47.73
2 UD v1 enh WSJ 00–20 (SDP Sub-Set) xpos 61.40 47.46 53.54 57.24 40.98 47.76
3 UD v1 enh++ WSJ 00–20 (SDP Sub-Set) xpos 58.88 48.97 53.47 56.76 42.74 48.76
4 UD v1 enh++ dia WSJ 00–20 (SDP Sub-Set) xpos 63.62 46.00 53.39 58.86 40.51 47.99
5 UD v1 basic WSJ, Brown, GENIA xpos 58.10 49.19 53.28 58.75 42.21 49.13
6 UD v1 enh WSJ, Brown, GENIA xpos 59.51 50.42 54.59 58.36 44.09 50.23
7 UD v1 enh++ WSJ, Brown, GENIA xpos 63.45 46.73 53.82 62.30 41.55 49.85
8 UD v1 enh++ dia WSJ, Brown, GENIA xpos 59.19 51.37 55.00 57.47 44.47 50.14
9 UD v1 enh++ dia-- WSJ 00–20 (SDP Sub-Set) xpos 58.15 49.92 53.72 55.29 43.21 48.51

10 UD v1 enh++ dia-- WSJ, Brown, GENIA xpos 56.87 50.25 53.36 57.22 42.83 48.99

Szeged

0 59.33 45.89 51.75 60.20 39.69 47.84
1 58.11 45.11 50.79 59.09 39.53 47.37
2 57.28 46.23 51.17 57.93 39.13 46.71
3 54.85 45.89 49.97 55.14 40.48 46.69
4 56.14 44.77 49.81 55.12 39.41 45.96

UPF
0 SSyntS WSJ 02–21 53.91 46.28 49.80 53.21 41.36 46.54
1 DSyntS WSJ 02–21 53.56 44.61 48.68 54.06 39.94 45.94
2 PredArg WSJ 02–21 55.38 44.38 49.27 56.37 39.63 46.54

UW 0 DM SDP 2015 58.34 45.22 50.95 54.86 35.14 42.84

Table 1: EPE Biomedical Event Extraction downstream task results. SF-Conv refers to the Stanford
Dependencies Converter and BL to the baseline parses generated via the TEES preprocessor. In repre-
sentation, ‘enh’ refers to ‘enhanced’ and ‘dia’ to ‘diathesis’. If no POS tag is defined, the generic EPE
format POS attribute was used. The primary metric of evaluation is the evaluation (test) set F-score, with
the best F-score for each team shown in bold. All results are for the BioNLP’09 Task 1 Approximate
Span & Recursive Mode, measured using the official BioNLP’09 Shared Task evaluation software.
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Abstract

This paper describes Sherlock, a general-
ized update to one of the top-performing
systems in the *SEM 2012 shared task
on Negation Resolution. The system
and the original negation annotations have
been adapted to work across different seg-
mentation and morpho-syntactic analysis
schemes, making Sherlock suitable to study
the downstream effects of different ap-
proaches to pre-processing and grammati-
cal analysis on negation resolution.

1 Introduction & Motivation

Negation Resolution (NR) is the task of determin-
ing, for a given sentence, which part of the lin-
guistic signal is affected by a negation cue. The
2012 shared task at the First Joint Conference on
Lexical and Computational Semantics (*SEM) is a
notable effort in NR research (Morante and Blanco,
2012), providing the field with a sizable human-
annotated corpus for negation (the first outside the
biomedical domain), a standardized set of evalua-
tion metrics, as well as empirical NR results from
eight competing teams. Our NR system, Sherlock
(Lapponi et al., 2012b), ranked first and second
in the open and closed tracks, respectively. It has
later been used as a pre-processor for Sentiment
Analysis (Lapponi et al., 2012a) and, due to its re-
liance on dependency-based features, as a means
of evaluating different dependency representations
extrinsically (Elming et al., 2013; Ivanova et al.,
2013).

These latter efforts served as an inspiration for
the 2017 shared task on Extrinsic Parser Evaluation
(EPE 2017; Oepen et al., 2017). Here, participants
are invited to provide fully pre-processed and syn-
tactically parsed inputs to three dowstream systems
addressing different tasks: biological event extrac-

tion (Björne et al., 2017) and fine-grained opinion
analysis (Johansson, 2017), in addition to NR. Al-
though Sherlock and the *SEM 2012 negation data
have already been used for extrinsic dependency
parsing evaluation, the novelty of the current work
lies in the fact that the aforementioned earlier work
assumed dependency graphs obtained over uniform,
gold-standard sentence and token boundaries, as
defined by the original token-level annotations of
Morante and Daelemans (2012). In contrast, for
use of Sherlock in conjunction with a diverse range
of parsers that each start from ‘raw’, unsegmented
text, the NR set-up had to be generalized to allow
‘projection’ of the original, token-level annotations
to variable segmentations, both during training and
evaluation. In the remainder of this paper we will
provide an overview of the task of NR as defined by
the annotations in the *SEM 2012 negation data, de-
scribe the process of generalizing the gold-standard
negation annotations to arbitrary character spans,
summarize the generalized Sherlock pipeline, and
discuss the EPE 2017 end-to-end results for nega-
tion resolution.

2 The Conan Doyle Data

The *SEM 2012 negation data annotate a collec-
tion of fiction works by Sir Arthur Conan Doyle
(Morante and Daelemans, 2012), henceforth CD.
The CD data is comprised of the following anno-
tated stories: a training set of 3644 sentences drawn
from The Hound of the Baskervilles, a development
set of 787 sentences taken from Wisteria Lodge,
and a held-out evaluation set of 1089 sentences
from The Cardboard Box and The Red Circle.

The negation annotations in these sets are com-
prised of so-called negation cues (linguistic signals
of negation), which can be either full tokens (e.g.
not or without) or sub-tokens (un in unfortunate or
n’t in contracted negations like can’t); for each cue,
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we   have  never  gone  out  without  keeping  a  sharp  watch  ,  and  no  one  could  have  escaped  our  notice  .  "
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Figure 1: An example of how overlapping CD scope annotations are converted to flat sequences of labels.
In this example, an in-scope token is labeled with N, a cue with CUE, a negated event with E, a negation
stop with S, and an out-of-scope token with O.

the annotations further comprise its scope, i.e. the
(sub-)tokens that are affected by the negation. Ad-
ditionally, in-scope tokens are marked as negated
events or states, provided that the sentence in ques-
tion is factual, and the events in question did not
take place. Consider the two following examples
from the data, where cues are shown in angle brack-
ets, in-scope tokens in braces, and negated events
are underlined:

(1) Since {we have been so} 〈un〉{fortunate as to miss
him} [. . . ]

(2) If {he was} in the hospital and yet 〈not〉 {on the staff}
he could only have been a house-surgeon or a house-
physician: little more than a senior student.

Notice that negation scopes extend to full propo-
sitions (the prefix un in example (1) negates that
we have been so fortunate as to miss him), and
that example (2) annotates no negated event, since
the sentence is non-factual. Scopes may further be
discontinuous, as in example (2). Oftentimes there
can be multiple instances of negation within one
sentence, and their respective scopes may overlap
or nest within each other.

3 Annotation Projection

One generalization that had to be made to Sher-
lock for use in the EPE 2017 shared task is related
to segmentation into ‘sentences’ and tokens. The
original *SEM 2012 negation data is annotated in
a token-oriented format, inspired by a series of
shared tasks at the conferences for Computational
Natural Language Learning (CoNLL), where ba-
sic units of annotation are tokens—one per line, in
a plain text file, with annotations separated from
surface tokens by tabulator characters. Conversely,
the EPE 2017 task design starts from ‘raw’ running
text, i.e. participating parsers are expected to apply
their own sentence splitting and tokenization. Thus,
no specific segmentation conventions are imposed
on parser outputs.

In order to use the *SEM 2012 negation data
over arbitrary and diverse base segmentations, we

developed a separate ‘projection’ step that (a) con-
verts the gold-standard negation annotations into
character-level (stand-off) spans, (b) projects these
spans onto a dependency graph provided by a par-
ticipating parser, and (c) serializes the enriched
graph in the token-oriented *SEM 2012 file for-
mat, for Sherlock training and evaluation. In other
words, annotation projection creates a ‘personal-
ized’ version of the negation annotations for each
individual segmentation, i.e. each distinct parser
output. Annotation projection crucially depends
on accurate character-level stand-off pointers into
the underlying ‘raw’ document. As these were not
available for the original *SEM 2012 negation data,
we adapted the alignment tool of Dridan and Oepen
(2013) to determine the correspondences from sur-
face tokens in the annotations to sub-strings of the
original documents.1

Conceptually, annotation projection is fairly
straightforward: The *SEM 2012 negation annota-
tions include both sub-token and multi-token nega-
tion cues and scopes, for example the prefix un or
the multi-word by no means. Projection of nega-
tion annotations onto a different segmentation (with
fewer, additional, or just different sentence and to-
ken boundaries) may thus move some negation in-
stances into or out of the sub-token and multi-token
categories, but both types are treated transparently
in Sherlock as well as in the official *SEM 2012
scorer. In principle, we could evaluate final nega-
tion predictions (by Sherlock, for a specific parser)
against the gold-standard segmentation, by apply-
ing a ‘reverse’ projection from the enriched de-
pendency graph. However, for practical simplicity
we opt to evaluate on the ‘native’ segmentation
of the parser directly, i.e. invoke the *SEM 2012
negation scorer on the projected, ‘personalized’

1The alignment tool applies dynamic programming to
compute the globally optimal solution, using the Needleman–
Wunsch algorithm, taking into account common normaliza-
tions applied during tokenization, e.g. conversion from multi-
character ASCII sequences for different-length dashes or vari-
ous quote marks to corresponding Unicode glyphs.

26



Features bigram trigram +token +lemma

token • •
lemma
pos-tag • • •

first-order dependency pos-tag
second-order dependency pos-tag

dependency relation
right token distance from cue

left token distance from cue
dependency distance from cue

dependency path from cue •

Table 1: Features used to train the conditional random field models (on the left), combined with to-
ken/lemma, bigram, and trigram features as indicated by the dots. Both bigram and trigram features
include backward (e.g. wi ∧ wi−1) and forward variants (wi ∧ wi+1).

gold standard and the actual system output. To
ensure that results are comparable across different
parsers, we have confirmed that the counts of nega-
tion instances remain unaffected, so as to guard
against the theoretical possibility of spurious sen-
tence boundaries separating (parts of) a negation
cue from (parts of) its arguments.

4 System Description

The task of Negation Resolution, in the context
of the CD annotations, is comprised of three sub-
tasks: negation cue identification, scope resolution,
and negated event resolution. Sherlock tackles the
two latter tasks (assuming that cue identification
is either provided by a separate module or accept-
ing gold-standard cues in its input), and basically
looks at NR as a classical sequence labeling prob-
lem. The main component in the Sherlock pipeline,
hence, is Wapiti (Lavergne et al., 2010), an open-
source implementation of a Conditional Random
Field (CRF) classifier, a discriminative model for
sequence labeling.

The token-wise annotations in CD contain mul-
tiple layers of information. Tokens may or may
not be negation cues and they can be either in- or
out-of-scope; in-scope tokens may or may not be
negated events, and are associated with each of the
cues they are negated by. Moreover, scopes may be
(partially) overlapping, as in Figure 1, where the
scope of without is contained within the scope of
never.

Before presenting the CRF with the annotations,
Sherlock flattens the scopes, converting the CD rep-
resentation internally by assigning one of six labels

to each token: out-of-scope, cue, substring cue, in-
scope, event, and negation stop (defined as the first
out-of-scope token after a sequence of in-scope to-
kens), as shown in the final row of Figure 1. Using
a fine-grained set of labels (rather than a minimal
one, with only out-of-scope, in-scope and event
labels) has been shown to yield better performance
in this task (Lapponi, 2012). The models for events
and in-scope tokens are trained separately; in the
event model all N-labeled tokens in Figure 1 have
an O label, and all E-labeled tokens in the scope
model have an N label.

The features used in the CRF model are listed
in Table 1.2 By default, Sherlock utilizes the same
feature set used by Lapponi et al. (2012b) (albeit
without the constituents available in the original
data), and runs Wapiti with default settings. Sher-
lock was originally developed to deal with fully
connected, single headed dependency trees, and
it was updated to be robust to the wider range of
dependency graphs submitted to the EPE shared
task. The dependency relation feature now records
the full set of relations for a token (so if token x is
both y’s a and z’s b, its dependency relation feature
would be a,b). The dependency distance and path
from cue features now assume graphs with (pos-
sible) re-entrancies and unconnected nodes, and
only record one of possibly several equally shortest
paths. If a path from a token to a cue is not found,
we simply record a −1 feature.

2Wapiti comes with a built-in pattern-based feature expan-
sion system. The patterns used for EPE Sherlock runs are avail-
able at https://github.com/ltgoslo/sherlock/
tree/master/patterns
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UiO2 Elming et al. Stanford–Paris #6 Szeged #0 Paris–Stanford #7

ST 85.75 — 88.57 86.64 88.19
SM 80.00 81.27 80.43 78.42 80.14
ET 80.55 76.19 76.55 75.47 71.77
FN 66.41 67.94 65.37 62.15 60.48

Table 2: Results of the top-three performers at EPE 2017 (across all tasks), compared to the original UiO2

submission to *SEM 2012 and the best-performing configuration of Elming et al. (2013).

After classification, the full (overlapping) an-
notations are reconstructed using a set of post-
processing heuristics. It is important to note that
one of these heuristics in previous Sherlock builds
took advantage of the original annotations directly
to help with factuality detection; when a token clas-
sified as a negated event appeared within a certain
range of a token tagged as a modal (the MD tag),
its label was changed from negated event to in-
scope. This post-processing step has been removed
in order to accommodate arbitrary tag sets. The
remaining post-processing steps remain unchanged
from (Lapponi et al., 2012b). In short, we (1) scan
negation cues from left to right; (2) if b is found to
the left of a within a fixed-size window, with no
punctuation or S-labeled tokens in between, mark it
as negated by a; (3) assign all N-negated tokens to
the closest cue (again, breaking at punctuation and
S-labels); (4) if cue a negates b, assign all of its N-
labeled tokens to a as well. The current, EPE-ready
release of Sherlock is open source and available for
public download.3

5 EPE Shared Task Results in Context

Sherlock runs for the EPE shared tasks are evalu-
ated on a subset of the original *SEM evaluation
metrics: scope tokens (ST), scope match (SM),
event tokens (ET), and full negation (FN) F1 scores.
ST and ET are token-level scores for in-scope and
negated event tokens, respectively, where a true
positive is a correctly retrieved token instance of the
relevant class. The remaining measures are stricter,
counting true positives as perfectly matched full
scopes (SM), and requiring both a perfect scope
and event match in the strictest ‘full negation’ (FN)
metric. For the purpose of ranking participating
submissions, the EPE 2017 shared task considered
the FN metric as primary.

One important difference between previously

3https://github.com/ltgoslo/sherlock.

published Sherlock results is that EPE runs on the
held-out data set rely on gold-standard rather than
predicted cues, making it hard to relate evaluation
results directly. Table 2 shows development set F1

results from the original *SEM shared task runs
(here called UiO2, the name of the original system),
the best configuration from Elming et al. (2013),
and the top three overall EPE submissions; Table 3
shows the full batch of F1 scores for all teams and
runs, for both the CD development and evaluation
sets.

Unlike the EPE runs, UiO2 and Elming et al.
(2013) in Table 2 share the same set of pre-
processors, and differ only in terms of dependency
graphs. The former parses the data using the de-
fault MaltParser English model (Nivre et al., 2007),
while the latter uses the Mate parser (Bohnet, 2010)
converting the resulting phrase-structure trees into
dependencies using the Yamada-Matsumoto con-
version scheme. Both parsers are trained on Sec-
tions 2–21 of the Wall Street Journal portion of the
venerable Penn Treebank; additionally, the Malt-
Parser English model is augmented with data from
Question Bank.

In-depth analysis and discussion of the EPE
shared task results is an ongoing (and daunting)
task. It is important to take into consideration that
the system was designed and tuned around the orig-
inal set of sentences, tokens, lemmas, tags, and
their conversion to ‘basic’ Stanford Dependencies
from the PTB-style constituent trees in the origi-
nal CD data. This means that features, label sets,
and heuristics were tested (and discarded) empir-
ically, considering the Stanford scheme for syn-
tactic dependency trees. In the extreme, ‘chasing’
the best possible results in the EPE context would
mean repeating a similar process of feature engi-
neering for each submission. With that in mind,
simply ‘plugging in’ a new set of pre-processing
annotations nevertheless yields better ST and SM
performance than the original system (as shown in
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Development Set Evaluation Set

Team Run SM ST ET FN SM ST ET FN

ECNU

0 80.85 89.10 73.83 62.69 80.10 88.78 66.87 62.33
1 79.57 87.98 76.63 63.78 80.10 89.14 66.25 62.33
2 80.00 89.36 73.58 62.69 80.38 88.37 68.30 62.33
3 79.14 88.69 72.90 61.60 80.10 89.11 68.75 62.69
4 80.43 87.77 75.96 65.37 78.35 88.28 67.69 60.89

Paris–Stanford

0 76.92 86.82 70.94 61.04 79.72 87.89 65.39 59.78
1 78.14 87.04 73.08 59.35 78.28 87.45 63.98 58.29
2 80.43 87.88 69.86 61.04 78.35 87.18 62.00 55.98
3 80.43 88.24 72.30 61.04 78.64 87.88 61.69 56.75
4 80.43 88.94 70.47 60.48 78.64 86.53 61.33 55.59
5 78.26 85.95 68.90 57.61 79.62 87.31 62.20 55.59
6 77.82 86.90 70.48 58.78 78.93 88.37 59.67 56.75
7 80.14 88.19 71.77 60.48 78.35 88.42 61.44 56.36
8 79.14 88.74 69.90 58.20 78.93 87.47 63.40 57.14
9 78.70 87.71 70.87 59.91 78.93 88.21 63.52 55.98

10 78.26 88.50 67.96 58.78 77.45 87.00 59.33 53.18
11 80.43 88.87 72.12 61.04 80.95 88.61 63.79 56.75

Peking

0 80.00 88.01 75.83 63.78 79.33 88.23 67.73 60.89
1 78.26 87.10 71.22 59.35 78.84 88.80 67.50 61.26
2 78.26 87.36 73.27 59.35
3 79.57 87.37 70.64 61.04
4 79.29 87.05 75.60 64.31 79.43 88.42 64.99 58.67
5 77.38 86.67 70.36 59.35 79.14 88.53 65.84 59.41

Prague

0 76.47 86.85 72.12 58.78 79.13 88.41 63.95 58.83
1 77.82 87.94 73.93 61.60 77.86 88.16 68.50 61.62
2 74.62 86.26 73.93 58.78 80.29 89.43 63.75 59.95
3 77.38 87.71 71.77 59.35 78.54 88.08 64.82 59.95
4 71.75 85.73 71.22 54.00 69.61 86.74 60.97 50.85

Stanford–Paris

0 80.85 88.23 76.28 64.85 82.08 89.65 69.70 65.13
1 80.85 88.83 75.83 64.31 80.10 88.53 68.69 63.05
2 81.27 88.34 75.36 63.78 80.38 88.92 68.32 63.75
3 79.57 88.18 74.88 62.69 81.52 89.56 67.69 64.10
4 78.70 87.30 75.60 61.60 79.52 88.73 69.38 63.05
5 80.43 88.95 75.93 63.78 80.67 88.70 70.34 64.80
6 80.43 88.57 76.55 65.37 82.63 89.11 70.34 66.16
7 80.43 89.93 76.19 62.69 81.23 88.92 68.52 63.75
8 80.43 89.18 75.00 61.60 82.35 89.71 69.75 64.45
9 80.00 88.72 74.64 62.15 79.52 89.11 67.29 61.62

10 82.10 89.99 77.21 65.89 81.80 89.13 70.34 65.13

Szeged

0 78.42 86.64 75.47 62.15 80.00 89.17 67.90 61.98
1 77.98 87.28 76.78 63.24 79.14 88.19 67.71 60.53
2 77.98 87.38 72.90 59.91 81.14 89.27 65.20 61.26
3 78.86 87.07 76.14 63.78 80.38 88.75 64.05 59.78
4 77.98 85.97 74.26 62.15 79.72 88.91 63.52 59.05

UPF
0 77.38 86.59 73.36 62.69 79.14 88.68 66.66 59.78
1 44.35 71.09 61.63 32.85 42.46 73.70 53.04 33.34
2 39.07 67.65 58.33 26.13 38.75 71.16 52.81 30.67

UW 0 76.47 85.79 77.67 62.15 77.67 86.99 63.72 56.75

Table 3: Final F1 scores for all Sherlock runs submitted by the eight participating teams.

Table 2, Stanford–Paris run #6 compared to UiO2;
recall that negated event resolution in the original
system was aided by ad-hoc heuristics on the CD
tags), which is an encouraging point of departure
for further analysis and comparison of the wealth
of pre-processing and parsing approaches provided
by the EPE shared task.

6 Conclusion & Outlook

In this paper we presented Sherlock, an updated
version of one of the top-performing systems in the
2012 *SEM shared task on Negation Resolution.
The system was augmented to accept arbitrary to-
kenization and dependency graphs, and serves as

one of three extrinsic evaluators in the EPE 2017
shared task. More in-depth discussion and anal-
ysis across different downstream applications is
ongoing work; for future work we would like to
conduct both quantitative and qualitative error anal-
ysis, grounded in a contrastive analysis of which
negation instances are comparatively easy or dif-
ficult for a majority of systems. Furthermore, we
plan to re-tune and calibrate the system around a
subset of the EPE submissions, attempting to make
the most of the individual strengths of the differ-
ent segmentations and morpho-syntactic analysis
approaches.
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Abstract

We give an overview of one of the
three downstream systems in the Extrin-
sic Parser Evaluation shared task of 2017:
the Trento–Gothenburg system for opin-
ion extraction. We describe the modifica-
tions required to make the system agnos-
tic to its input dependency representation,
and discuss how the input affects the vari-
ous submodules of the system. The results
of the EPE shared task are presented and
discussed, and to get a more detailed un-
derstanding of the effects of the dependen-
cies we run two of the submodules sepa-
rately. The results suggest that the module
where the effects are strongest is the opin-
ion holder extraction module, which can
be explained by the fact that this module
uses several dependency-based features.
For the other modules, the effects are hard
to measure.

1 Introduction

Applications that use dependency representations
of sentences are affected by a number of interact-
ing factors that can be hard to tease apart (Miyao
et al., 2008; Johansson and Nugues, 2008b; Elm-
ing et al., 2013). We expect the quality of the
parser to have an impact: in general, a good parser
should also lead to the downstream application
being more successful. But this is not the end
of the story, because some types of dependency
representations may be more or less suitable for
a given application, or may be harder or easier
for automatic parsers to produce. In the Extrin-
sic Parser Evaluation (EPE) shared task of 2017
(Oepen et al., 2017),1 we aim to investigate these

1http://epe.nlpl.eu/

questions more systematically by considering sev-
eral parsers and representations, and measuring
their effect on three different downstream appli-
cations: opinion extraction, biomedical event ex-
traction, and negation resolution.

In this paper, we describe how the Trento–
Gothenburg opinion extraction system (Johans-
son and Moschitti, 2013) was adapted to the EPE
shared task. This system extracts opinion expres-
sions according to the annotation model in the
MPQA corpus (Wiebe et al., 2005). The system
consists of a number of submodules operating as a
pipeline, with a reranker that selects the final out-
put, and some of these modules use features de-
rived from a dependency-parsed representation of
the input sentence. For this reason, this applica-
tion is a useful testbed for measuring the effect of
representational design choices and the efficacy of
parsers.

We discuss how the opinion extraction system
is affected by the dependencies produced by the
parsers participating in the EPE shared task. In
particular, we are interested in the following ques-
tions:

• Can variations in the output of the opinion
extraction system be attributed to differences
in the dependency inputs, or to other aspects
of the input such as tokenization, lemmatiza-
tion, and tagging?
• In case the dependency structures do have an

effect, what parts of the analysis are affected
the most?
• Does the type of representation matter, or is

the choice of parser more important? For in-
stance, are the semantically oriented depen-
dency representations investigated in the SDP
Shared Task (Oepen et al., 2015) useful, or
are more traditional syntactic dependencies
more suitable?
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We first give an introduction to the opinion ex-
traction task as defined by Wiebe et al. (2005), af-
ter which we give an overview of the system by
Johansson and Moschitti (2013) and how it was
adapted to the EPE shared task. Next, we present
the opinion extraction results in the shared task,
and we carry out some additional experiments to
try to understand to what extent and in what ways
the quality of the system is affected by the parsers.

2 Task Description

The MPQA project (Wiebe et al., 2005) defined
an annotation scheme and created a corpus of an-
notated expressions of opinions (or private states).
The main building blocks in this scheme are three
types of linguistic expressions:

• direct-subjective expressions (DSEs), which
explitly mention emotions and opinions, such
as enjoy or disapproval, or evaluative speech
events, such as criticize or label;

• expressive-subjective elements (ESEs),
which do not explicitly mention an emotion
but in which the choice of words helps
us understand an attitude – such as great,
heresy, or fifth column;

• objective statement expressions (OSEs),
which refer to speech events that do not
express an opinion – such as says or
statement.

Each instance of these types of expressions is con-
nected to an opinion holder (or source, in the ter-
minology of Wiebe et al., 2005). This is a lingustic
expression that refers to the person expressing the
opinion or experiencing the emotion. This person
may not be explicitly mentioned in the text, for in-
stance if this is the writer of the text. Furthermore,
every DSE and ESE is associated with a polarity:
positive, negative, or neutral.2

To exemplify, in the sentence

“The report is full of absurdities,” Xirao-Nima said.

the expression full of absurdities is an ESE with a
negative polarity, said a DSE, also with a negative
polarity, and Xirao-Nima the opinion holder of the
DSE as well as of the ESE.

2Following Choi and Cardie (2010) and Johansson and
Moschitti (2013), we mapped the polarity value both to neu-
tral, and e.g. uncertain-positive to positive, etc.

3 System Description

In this section, we give an overview of the opin-
ion analysis system described by Johansson and
Moschitti (2013). In particular, we focus on how
the system was adapted for the EPE shared task,
and how the parts of the pipeline are affected by
the linguistic analysis provided by the participat-
ing parsing systems.

As a running example, Figure 1 shows how the
sentence above could be analyzed by a hypothet-
ical participant in the EPE shared task. In this
case, the representation follows the CoNLL-2008
format (Surdeanu et al., 2008) and consists of a
combination of syntactic edges, drawn above the
sentence, and semantic edges, drawn below. Each
word is tagged using a Penn Treebank-style (Mar-
cus et al., 1993) part-of-speech tag.

The report is full of absurdities Xirao-Nima said
DT NN VBZ JJ IN NNS NNP VBD

DET SBJ PRD AMOD PMOD

OBJ

SBJ

A1

A0

Figure 1: A hypothetical analysis of the example
sentence.

3.1 Description of the Pipeline
The system by Johansson and Moschitti (2013)
is implemented as a combination of three differ-
ent submodules – opinion expression extraction,
holder extraction, and polarity classification – fol-
lowed by a reranker that picks the final output
based on the results of the previous three steps.
Figure 2 shows an overview.

Expression
 extraction

classification
Polarity

Holder
 extraction

reranking
Interaction−based

Figure 2: Parts of the opinion extraction system.

3.1.1 Extracting Opinion Expressions
The first step of the pipeline extracts opinion
expressions (DSEs, ESEs, OSEs) using a stan-
dard sequence labeler (Collins, 2002) operating
on the sequence of tokens. This sequence la-
beler extracts basic grammatical and lexical fea-
tures (word, lemma, and PoS tag), as well as prior
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polarity and intensity features derived from the
lexicon created by Wilson et al. (2005). Features
based on words (and bigrams), lemmas, and PoS
tags, as well as polarity and intensity values, were
extracted in a window of size 3 around the word
in focus. Expression brackets are encoded using
IOB2 tags. The tagging model is trained using
the online Passive–Aggressive algorithm (Cram-
mer et al., 2006).

3.1.2 Polarity Classification
Each subjective expression (ESE or DSE) is as-
signed a polarity value by a separate classifier (a
linear SVM). It uses a feature representation con-
sisting of bags of words, word bigrams, and PoS
tags inside the expression and in a small window
around it, as well as prior polarity and intensity
values from the MPQA lexicon.

3.1.3 Opinion Holder Extraction
The module that extracts opinion holders is also
implemented as a linear SVM classifier. Given an
opinion expression, for instance the DSE said in
the example, the model assigns a score to each
non-punctuation token in the sentence that is not
contained in any opinion expression. In addition,
it considers two special cases: the writer entity,
representing the author of the text, and the implicit
entity, for cases where the holder is not explicitly
mentioned. The dependency node (or one of the
two special cases) that maximizes this score is se-
lected as the opinion holder.

The feature set used by the classifier in the
holder extraction module makes heavy use of the
dependency graph. This is because the holder ex-
traction task consists of determining a relation be-
tween parts of the sentence; it is fairly similar to
event participant or semantic role filler extraction;
this is particularly true of DSEs, such as Xirao-
Nima being the holder and filling the speaker role
of said. For this reason, the feature set used by
this module is fairly similar to a typical set of fea-
tures used in semantic role labeling, relying heav-
ily on paths and other syntactic patterns. Systems
for such tasks tend to be sensitive to variations in
the input representation (Johansson and Nugues,
2008b; Miyao et al., 2008).

3.1.4 Interaction-based Reranking
Johansson and Moschitti (2013) found consider-
able improvements in all subtasks by designing
interaction-based features that describe the rela-

tions between different opinion expressions. For
instance, these features can describe that

• a DSE (said) is connected to an ESE (full of
absurdities) via an OBJ edge;
• a DSE and an ESE have the same opinion

holder (Xirao-Nima);
• a DSE is connected to an ESE via an OBJ

edge, and both of them are negative.

Three different groups of interaction features were
investigated, based respectively on expressions
holders, and polarity. In this work, we used a the
combination of all three groups. Several of these
features make use of the dependency representa-
tion of the sentence.

Considering pairs of opinion expressions makes
inference harder, so Johansson and Moschitti
(2013) used a reranking approach: first gener-
ate the top k solutions from the expression tag-
ger, polarity classifier, and holder classifier, and
then rescore the k candidates using a linear scor-
ing model that uses the interaction-based features.

3.2 Changes for the EPE Task
Out of the four modules described above, the
holder extraction module and the reranker required
significant modifications for the EPE shared task
in order to make them agnostic to the structure of
the input dependency representation. The opinion
extraction tagger and polarity classifier were un-
changed from the implementation described by Jo-
hansson and Moschitti (2013), but we still expect
these modules to see some effect from the expres-
sivity of the PoS tagset and the quality of the PoS
and lemma predictions.

The holder extraction and reranking modules in
the system by Johansson and Moschitti (2013) de-
pend on the output of the parser by Johansson and
Nugues (2008a), which consists of a syntactic de-
pendency tree and a separate semantic dependency
graph representing PropBank and NomBank rela-
tions (Surdeanu et al., 2008), more or less corre-
sponding to Figure 1. Several aspects of the sys-
tem, including the design of features and a num-
ber of heuristics, require that the input conforms
to this format. In particular, the system relies on
the fact that the syntactic side of the representation
is tree-structured.

In the reengineered system for the EPE shared
task, all assumptions about the structure of the
input were removed. Most importantly, this ap-
plies to several features based on paths through
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the dependency structure; as described in §3.1.3
and §3.1.4, such features are used by the holder
extraction and reranking steps. The previous im-
plementation assumed a tree-structured syntactic
graph, which means that the path between two
nodes in the graph is unique and easy to compute.
For instance, when determining that Xirao-Nima
is the opinion holder of the DSE said, we would
extract one feature from the graph in Figure 1 that
describes that Xirao-Nima is the syntactic subject
(SBJ). The semantic dependency edge (A0, for the
semantic role of speaker) would be represented as
a separate feature. When relaxing the assumptions
about the structural properties of the dependency
graph, we instead use features based on shortest
paths. In case there is no unique shortest path, i.e.
if there is more than one with the minimal length,
we create separate features for up to 8 paths with
the minimal length. For example, the minimal
path length between the DSE said and its opinion
holder Xirao-Nima is 1, and there are two paths
with this length: one via a syntactic edge (SBJ),
and one via a semantic edge (A0).

Furthermore, in the reengineered system we re-
moved the grammatical voice feature used by Jo-
hansson and Moschitti (2013) for the holder ex-
traction module. The reason is that this feature
was computed using hard-coded syntactic heuris-
tics that are not applicable for general dependency
representations. Hypothetically, we could imagine
participating systems representing the voice of a
verb as a morphological feature or via dependency
edges (e.g. the nsubj/nsubjpass distinction
in the Stanford representation).

Apart from these changes, we made no further
adaptation of the system. In particular, we would
like to point out that we did not have time to re-
design and optimize features for each individual
parser, which in principle could lead to a bias to-
wards parsers or representations resembling those
used by Johansson and Moschitti (2013). The
only feature selection we did for individual parsers
was that we investigated whether coarse-grained
or fine-grained part-of-speech tags were more ef-
fective, and we found in all cases that the latter
option was to be preferred.

4 Experimenal Setup

The systems participating in the EPE shared task
were evaluated in three different subtasks, which
correspond to the evaluations by Johansson and

Moschitti (2013):

• marking up opinion expressions in the text,
and determining their type (DSE, OSE, or
ESE), for instance that the example contains
an ESE (full of absurdities) and a DSE (said);
• determining the opinion holder for every ex-

tracted opinion expression, for instance that
Xirao-Nima is the holder of the two expres-
sions in the example;
• determining the polarity of each extracted

subjective expression (that is, DSEs and
ESEs), for instance that the two expressions
in the examples are both negative.

4.1 Intersection-based Scoring
In all three evaluation scenarios mentioned above,
the system marks up spans in the text (opinion
expressions and holders), which are then com-
pared to the gold-standard spans. However, the
boundaries of opinion expressions in the annota-
tion model of Wiebe et al. (2005) are not rigor-
ously defined and the inter-annotator agreement at
the boundary level tends to be low, particularly for
ESEs. This makes it natural to apply evaluation
metrics that allow for some leniency in evaluating
the boundaries.

Johansson and Moschitti (2013) evaluated their
system using intersection-based precision and re-
call metrics, which are based on the notion of span
coverage to measure how well a span s covers an-
other span s′:

c(s, s′) =
|s ∩ s′|
|s′|

The intersection s ∩ s′ was defined as the set of
shared tokens between the two spans, and the set
cardinality | · | as the number of tokens. In label-
aware evaluation scenarios, c(s, s′) was set to 0 if
the labels of s and s′ differ. The notion of span
coverage was then used to define precision and re-
call measures. The precision measures how well
the gold-standard spans cover the predicted spans,
and vice versa for the recall:

P =

∑
si ∈ S
gj ∈ G

c(gj , si)

|S| R =

∑
si ∈ S
gj ∈ G

c(si, gj)

|G|
where S is the set of spans predicted by the sys-
tem, and G the set of gold-standard spans.

In the EPE shared task, tokenization was pro-
vided by the different participating systems, which
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required us to change the evaluation procedure to
take differences in tokenization into account. To
achieve this, we redefined the span coverage to
count the number of shared characters instead of
tokens.

4.2 Dataset Details

We trained and evaluated the system on version
2.0 of the MPQA corpus.3 This release contains
692 documents, out of which we discarded four
documents where the annotation was difficult to
align with the text, or which consisted mostly of
non-English text. We split the remaining 688 into
a training set (450 documents), a development set
(90 documents) and a test set (148 documents).
The split corresponds to the setup described by Jo-
hansson and Moschitti (2013), except that three
additional documents were removed. This is a
multi-domain corpus but the split was done ran-
domly, so we do not expect that there are signifi-
cant domain differences between the training and
test sets.

5 Results

We first evaluate the system as a whole as de-
scribed in §4, and then consider individual mod-
ules in the pipeline to try to tease out what effects
are in play.

5.1 Overall Results

Table 1 shows the results of all the 44 participating
parsers evaluated for the three subtasks, as well as
the macro-average of the three scores. We observe
that the scores for the holder extraction task shows
much more variation than for the other tasks. As
discussed in §3.1.3, the holder extraction module
uses several features derived from the dependen-
cies in the input, so it is logical that this task is the
one where we see the largest effects of representa-
tional design choices and quality of the parsers.

5.2 Opinion Expression Extraction

We carried out an evaluation of the sequence la-
beler that marks up and labels opinion expres-
sions (§3.1.1) by running it in isolation, without
the interaction-based reranker. Table 2 shows the
results. This module uses token-level information
such as word forms, lemmas, and PoS tags, but no
dependencies. We can thus see this experiment as

3
http://www.cs.pitt.edu/mpqa/databaserelease/

an extrinsic evaluation of the non-dependency part
of the input.

As the results show, the variation among sys-
tems is fairly small: if we remove the two outliers
(UPF runs 1 and 2), the F-measure standard de-
viation is just 0.54 and 0.33 in the development
and test set, respectively. This is likely because
most systems use similar tokenization procedures
and Penn Treebank-style tags. The two outliers by
the UPF team used an unconventional tokenization
scheme that excludes many function words, and
this caused difficulties for the opinion expression
tagger.

Furthermore, we considered the differences be-
tween the expression extraction results in Ta-
bles 1 and 2: we would expect that since the
interaction-based reranker (§3.1.4) uses several
features based on the dependency representation,
the parser should have some impact. However,
we see no systematic effect: the reranker consis-
tently gives a relative improvement of around 5–
7%, which suggests that the choice of representa-
tion or parser does not have a strong impact here.
This result seems surprising; it is imaginable that
the dependency features that have an impact on the
reranker are relatively easy for parsers to extract,
but we would need to carry out more thorough in-
vestigations of features to answer this question in
a reliable manner.

5.3 Holder Extraction
We ran the holder extraction module separately,
giving the gold-standard opinion expressions as
input to the system. We refer to this experiment
as in vitro holder extraction. Table 3 shows the
results of this evaluation. As already mentioned,
there are clear differences in performance between
the different systems: the F-measure standard de-
viation on the development and test set is 3.28 and
2.53, respectively.

In an evaluation of this kind, the variation in
performance can be explained by several interact-
ing factors, including the design of the sentence
representation and the quality of the parser. To
exemplify the effects of the choice of parser, we
can consider the variation among parsers based on
Universal Dependencies (McDonald et al., 2013),
of which there are several: the F-measure in this
group ranges from about 59 points up to 65 points.
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One clearly discernible effect of the represen-
tation is that the small group of parsers produc-
ing semantic dependencies (Paris-Stanford runs
0–1, Peking, UPF 1–2, UW) give considerably
lower holder extraction scores than those based
on more traditional syntactic dependencies (using
Universal Dependencies, Stanford Dependencies,
or CoNLL dependencies). The mean F-score on
the test set for the group of semantic parsers is
58.76, while the score for the syntactic parsers is
62.94. While this suggests that the more shallow
syntactic parsers give more reliable features for
this task, it should be noted that these parsers are
probably more similar to that originally used by
Johansson and Moschitti (2013), and that no effort
has been spent on feature design or tuning for the
semantically oriented parsers.

Among the systems producing purely syntac-
tic dependencies, it seems that the parser imple-
mentation has a stronger impact than the choice
of representation: among this group, the best-
performing and worst-performing are UD-based,
and the few CoNLL-based parsers achieve moder-
ate to high performance (Szeged, UPF run 0).

6 Conclusions

We presented the Trento–Gothenburg opinion ex-
traction system and how it was adapted for the
EPE shared task of 2017. The previous implemen-
tation by Johansson and Moschitti (2013) made a
number of assumptions about the structure of the
input – that it consisted of a CoNLL-style syn-
tactic tree and a separate set of semantic depen-
dencies – that had to be relaxed. The modified
system does not require a tree-structured input or
that semantic edges are stored separately from the
syntactic edges. Furthermore, a few hand-crafted
features (mainly the voice feature) assuming a
CoNLL-style input have been removed.

The outputs of the 44 participating parsers were
used to train the opinion extraction system, and we
investigated the general performance as well as the
performance of individual submodules. It turned
out that holder extraction seems to be the part of
the analysis that is most affected by the dependen-
cies, and for this subtask we saw much variation
among systems. For the other subtasks, the dif-
ferences attributable to the choice of dependencies
are negligible, and token-level linguistic informa-
tion such as tagging and lemmatization seems to
cause much of the variation.

Since the holder extraction task was the one
most affected by the dependencies, we ran this
module in isolation to highlight the differences.
We could see an effect of the choice of represen-
tation type, since it seems that semantically ori-
ented parsers, e.g. those coming from the SDP
shared task (Oepen et al., 2015), give weaker re-
sults. However, we should be careful to draw con-
clusions from this result, since it could possibly be
attributed to the semantic dependency parsers be-
ing more different from those used by Johansson
and Moschitti (2013), and they may require addi-
tional feature engineering and optimization. Apart
from this result, there seems to be more variation
among parsers using the same representation (e.g.
Universal Dependencies) than between different
types of syntactic dependencies.
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A Evaluation Scores

Development Test
System Run Expr Holder Polarity Macro Expr Holder Polarity Macro
ECNU 0 58.99 46.36 51.18 52.18 59.10 44.18 49.74 51.01

1 59.39 48.53 51.55 53.16 58.95 46.52 49.61 51.69
2 59.58 49.18 51.74 53.50 58.85 46.04 49.47 51.45
3 59.66 47.93 51.51 53.03 58.84 45.31 49.49 51.21
4 60.04 49.85 51.47 53.79 59.46 46.82 49.97 52.08

Paris-Stanford 0 60.07 43.90 51.66 51.88 59.30 43.34 49.23 50.62
1 60.28 45.60 51.69 52.52 59.00 44.04 49.31 50.78
2 59.88 50.66 51.43 53.99 59.49 48.06 49.60 52.38
3 59.87 50.40 51.31 53.86 58.91 49.05 49.52 52.49
4 59.83 50.45 51.23 53.84 59.28 47.76 49.40 52.15
5 60.01 50.93 51.41 54.12 59.31 48.82 49.69 52.61
6 59.74 49.87 51.11 53.57 59.52 46.98 49.44 51.98
7 60.12 50.12 51.23 53.82 59.55 47.66 50.00 52.40
8 60.12 50.50 51.21 53.94 59.07 48.16 49.47 52.23
9 60.45 50.41 51.51 54.12 59.27 48.54 49.41 52.41

10 59.98 50.59 51.31 53.96 58.81 48.09 49.14 52.01
11 60.19 49.92 51.46 53.86 59.16 47.82 49.20 52.06

Peking 0 59.06 45.41 50.18 51.55 58.14 43.33 48.67 50.05
1 58.65 45.32 50.52 51.50 58.15 43.78 48.90 50.28

Prague 0 59.51 46.78 50.72 52.34 59.33 45.08 49.49 51.30
1 59.89 47.93 51.54 53.12 59.06 46.46 49.50 51.67
2 59.48 46.63 50.26 52.12 59.15 44.32 49.60 51.02
3 59.75 45.88 51.23 52.29 58.89 44.46 49.11 50.82
4 59.42 46.27 50.76 52.15 58.84 44.38 48.79 50.67

Stanford-Paris 0 60.27 51.28 51.40 54.32 59.61 49.52 49.75 52.96
1 60.76 51.56 52.21 54.84 59.83 49.15 49.80 52.93
2 60.76 52.06 51.69 54.84 59.89 50.30 49.93 53.37
3 60.73 51.92 51.84 54.83 59.98 50.21 49.78 53.32
4 60.89 52.84 52.11 55.28 60.04 49.91 49.79 53.25
5 60.81 52.11 51.94 54.95 59.75 49.58 49.69 53.01
6 60.67 52.93 52.26 55.29 59.73 49.98 49.62 53.11
7 60.82 52.79 52.49 55.37 59.92 49.96 49.85 53.24
8 60.60 53.00 51.85 55.15 59.53 49.91 49.76 53.07
9 60.87 52.02 52.29 55.06 59.89 49.31 49.84 53.01

10 60.63 52.57 52.04 55.08 59.53 49.50 49.64 52.89
Szeged 0 59.82 49.21 52.47 53.83 59.33 50.61 49.87 53.27

1 59.76 49.68 52.43 53.96 59.32 50.52 50.02 53.29
2 59.33 48.99 51.93 53.42 59.05 48.62 49.70 52.46
3 59.29 48.86 52.12 53.42 59.53 48.49 50.26 52.76
4 59.68 48.81 51.89 53.46 58.90 47.91 49.75 52.19

UPF 0 59.60 50.01 51.19 53.60 59.26 48.81 49.37 52.48
1 56.04 45.68 47.57 49.76 56.02 45.51 46.81 49.45
2 54.87 41.08 47.19 47.71 55.12 42.60 46.19 47.97

UW 0 59.48 45.85 51.91 52.41 59.80 45.67 50.15 51.87

Table 1: F-scores on the development and test sets. For each subtask, the best result for each team is in
boldface and the best result overall is underlined.
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Development Test
System Run P R F P R F
ECNU 0–3 65.62 49.27 56.28 66.69 48.84 56.38

4 66.06 49.68 56.71 66.83 49.38 56.80
Paris-Stanford 0 66.51 50.43 57.37 66.58 49.21 56.59

1 66.05 50.69 57.36 65.95 49.35 56.46
2–11 66.26 50.73 57.46 66.27 49.52 56.68

Peking 0–1 65.36 48.16 55.45 66.33 47.90 55.63
Prague 0 65.26 49.61 56.37 66.20 48.85 56.22

1 65.71 50.00 56.79 66.48 48.83 56.31
2 65.06 49.30 56.10 66.47 48.70 56.21
3 65.27 49.65 56.40 65.99 48.53 55.93
4 65.22 49.35 56.19 65.99 48.67 56.02

Stanford-Paris 0–10 65.87 50.46 57.15 66.45 49.76 56.90
Szeged 0–4 65.76 50.18 56.92 66.24 49.25 56.50
UPF 0 64.99 49.81 56.40 66.33 49.32 56.57

1 60.89 46.80 52.92 62.31 45.73 52.75
2 62.04 45.12 52.24 62.09 43.81 51.37

UW 0 65.76 50.18 56.92 66.24 49.25 56.50

Table 2: Expression extraction scores without reranking.

Development Test
System Run P R F P R F
ECNU 0 62.28 60.46 61.36 60.27 57.42 58.81

1 64.72 63.71 64.21 62.86 60.04 61.42
2 64.94 63.31 64.12 62.15 59.75 60.92
3 63.92 62.14 63.02 62.11 58.17 60.08
4 65.33 63.41 64.35 63.32 61.07 62.17

Paris-Stanford 0 66.13 51.96 58.19 65.04 51.32 57.37
1 66.80 51.48 58.15 65.80 52.73 58.55
2 67.65 63.62 65.57 65.87 61.30 63.50
3 67.61 62.91 65.18 66.22 62.43 64.27
4 68.15 63.71 65.86 65.10 61.75 63.38
5 67.83 64.13 65.93 66.62 62.03 64.24
6 66.34 63.63 64.96 64.21 60.27 62.18
7 67.57 62.35 64.85 65.78 60.96 63.28
8 67.10 63.81 65.41 65.59 62.42 63.97
9 68.19 61.71 64.79 66.77 61.04 63.78

10 68.24 63.48 65.78 65.86 60.92 63.30
11 66.33 62.77 64.50 64.90 60.56 62.66

Peking 0 66.02 54.07 59.45 65.63 53.64 59.04
1 66.21 54.05 59.52 66.57 54.55 59.96

Prague 0 65.41 59.79 62.47 62.61 57.21 59.79
1 64.21 61.65 62.91 62.31 59.74 61.00
2 65.59 57.05 61.02 63.45 54.63 58.71
3 63.50 58.89 61.11 61.26 56.72 58.90
4 63.93 59.96 61.88 61.00 56.25 58.53

Stanford-Paris 0 69.48 64.01 66.63 67.26 60.54 63.72
1 69.02 64.18 66.52 67.47 61.30 64.23
2 70.59 64.94 67.65 67.69 61.02 64.18
3 70.31 65.16 67.64 67.43 61.58 64.37
4 70.56 66.42 68.43 66.68 61.95 64.23
5 70.12 65.31 67.63 68.18 61.56 64.70
6 71.49 65.80 68.53 68.86 61.81 65.14
7 71.16 65.87 68.41 68.44 62.25 65.20
8 71.05 66.73 68.82 67.64 62.57 65.01
9 69.42 65.00 67.14 66.68 61.42 63.94

10 70.21 65.85 67.96 67.30 62.01 64.55
Szeged 0 63.98 62.03 62.99 66.73 65.04 65.88

1 64.53 62.69 63.60 67.04 65.63 66.33
2 66.44 60.77 63.48 66.05 60.45 63.13
3 64.93 61.31 63.06 65.35 61.28 63.25
4 62.68 61.81 62.24 63.37 61.66 62.51

UPF 0 65.70 60.41 62.94 66.25 61.19 63.62
1 63.87 56.29 59.84 64.65 56.71 60.42
2 58.98 49.63 53.90 61.03 51.50 55.86

UW 0 67.96 53.94 60.14 67.31 54.41 60.17

Table 3: In vitro holder extraction scores.
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Abstract

We present the ECNU submission to the
Extrinsic Parser Evaluation (EPE 2017)
Shared Task. Following Kiperwasser
and Goldberg (2016), our parser consists
of a bidirectional-LSTM (BiLSTM) fea-
ture extractor and a multi-layer perceptron
(MLP) classifier. We use universal de-
pendencies representation and trained our
transition-based projective parser on UD
English 2.0 dataset.

In the EPE 2017 Shared Task, the offi-
cial results show that the F1 score of our
ECNU system is 56.24%.

1 Introduction

In recent years, dependency-based target repre-
sentations have gained wide popularity among re-
searchers due to their relatively convenient in-
terface to grammatical structure. While there
are abundant researches about syntactico-semantic
dependency analysis have been developed during
this time, dependency-based target representations
today also suffer from the problem that different
representaion schemes varies significantly. The
First Shared Task (Oepen et al., 2017) on Extrinsic
Parser Evaluation 1 (EPE2017) seeks to address
this issue by estimating the utility of different de-
pendency representations in different downstream
applications and comparing the results, which mit-
igates the burden of various downstream applica-
tions that heavily depend on grammatical structure
analysis.

EPE 2017 is limited to parsing English text and
there are many kinds of representations for En-
glish. In the last century, Eva Hajicov proposed
The Prague Dependency Treebank (1999), which

1http://epe.nlpl.eu

is still popular nowadays. Then Hiroyasu Yamada
and Yuji Matsumoto also proposed the Yamada-
Matsumoto scheme (2003). In 2007, Johansson
and Nugues defined the LTH format (2007). Later
Johansson used Melcuk-style analysis of coordi-
nation to solve the CoNLL Shared Task 2008
(Johansson, 2008), and de Marneffe and Man-
ning (2008) developed the Stanford Dependencies
(SD). Recently, Oepen et al. (2016) proposed
Semantic Dependency Parsing (SDP) and Nivre
et al. (2016) also proposed Universal Dependen-
cies (UD) representations. So we can see that even
for a single language, great variation across their
representations exists.

The downstream application consists of three
parts. The first part is Biological Event Extrac-
tion (Björne et al., 2011; Björne et al., 2017), refer-
ring to the BioNLP 2009 Shared Task (Kim et al.,
2010). Biological Event Extraction is the task
of recognizing bio-molecular events mentioned in
biomedical literature. The second part is Fine-
Grained Opinion Analysis (Johansson and Mos-
chitti, 2012; Johansson, 2017) against the MPQA
Opinion Corpus (Wiebe et al., 2005). Fine-
Grained Opinion Analysis concerns labeling types
of expressions in a sentence, which was proposed
in the MPQA project (Wiebe et al., 2005), and ex-
tracting their opinion holder or polarity. The last
part is Negation Scope Resolution (Lapponi et al.,
2012, 2017), referring to the 2012 *SEM Shared
Task (2012). Negation Scope Resolution mainly
concerns cue detection and scope resolution, while
in this shared task, we only consider scope resolu-
tion because only the latter is sensitive to gram-
matical analysis.

In this paper, we present our UD representation
parsing system for EPE 2017 Shared Task. The
system contains a BiLSTM feature extractor for
feature representation and an MLP classifier for
the transition system. The inputs of our system are
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word forms and part of speech (POS) tags (coarse-
grained and fine-grained) for each token. Based
on this input, the system finds a governor for each
token, and assigns a universal dependency relation
label to each syntactic dependency.

Our official submission obtains 56.24% macro-
averaged F1 score on three downstream applica-
tions. The highest F1 scores that we achieve on
the three downstream systems are 45.46% (7th)
for Biological Event Extraction, 62.69% (2nd) for
Negation Scope Resolution, and 62.17% (5th) for
Fine-Grained Opinion Analysis. The rest of this
paper is organized as follows. Section 2 dis-
cusses the transition-based model (Kiperwasser
and Goldberg, 2016) and our implementation.
Section 3 describes our 5 submissions. Finally, we
present experimental and official results in Section
4.

2 System Description

We implement a transition-based projective parser
following Kiperwasser and Goldberg (2016). The
configuration of our parser in this paper is simi-
lar as that in (Ji et al., 2017). We describe model
and our implementation in the following sections
in detail.

2.1 Arc-Hybrid System
In this work, we use the arc-hybrid transition sys-
tem (Kuhlmann et al., 2011). We first define a
stack α, a buffer β, and a set of dependency arcs
A. And thus we can define the configuration in our
system: c = (α, β,A). Given n words sentence
s = w1, · · · , wn, the configuration will be ini-
tialized as c = (∅, [1, 2, · · · , n, root], ∅), in which
root is the special root index. The terminal config-
uration set contains configurations with an empty
stack, an arc set and a buffer containing only root.

For each configuration c = (σ|s1|s0, b0|β, A),
the arc-hybrid system has 3 kinds of transitions,
T = {SHIFT, LEFTl, RIGHTl} (in the SHIFT
transition, the s1 and s0 are allowed to be none
and in the LEFT transition, the s1 is allowed to be
none):

SHIFT(c) = (σ|s1|s0|b0, β, A)

s.t. |β| > 0

LEFTl(c) =
(
σ|s1, b0|β, A ∪ {(b0, s0, l)}

)
s.t. |β| > 0, |σ| > 0

RIGHTl(c) =
(
σ|s1, b0|β, A ∪ {(s1, s0, l)}

)
s.t. |σ| > 0, s0 ̸= root

We apply a classifier to determine the best ac-
tion for a configuration. Following Chen and Man-
ning (2014), we use an MLP with one hidden
layer. The score of the transition t ∈ T is defined
as:

MLPθ

(
ϕ(c)

)
= W (2) · tanh

(
W (1) · ϕ(c) + b(1)) + b(2)

SCOREθ

(
ϕ(c), t

)
= MLPθ

(
ϕ(c)

)
[t]

where θ = {W (1),W (2), b(1), b(2)} are the model
parameters, and ϕ(c) is the feature representation
of the configuration c. MLPθ

(
ϕ(c)

)
[t] denotes

an indexing operation taking the output element
which is the class of transition t.

2.2 The Feature Representation

For an input sequence s = w1, · · · , wn, we asso-
ciate each word wi with a vector xi:

xi = e(wi) ◦ e(pi)
xi = e(wi) ◦ pe(wi) ◦ e(pi)
xi = e(wi) ◦ pe(wi) ◦ e(pi) ◦ e(qi)

where e(wi) is the embedding vector of word
wi, pe(wi) is the pre-trained embedding vector of
word wi, e(pi) is the embedding vector of POS tag
pi, and e(qi) is the embedding vector of coarse-
grained POS (CPOS) tag qi. We use different to-
ken representations in different runs. The embed-
dings e(wi), e(pi), e(qi) are randomly initialized
(without pre-training) and jointly trained with the
parsing model. Then, in order to encode context
features, we use a 2-layer sentence level BiLSTM
on top of x1:n:

h⃗t = LSTM (⃗ht−1, xi, θ⃗)
⃗ht = LSTM( ⃗ht+1, xi, ⃗θ)

vi = h⃗i ◦ ⃗hi

θ⃗ are the model parameters of the forward hidden
sequence h⃗. ⃗θ are the model parameters of the
backward hidden sequence ⃗h. The vector vi is our
final vector representation of ith token in s, which
has took into account both the entire history h⃗i and
the entire future ⃗hi by concatenating the output of
the matching Long Short-Term Memory Network
(LSTM) cells.

For ϕ(c), our function returns concatenated vec-
tors which consist of the top 3 items on the stack,
the first item on the buffer, the right-most and left-
most modifiers of s0, s1 and s2 and the left-most
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modifier of b0. Thus we can get a total of 4 BiL-
STM vectors and 7 embedding vectors as feature
representation. A configuration c is represented
by:

ϕ(c) =vs2 ◦ vs1 ◦ vs0 ◦ vb0

◦ el
(
r(s2)

) ◦ el
(
r(s1)

) ◦ el
(
r(s0)

)
◦ el

(
l(s2)

) ◦ el
(
l(s1)

) ◦ el
(
l(s0)

)
◦ el

(
l(b0)

)
where el(·) is a function to get the label embed-

ding vector, r(s0) is a function to get the right-
most modifier of s0 and l(s0) is a function to get
the left-most modifier of s0.

2.3 Training Details

Our training aims to get as many correct transi-
tions as possible, and thus we need to make sure
that the score of correct transitions are always
higher than the one of incorrect transitions. To im-
plement this goal, we can maximize the margin
between the transitions with highest correct score
and those with highest incorrect score. Specifi-
cally, we assume Tgold is the set of gold transitions
at the current configuration c. At each time stamp,
the objective function tries to maximize the mar-
gin between Tgold and T − Tgold. The hinge loss
of a configuration c is defined as:

Lossθ(c) =
(
1 − max

to∈Tgold

SCOREθ(ϕ(c), to)

+ max
tp∈(T−Tgold)

SCOREθ(ϕ(c), tp)
)
+

Our system use the backpropagation algorithm to
calculate the gradients of the entire network (in-
cluding the MLP and the BiLSTM).

Since our parser can only deal with projective
dependency trees, we exclude all training exam-
ples with non-projective dependencies.

3 Submission Description

We have 5 submissions
(
ECNU{00, 01, 02, 03,

04}) for the official evaluation period of the task.
All of the 5 submissions use the tokenized and
sentence-split version of the raw data as provided
in the .tt-files by the shared task organizers. Some
of the 5 submissions use the UDPipe (Straka and
Straková, 2017) system to do part of speech tag-
ging (POS tagging). The UDPipe system is trained
on the Universal Dependencies English 2.0 (Nivre
et al., 2017) treebank. Our 300 dimensions pre-
trained word vectors trained on Wikipedia use

fastText 2 (Bojanowski et al., 2016).

• ECNU00: “00” uses the UDPipe system for
UPOS tagging, XPOS tagging and parsing. It
does not use pre-trained word vectors.

• ECNU01: “01” uses the UDPipe system for
XPOS tagging. Our parser is used for pars-
ing. It does not use pre-trained word vectors.

• ECNU02: “02” uses the UDPipe system for
XPOS tagging. Our parser is used for pars-
ing. It uses pre-trained word vectors.

• ECNU03: “03” uses the UDPipe system for
UPOS and XPOS tagging. Our parser is used
for parsing. It uses pre-trained word vectors.

• ECNU04: “04” uses the UDPipe system for
UPOS tagging and the XPOS tags in the pro-
vided .tt-file for XPOS tagging. Our parser
is used for parsing. It uses pre-trained word
vectors.

Our visual examples can be seen in Figure 1.
We use the 6th sentence in the training set of the
task of Negation Scope Resolution and visualized
its dependency tree in each submission. In this
process, we use Dependency Viewer 3 as our vi-
sualization tool. We can see from the figure that

• only the parser in ECNU03 uses UPOS tags.
Although our submissions except ECNU03
also contain the UPOS predicted by UDPipe,
we do not use them in the process of parsing.

• the XPOS tag of the word “across” in UDPipe
is predicted to be NN while the one in the .tt-
file is IN.

• except the ECNU02 and ECNU03, depen-
dency tree in each submission suffers from
difference.

4 Experiments

We used the Dynet neural network library to build
our system (Neubig et al., 2017).

The hyper-parameters of the final system used
for all the reported experiments are:

• dimensionality of the embeddings of each
word, pos tag, cpos tag and label are 100, 25,
10, 25

2https://github.com/facebookresearch/fastText/blob/master/pretrained-
vectors.md

3http://nlp.nju.edu.cn/tanggc/tools/DependencyViewer.html
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band
9 | NNroot

head
4 | NNobl

Just
1 | RBadvmod

under
2 | INcase

the
3 | DTdet

was
5 | VBDcop

a
6 | DTdet

broad
7 | JJamod

silver
8 | NNcompound

across
13 | NNconj

nearly
10 | RBadvmod

an
11 | DTdet

inch
12 | NNcompound

.
14 | .punct

(a) ECNU00

band
9 | NNroot

Just
1 | RBadvmod

head
4 | NNobl

under
2 | INcase

the
3 | DTdet

was
5 | VBDcop

a
6 | DTdet

broad
7 | JJamod

silver
8 | NNcompound

across
13 | NNnmod:npmod

nearly
10 | RBadvmod

an
11 | DTdet

inch
12 | NNcompound

.
14 | .punct

(b) ECNU01

band
9 | NNroot

head
4 | NNobl

Just
1 | RBadvmod

under
2 | INcase

the
3 | DTdet

was
5 | VBDcop

a
6 | DTdet

broad
7 | JJamod

silver
8 | NNcompound

across
13 | NNparataxis

nearly
10 | RBadvmod

an
11 | DTdet

inch
12 | NNcompound

.
14 | .punct

(c) ECNU02

band
9 | NOUN | NNroot

head
4 | NOUN | NNobl

Just
1 | ADV | RBadvmod

under
2 | ADP | INcase

the
3 | DET | DTdet

was
5 | AUX | VBDcop

a
6 | DET | DTdet

broad
7 | ADJ | JJamod

silver
8 | NOUN | NNcompound

across
13 | NOUN | NNparataxis

nearly
10 | ADV | RBadvmod

an
11 | DET | DTdet

inch
12 | NOUN | NNcompound

.
14 | PUNCT | .punct

(d) ECNU03

band
9 | NNroot

head
4 | NNobl

Just
1 | RBadvmod

under
2 | INcase

the
3 | DTdet

was
5 | VBDcop

a
6 | DTdet

broad
7 | JJamod

silver
8 | NNcompound

inch
12 | NNnmod:npmod

nearly
10 | RBadvmod

an
11 | DTdet

across
13 | INnmod

.
14 | .punct

(e) ECNU04

Figure 1: Visual examples of a sentence in the training set in each submission.
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submission dev LAS EE NR OA Avg

00 (UDPipe) 85.82 43.62 62.33 58.81 54.92
01 (Our) 85.82 44.08 62.33 61.42 55.94
02 (+exWordVec) 86.66 45.46 62.33 60.93 56.24
03 (+UPOS) 87.53 43.06 62.69 60.08 55.28
04 (+.tt XPOS) 87.53 45.00 60.89 62.17 56.02

Table 1: Results of our submissions, including the development set LAS score, the Event Extraction
(EE) task score, the Negation Resolution (NR) task score, the Opinion Analysis (OA) task score and the
average score of three tasks.

Input EE NR OA Avg

ecnu tt & UDPipe 45.46 62.33 60.93 56.24
prague tt 45.54 61.62 61.00 56.05
ecnu-04 tt 45.00 60.89 62.17 56.02

Table 2: Inputs and Results of our 02 and 04 sub-
missions and prague submissions.

• 100 hidden units for MLP

• 2 BiLSTM layers

• 125 BiLSTM hidden and output layer dimen-
sions

• word dropout with rate of 0.25

• learning rate of 0.1

• Adam optimization algorithm

4.1 Training Data

sentences tokens relations

12,543 204,585 24

UPOSs XPOSs

18 31

Table 3: Details of our training data. Including
the number of sentences, the number of tokens, the
number of relations, the number of different types
of UPOS and XPOS.

We trained our parser and UDPipe (Straka and
Straková, 2017) parser on the UD English 2.0
(Nivre et al., 2017) treebank. The size of our train-
ing data is detailed in Table 3.

4.2 ECNU Submissions
Our 5 submissions are detailed in Table 1.
ECNU00 and ECNU01 are our baseline systems.

Although they have the same score on the devel-
opment set, the average score we earned on the
downstream system was 1.02% higher than UD-
Pipe. We gained 0.84% LAS score increase and
0.3% average downstream system score increase,
after adding the pre-trained word vectors. In-
corporating pre-trained word vectors can improve
parsing and downstream performance. We gained
0.87% LAS score increase and 0.96% average
downstream system score reduction, after adding
the UPOS features. Incorporating UPOS features
only improves parsing performance. We gained
0.74% average downstream system score increase,
after replacing the XPOS feature predicted by UD-
Pipe with the XPOS feature in the .tt file.

We use the same sentence segmentation, tok-
enization and XPOS tags in ECNU01, ECNU02
and ECNU03. We can see in the three submissions
that although the parser works better, the perfor-
mance of the downstream system is not improved.
The above analysis allows us to doubt that the re-
sults of the parser are not consistent with the re-
sults of the downstream system.

4.3 UD v2.0 representation

Task EE NR OA

STDEV 2.24 6.85 2.53

Table 4: The standard deviation of all the results
from all teams on each downstream system.

Due to the reason that our respective parsers
use different dependency representations and are
trained on different training sets, it would be hard
to make comparison with other teams. However,
both our parser and team Prague’s (2017) high-
est scored parser use the UD v2.0 representation
and are trained on English 2.0 training set. Judge
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from table 2, we can see that our best results
(run02) is 0.19% higher than team Prague’s best
results. Since our run02 uses the UDPipe system
for XPOS tagging and different POS tags would
also affect the results, it is inappropriate to com-
pare the performance of two teams’ best parser di-
rectly.

Both our parser in run04 and team Prague’s
highest scored parser use the .tt files provided by
official as inputs, and our results is 0.03% lower
than team Prague’s best results. According to
extrinsic results, performance of run04 parser is
slightly lower than Team prague’s highest scored
parser.

4.4 Three Downstream Systems
There are various downstream tasks that depend
on dependency syntax informations. Degree of de-
pendency may also varies across different down-
stream tasks. We would like to make some simple
analysis on this.

We calculate the standard deviation of all the re-
sults from all teams on each downstream system.
The results are shown in Table 4. The results show
that the event extraction task and the opinion anal-
ysis task are less affected by the performance of
the parser than the Negation Resolution task.

5 Conclusions

In this paper, we present our dependency parsing
system for the EPE 2017 Shared Task, which con-
sists of a BiLSTM feature extractor and an MLP
classifier. Our system uses UD version English
2.0 dataset. The parser ranks high in the Negation
Resolution task. We will continue to improve our
system and add reinforcement learning techniques
in our future work.
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Abstract

We describe the STANFORD-PARIS and
PARIS-STANFORD submissions to the
2017 Extrinsic Parser Evaluation (EPE)
Shared Task. The purpose of this shared
task was to evaluate dependency graphs
on three downstream tasks. Through our
submissions, we evaluated the usability of
several representations derived from En-
glish Universal Dependencies (UD), as
well as the Stanford Dependencies (SD),
Predicate Argument Structure (PAS), and
DM representations. We further compared
two parsing strategies: Directly parsing to
graph-based dependency representations
and a two-stage process of first parsing
to surface syntax trees and then apply-
ing rule-based augmentations to obtain the
final graphs. Overall, our systems per-
formed very well and our submissions
ranked first and third. In our analysis,
we find that the two-stage parsing process
leads to better downstream performance,
and that enhanced UD, a graph-based rep-
resentation, consistently outperforms ba-
sic UD, a strict surface syntax representa-
tion, suggesting an advantage of enriched
representations for downstream tasks.

1 Introduction

While the main focus of the dependency parsing
community still lies on parsing to surface syntax
trees, there has also been a growing interest in de-
signing deeper dependency representations that al-
low for a straightforward extraction of predicate-
argument structures, as well as developing meth-
ods to parse to these representations.

∗Corresponding Authors.

Notable instances of this line of work are the
Prague Dependency Treebank (Böhmová et al.,
2003), as well as re-annotated versions of the Penn
Treebank (Marcus et al., 1993) with CCGs (Hock-
enmaier and Steedman, 2007), LFGs (Cahill et al.,
2004) or HPSGs (Miyao and Tsujii, 2004).

With the development of the Stanford Depen-
dencies (SD) representation (de Marneffe and
Manning, 2008) and its two graph-based flavors,
the collapsed SD and the CCprocessed SD repre-
sentation, which can all be easily constructed from
phrase-structure trees, dependency graph repre-
sentations started to be used in many downstream
systems. More recently, thanks to the two Se-
mEval Shared Tasks on Semantic Dependency
Parsing (Oepen et al., 2014, 2015), there has also
been a surge in interest in developing parsers that
can directly parse to graph-based representations.
Further, there have been several initiatives to build
on the new Universal Dependencies (UD) repre-
sentation (Nivre et al., 2016) with augmentations
that recover predicate-argument structures that are
missing from strict surface syntax trees. Schuster
and Manning (2016) describe an enhanced and an
enhanced++ representation, which both add and
augment relations of a surface UD tree. Candito
et al. (2017) built upon their work on their own
native deep syntax annotation scheme (Candito
et al., 2014) and further extended the enhanced++
representation by neutralizing several syntactic al-
ternations and adding subjects of infinitival verbs
controlled not only by verbs but also by nouns and
adjectives.

However, while Schuster and Manning (2016)
and Candito et al. (2017) discuss automatic meth-
ods to obtain these augmented representations
from surface syntax UD trees, neither of them
evaluated whether these augmentations actually
improve the performance of downstream tasks that
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extract features from dependency graphs.1

On top of that, it is still an open research
question whether it is better to directly produce
these graph-based representations as compared to
first parsing to dependency trees and then ap-
plying augmentations to obtain the final graphs.
Schluter and Van Genabith (2009) and Çetinoglu
et al. (2010) explored direct parsing of LFG f-
structures, which usually form a graph. Both re-
port that their rule-based conversions slightly out-
performed their direct-parsing approach. More re-
cently, Ribeyre et al. (2016) presented results for
French that showed that parsing directly to graphs
outperforms a two-stage approach of first pars-
ing to dependency trees and then applying a rule-
based conversion to obtain graphs.

Regardless of the parsing framework, an obvi-
ous method of comparing different models that
vary in representation and parser architecture is to
evaluate parsing systems in terms of the value they
add to downstream tasks. Performing such cross-
framework extrinsic evaluation is a challenging
enterprise as it requires the development of non-
trivial feature extractors that can cope with annota-
tion schemes idiosyncrasies (Crouch et al., 2002;
Sagae et al., 2008), as well as the selection of a
set of tasks and metrics that can factor out struc-
tural divergences of the parses (Miyao et al., 2009;
Miwa et al., 2010; Elming et al., 2013).

We therefore took the opportunity of the Extrin-
sic Parser Evaluation (EPE) Shared Task (Oepen
et al., 2017) to evaluate the parsability and effec-
tiveness of various Universal Dependencies rep-
resentations as compared to strict surface syntax
trees and other semantic dependency representa-
tions. Concretely, we were investigating the fol-
lowing questions.

1. Do enhancements of surface syntax depen-
dency trees that add and augment relations
lead to improvements in downstream tasks?

2. Is it more effective to directly produce graph-
based representations as compared to first
parsing to surface syntax trees and then per-
forming rule-based augmentations to obtain
the final graphs?

3. How do the various representations derived
from Universal Dependencies compare to

1Note that Michalon et al. (2016) demonstrated the effec-
tiveness of having deep syntactic graphs as input for semantic
parsing in the FrameNet framework.

other graph-based semantic dependencies
representations?

4. Does better parsing performance as measured
by intrinsic metrics translate to better perfor-
mance in downstream tasks?

To answer these questions, we evaluated 8 dif-
ferent annotation schemes (4 of which are ex-
tensions of Universal Dependencies trees toward
deeper syntactic structures) within two different
parsing approaches: (i) direct graph parsing via
a neural transition-based graph parser, (ii) a two
stage approach of a state-of-the-art surface depen-
dency parser followed by rule-based enrichments.
When parsing to the UD enhanced representation,
our systems ranked first and third in the overall
ranking. Our results demonstrate the usefulness of
richer graph-based structures and confirm the ef-
ficiency of a rule-based enrichment system on top
of a state-of-the-art dependency parser.

2 Downstream Tasks

The shared task organizers evaluated the depen-
dency parses on the following three downstream
tasks.

Event Extraction (Björne et al., 2017) The first
downstream system is the Turku Event Extraction
System (TEES, Björne et al., 2009), which was
the top-performing system in the BioNLP 2009
Shared Task (Kim et al., 2009). For a given sen-
tence and a given set of biological entities, TEES
first identifies event triggers, i.e., tokens that de-
scribe a certain event. As a second step, TEES
then identifies the arguments of each event among
all the biological entities in the sentence, as well
as the relations between the arguments and the
events. Each of the components of TEES uses
an SVM classifier with a combination of lexi-
cal and dependency path features. This system
was originally developed to extract features from
the Stanford collapsed dependencies representa-
tion (de Marneffe and Manning, 2008). For this
shared task, TEES is trained and evaluated on the
BioNLP 2009 data set (Kim et al., 2009).

Negation Scope Detection (Lapponi and
Oepen, 2017) The second downstream system is
the negation scope resolution system by Lapponi
et al. (2012), which was developed for the 2012
*SEM Shared Task (Morante and Blanco, 2012).
This system also consists of two components:
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a classifier to detect negation cues, i.e., tokens
such as not or affixes such as un, and a sequence
labeling model to resolve the negation scope and
to identify the event that is being negated. As only
the second component uses syntactic features,
the present shared task provided gold negation
cue predictions and exclusively focused on the
second task, resolving the negation scope and
identifying the negated events. Lapponi et al.
(2012) use a CRF-based sequence labeling model
which assigns IOB-style tags to each token, which
indicate whether a token is out-of-scope, a cue,
in-scope, a negated event, or the end of the scope.
The original system was developed to extract
features from the Stanford basic dependencies
representation (de Marneffe and Manning, 2008).
For this shared task, the system was trained and
evaluated on the Conan Doyle corpus (Morante
and Daelemans, 2012). The evaluation metric
considers whether both the scope and the event
was correctly output by the system (exact match).

Fine-grained opinion analysis (Johansson,
2017) The third downstream system is the fine-
grained opinion analysis system by Johansson
and Moschitti (2013). For a given sentence, this
system first detects different types of subjective
and objective expressions and then links them to
the opinion holder (if such a holder is explicitly
mentioned). The three types of expressions are
the ones marked in the MPQA corpus (Wiebe
et al., 2005): direct-subjective expressions
(DSEs), expressive-subjective elements (ESE),
and objective statement expressions (OSE). DSEs
are expressions that directly mention emotions
and opinions such as hate or approve; ESEs are
expressions that do not explicitly mention an emo-
tion but the choice of words in context conveys an
attitude; OSEs are statements and speech events
that do not convey an opinion. For the identified
DSEs and ESEs, the system further predicts the
polarity of the expression, i.e., whether the ex-
pression conveys a positive or negative sentiment.
To detect DSEs, ESEs, and OSEs, Johansson and
Moschitti implement a sequence labeling model
which generates multiple labeled candidates.
They further use an SVM classifier that makes
use of lexical and syntactic features to identify
potential opinion holders, and they use another
SVM classifier to predict the polarity of each
subjective expression. As the sequence-labeling
model can take only local context features into

account, they finally rerank the set of candidates
using a model that extracts additional features
from a dependency tree and semantic role la-
bels. The original system used the dependency
representation of the CoNLL 2008 Shared Task
(Surdeanu et al., 2008). For the shared task, the
organizers removed all SRL features from the
reranking system and the opinion holder classifier
such that the structural information is exclusively
coming from the dependency representation.

3 Experimental Protocol

Our experimental setup is aimed at enabling all the
comparisons that we mentioned in the introduction
while at the same time, keeping the total number
of runs to a minimum. Our submissions varied
along three dimensions: the dependency represen-
tation, the parsing method, and the training data
composition.

3.1 Representations
In total, we evaluated eight different representa-
tions.

DM The Minimal Recursion Semantics-derived
dependencies (DM) is a graph-based representa-
tion that can be derived automatically from the
DeepBank HPSG annotations (Flickinger et al.,
2012) using the MRS conversion framework of
Oepen and Lønning (2006). Most of the depen-
dency labels indicate the index of the argument,
e.g., ARG1 and ARG2, but there also exist some
special relations for several semantic phenomena,
including coordination and bound variables.

PAS Predicate-argument structure (PAS) is an-
other graph-based dependency representation that
has been derived from the automatic HPSG-style
annotation of the Penn-Treebank (Miyao and Tsu-
jii, 2004). PAS encodes the index of the arguments
of each predicates by also using general depen-
dency labels such as ARG1 and ARG2 but prefixed
with the head’s generic part-of-speech (eg. det,
verb, etc.).
Note that the PAS and DM representations are
structurally different and are derived through dif-
ferent methods. One is treebank-based and the
other is grammar-based, and their underlying syn-
tactic backbones differ (e.g., in the choice of heads
and roots and the treatment of copula).

SD The Stanford Dependencies representation
(de Marneffe and Manning, 2008) is a typed de-
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pendency representation that encodes the gram-
matical roles of arguments and modifiers, using
approximately 50 different relation labels. We
evaluate only the basic SD representation, which
is always guaranteed to be a strict surface-syntax
tree. We evaluate the representation as output by
the converter in CoreNLP version 3.8.0.

UD basic The Universal Dependencies (UD)
representation (Nivre et al., 2016) is the result of
a global initiative to adapt the Stanford Dependen-
cies representation to a large variety of languages,
including morphologically rich ones. The UD re-
lations also encode the grammatical roles of argu-
ments and modifiers. Apart from a slightly dif-
ferent repertoire of relations, UD primarily differs
from SD in that it has a stronger tendency to treat
content words as heads. The basic UD represen-
tation is again guaranteed to be a strict surface-
syntax tree. We evaluate version 1 of this repre-
sentation.

UD enhanced The enhanced representation
(Schuster and Manning, 2016) is based on the ba-
sic UD representation and includes additional de-
pendencies for subjects of controlled verbs and for
shared arguments or modifiers. Further, this repre-
sentation uses augmented relation labels to disam-
biguate the type of coordination or modifier. For
example, the relation label of a nominal modifier
(nmod) that is introduced with the preposition by
is nmod:by.

UD enhanced++ The enhanced++ representa-
tion includes all the additional edges of the en-
hanced representation, and provides special treat-
ment of partitives and multi-word prepositions.
We evaluate English enhanced++ UD graphs as
described by Schuster and Manning (2016) with
one exception: We do not add copy nodes for
conjoined prepositions or prepositional phrases as
some of the downstream systems do not support
tokens that are not overtly present in the sentence.

UD diathesis The UD diathesis representation
(Candito et al., 2017) builds upon the enhanced++
representation and extends it in two ways. First,
it contains more argumental relations, for exam-
ple, relations between infinitival verbs controlled
by nouns or adjectives and their controllers, and
relations between participles and their subjects
and objects. Second, this representation neutral-
izes some syntactic alternations. For example, de-

moted agents in the form of by-phrases are turned
into subjects and passive subjects into direct ob-
jects.

UD diathesis-- This representation is identical
to the UD diathesis representation except that
this representation does not contain relation labels
augmented with function words (e.g., the relation
nmod:with is replaced with nmod), which dras-
tically reduces the dependency label space.

Some of the differences and commonalities of
the various representations are visualized based on
an example sentence in Appendix A.

3.2 Parsers
We evaluated two different parsing scenarios: Di-
rectly parsing to dependency graphs and parsing
to a surface syntax dependency tree and then ap-
plying rule-based conversions to obtain the depen-
dency graphs.

Dependency graph parser We used a version
of the transition-based graph parser of Ribeyre
et al. (2015) DYALOG-SRNN which was extended
in De La Clergerie et al. (2017) with a neural net-
work component implemented in Dynet (Neubig
et al., 2017). The key idea is that the neural com-
ponent can provide the best parser action or, if
asked, a ranking of all possible actions. This infor-
mation is then used as extra features for our pars-
ing model to ultimately make a decision. We kept
the same set of transitions as Ribeyre et al. (2015)
for the SemEval Semantic Dependency Parsing
Shared Task (Oepen et al., 2014), which enables
the construction of dependency graphs with mul-
tiple governors and orphan nodes (nodes without
governors). Essentially, it relies on pop{0,1}
transitions to discard stack element 0 or 1 from
the stack, and an attach transition that adds a
dependency edge between the two topmost stack
elements without removing the dependent element
from the stack. We also included features related
to the governors of the 3 topmost stack elements
and some of their descendants.

The submissions using this parser are all labeled
PARIS-STANFORD.

Dependency tree parser and rule-based aug-
mentation Apart from directly parsing to
graphs, we also evaluated parsing to surface
dependency trees and then applying rule-based
conversions to the parser output to obtain the de-
pendency graph representations. Such conversions
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DM PAS UD basic UD enhanced UD enhanced++ UD diathesis UD diathesis --

Train Set

Edges 559975 723445 770873 794299 794572 798185 798185
% empty nodes 21.63 4.30 - - - - -

Development Set

Edges 27779 35573 38054 39236 39246 39418 39418
% empty nodes 21.58 4.25 - - - - -

Unique labels 52 43 40 279 325 323 40
% additional edges -27.36 -0.06 - 3.04 3.07 3.54 3.54

Table 1: Data set properties. Additional edges are calculated relative to UD basic.

are only available for the UD representations, and
therefore we could not parse to PAS or DM using
this method. For parsing to basic UD and basic
SD, we used the dependency parser by Dozat and
Manning (2017), which was the best-performing
parser in the CoNLL 2017 Shared Task (Zeman
et al., 2017). This parser is a graph-based2 neural
dependency parser which represents each token
as the output of a multi-layer perceptron on top of
a bidirectional LSTM model. It uses these token
representations to score each possible dependency
relation resulting in a directed weighted graph,
and then constructs a maximum spanning tree
from these scored edges. Once it constructs the
unlabeled dependency tree, it adds labels to the
edges with another classifier that again uses the
token representations as input.

We convert basic UD trees to enhanced and
enhanced++ UD graphs with the converter by
Schuster and Manning (2016) as implemented in
Stanford CoreNLP version 3.8, and we convert
enhanced++ UD graphs to the two UD diathe-
sis representations with a custom converter, mod-
eled after the converter for French by Candito
et al. (2017), which uses a graph-rewriting system
(Ribeyre et al., 2012).

The submissions using this parser are all labeled
STANFORD-PARIS.

3.3 Data
We trained our parsers with two different data sets:
the DM SPLIT data set and the FULL data set. The
DM SPLIT data contains all the sentences of sec-
tions 00-21 of the PTB WSJ, with sections 00-19
being the training data and section 20 the develop-

2Note that while the parser by Dozat and Manning builds
a complete graph during inference, it only uses this graph to
find the highest scoring tree. Thus it always outputs a strict
surface syntax tree and cannot be used for directly parsing to
a graph-based representation such as enhanced UD or PAS.

ment data, which corresponds to the default split
for the PAS and DM treebanks.

The FULL data set consists of sections 02-21 of
the PTB WSJ, the first 8 of every 10 sentences of
the Brown corpus, and the training split of the GE-
NIA treebank. We used section 22 of the PTB
WSJ, the ninth out of every 10 sentences of the
Brown corpus, and the development split of the
GENIA treebank as a development set. A large
portion of this dataset is not annotated with the
PAS and DM schemes and therefore, we were only
able to train models for the SD and the various UD
representations on this data set. While this pre-
vents us from comparing SD and UD to PAS and
DM in this setting, it allows us to investigate the
effect of adding more in-domain3 training data.

For DM and PAS, we used the official data
sets from the SemEval 2015 SDP Shared Task
(Oepen et al., 2015). For the SD and UD schemas,
we converted phrase-structure trees to dependency
graphs using the converter in CoreNLP version 3.8
(for SD, UD basic, UD enhanced, and UD en-
hanced++) as well as a custom converter (for the
two UD diathesis representations)

We replaced the gold part-of-speech tags in our
training data with predicted Universal POS and
PTB POS tags.

Given time constraints, for training the PARIS

dependency graph parser, we randomly sampled
15k sentences during each of the up to 20 epochs.
As the post-hoc results in Table 2 show, this only
led to a small loss in parsing performance (0.65
percentage points on average) while reducing our
training time by a factor of 10. Because of this
sampling, there was less WSJ data in our FULL

3 The event extraction task requires parsing of biomedical
texts similar to the ones that appear in the GENIA treebank,
and the negation scope resolution task requires parsing of fic-
tion, which is one the genres of the Brown corpus.
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Annotation scheme Complete 15k
UD v1 basic 89.70 88.99
UD v1 enhanced 87.44 86.90
UD v1 enhanced++ 87.61 87.08
UD v1 enhanced++ diathesis 85.47 84.71
UD v1 enhanced++ diathesis-- 86.41 85.68

Table 2: Impact of the training set size (com-
plete training data vs. random sampling of 15k
sentences) on the performance of the PARIS-
STANFORD parser. All the results are LAS on the
FULL development set.

runs as compared to the DM SPLIT runs but given
our good performances in the extrinsic evaluation
tasks, we believe that this made the parser less sen-
sitive to domain variation.

3.3.1 Statistics
Table 1 presents some interesting properties of our
data sets. In contrast to the UD-based treebanks,
the DM and PAS treebanks contain empty nodes.
All of the UD-based data sets (except for the UD
basic and UD diathesis-- ones) contain a large set
of labels. This does not seem to cause much of
an issue for our parsers, apart from considerably
increased parsing and training times. As expected,
the augmented UD treebanks contain between 3%
and 3.5% more edges than their UD basic source.

4 Parsing pipeline

We use a standard parsing pipeline consisting of
separate tokenization, sentence splitting, part-of-
speech tagging, and parsing steps. We tokenize
and sentence-split the shared task data using the
English tokenizer in Stanford CoreNLP version
3.8 (Manning et al., 2014) with default parame-
ters. We then jointly predict Universal and PTB
POS tags with the tagger by Dozat, Peng and Man-
ning (2017), which we trained on the FULL train-
ing data, and then run the parser on the tokenized
and tagged input.

In addition, for all our runs and parsers, we
used the word2vec word embeddings provided by
the CoNLL 2017 Shared Task organizers (Zeman
et al., 2017). For the DM SPLIT PARIS-STANFORD

run, we also used Brown clusters extended with
morphological features, which we extracted from
an Americanized version of the British National
Corpus following Seddah et al. (2012). For the
FULL PARIS-STANFORD run, we extracted the

same kind of clusters from the same corpus and
the Medline biomedical abstract corpus.

5 Results and Discussion

The results of our submissions on the downstream
tasks are shown in Table 3 (DM SPLIT) and Table 4
(FULL). Overall, our submissions performed very
well in the shared task: the STANFORD-PARIS sub-
missions ranked first, and the PARIS-STANFORD

submissions ranked third according to the official
ranking,4 which considers only the best submis-
sion of each team. While part of this success
can certainly be attributed to our high-performing
parsers and having an expressive representation,
we also want to emphasize that to the best of our
knowledge, we did use more training data than any
of the other teams did, and therefore, the results
are not fully comparable.

Effect of augmenting UD trees As shown in
Table 4, the overall best-performing run was ob-
tained with the FULL data set parsed to UD en-
hanced, followed by the run that parsed to UD
diathesis. Further, in all our parser-data combina-
tions, the UD enhanced representation led to bet-
ter downstream results than the UD basic repre-
sentation. All of this suggests that there is value
in adding edges to surface syntax trees in order
to make the relations between content words more
explicit. This is also in line with the results by
Silveira (2016) who reports that the UD enhanced
and UD enhanced++ representations led to better
performance than UD basic in a biomedical event
extraction task. However, based on the present re-
sults, it is hard to make more specific claims about
the four graph-based UD representations that we
evaluated as we observe some unexpected incon-
sistencies, which require further investigation. For
example, as described above, the UD diathesis
representation extends the UD enhanced++ repre-
sentation and in the STANFORD-PARIS FULL runs,
we obtained better results with UD diathesis than
with UD enhanced++. However, in some of the
other runs, we observed the opposite and it is un-
clear at this point why the effect of these enrich-
ments varies so much.

Parsing methods Our results consistently indi-
cate that it is more efficient to first parse to a de-

4The official table of results which includes detailed re-
sults for each downstream task can be found at
http://epe.nlpl.eu.
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Team Run Representation Event Negation Opinion Average
Extraction Scope Analysis

PARIS-STANFORD 0 DM 46.04 59.78 57.37 54.40
PARIS-STANFORD 1 PAS 45.99 58.29 58.54 54.27

PARIS-STANFORD 2 UD v1 basic 49.55 55.98 63.50 56.34
PARIS-STANFORD 3 UD v1 enhanced 48.29 56.75 64.27 56.44
PARIS-STANFORD 4 UD v1 enhanced++ 47.17 55.59 63.38 55.38
PARIS-STANFORD 5 UD v1 enhanced++ diathesis 48.72 55.59 64.24 56.18
PARIS-STANFORD 6 UD v1 enhanced++ diathesis-- 46.81 56.75 62.18 55.25

STANFORD-PARIS 1 UD v1 basic 47.73 63.05 64.24 58.34
STANFORD-PARIS 2 UD v1 enhanced 47.76 63.75 64.18 58.57
STANFORD-PARIS 3 UD v1 enhanced++ 48.76 64.10 64.37 59.08
STANFORD-PARIS 4 UD v1 enhanced++ diathesis 47.99 63.05 64.23 58.42
STANFORD-PARIS 9 UD v1 enhanced++ diathesis-- 48.51 61.62 63.94 58.02

Table 3: Results on the downstream tasks (F1) for our systems trained on the DM SPLIT data set. Numbers
in bold indicate the best overall result; numbers in blue indicate the best results of the PARIS-STANFORD

parser.

Team Run Representation Event Negation Opinion Average
Extraction Scope Analysis

PARIS-STANFORD 7 UD v1 basic 49.14 56.36 63.28 56.26
PARIS-STANFORD 8 UD v1 enhanced (#3) 49.31 57.14 63.97 56.81
PARIS-STANFORD 9 UD v1 enhanced++ 49.41 55.98 63.78 56.39
PARIS-STANFORD 10 UD v1 enhanced++ diathesis 48.10 53.18 63.29 54.86
PARIS-STANFORD 11 UD v1 enhanced++ diathesis-- 47.70 56.75 62.65 55.70

STANFORD-PARIS 0 Stanford basic 50.29 65.13 63.72 59.71

STANFORD-PARIS 5 UD v1 basic 49.13 64.80 64.70 59.54
STANFORD-PARIS 6 UD v1 enhanced (#1) 50.23 66.16 65.14 60.51
STANFORD-PARIS 7 UD v1 enhanced++ 49.85 63.75 65.20 59.60
STANFORD-PARIS 8 UD v1 enhanced++ diathesis 50.14 64.45 65.01 59.87
STANFORD-PARIS 10 UD v1 enhanced++ diathesis-- 48.99 65.13 64.55 59.56

Table 4: Results on the downstream tasks (F1) for our systems trained on the FULL (WSJ, Genia, and
Brown) data set. Numbers in bold indicate the best overall result; numbers in blue indicate the best
results of the PARIS-STANFORD parser.

pendency tree and then augment the output us-
ing converters to obtain dependency graphs as
compared to directly parsing to graphs. The
results in Table 3 and Table 4 show that the
STANFORD-PARIS systems, which produced de-
pendency graphs using the combination of a sur-
face parser and rule-based converters, consis-
tently outperformed the PARIS-STANFORD sys-
tems, which directly parsed to a graph. Inter-
estingly, Ribeyre et al. (2016) found the oppo-
site to be true when they evaluated their parser on
the Deep French Treebank (Candito et al., 2014).
However, as they note, it might be possible to im-
prove the two-stage parser by improving the con-
version scripts such that they can better deal with
parsing errors. The converter in CoreNLP con-
tains some of these heuristics, which – in combina-
tion with the superior performance of the parser by

Dozat and Manning (2017) – might explain why
our two-stage parsing approach works better.

Comparison to other representations Com-
pared to the UD family, the DM and PAS repre-
sentations abstract further away from the surface
syntax and arguably provide a better way to extract
the arguments of a predicate independent of their
syntactic realization. However, at the same time,
UD, and especially the enhanced versions of UD,
provide a more fine grained label set than DM and
PAS do. Our results suggest that the latter is more
important for at least two of the three downstream
tasks in this shared task. If we only consider the
PARIS-STANFORD runs that were trained on the
DM SPLIT data set, which all used the same parser
trained on the same sentences, then we observe
that all the UD-based representations performed
better than the DM and PAS representations on
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the event extraction and opinion mining tasks. In-
terestingly, for the negation scope resolution task,
DM and PAS performed better than UD if one only
considers the PARIS-STANFORD runs. This is par-
ticularly suprising as it contradicts the results by
Elming et al. (2013). However, it is also notewor-
thy that for some reason, the PARIS-STANFORD

UD runs led to much lower downstream perfor-
mance than the STANFORD-PARIS UD runs on this
task, which was not the case for the other two
tasks. Overall, it seems to be the case that under
equal conditions, there is no representation that
works best for all three downstream tasks, but if
one considers the average performance, then the
UD-based representations – and in particular the
graph-based ones – seem to give better results, es-
pecially for semantic downstream tasks.

One potential confound is that two of the three
systems (event extraction and negation scope res-
olution) were originally developed to extract fea-
tures from SD, which is very similar to UD, and
that the feature extraction therefore might be tai-
lored towards an SD-like representation. While
this is a valid criticism of the setup of this shared
task, the fact that DM and PAS scored higher than
UD in the negation scope resolution task indicates
that at least one of the downstream systems seems
to be able to effectively make use of features from
various dependency representations.

Comparison of UD to SD Achieving cross-
linguistic consistency was one of the primary
goals in developing the UD representation (Nivre
et al., 2016). On the other hand, one of the main
design criteria in developing the SD representation
was its usability in downstream tasks (de Marneffe
and Manning, 2008). Considering these two po-
tentially competing goals, we wanted to compare
the basic UD and basic SD representations. Ta-
ble 4 shows that on average, there is very little dif-
ference in downstream performance with SD per-
forming slightly better than UD (59.71 vs. 59.54).
In our experiments, UD performed worse on event
extraction and slightly worse on negation resolu-
tion but better on the opinion analysis task. How-
ever, overall, the runs with both representations
performed very well and these results suggest that
despite the different primary goal of UD, UD is as
useful or at least almost as useful as SD in down-
stream tasks.

UD basic (FULL) LAS UAS Task F1

PARIS-STANFORD 88.99 90.43 56.26
STANFORD-PARIS 91.13 93.26 59.54

DM LF UF Task F1

PARIS-STANFORD 85.25 86.95 54.40

Table 5: Intrinsic and extrinsic performance of
three of our runs. The top part shows the parsing
performance (LAS and UAS) of the two parsers
on the FULL development set as well as the down-
stream performance (Task F1) of these two sys-
tems. The lower part shows the parsing perfor-
mance (LF and UF) of the PARIS parser on the DM
development set and its downstream performance
(Task F1).

Intrinsic evaluation The upper part of Table 5
shows the intrinsic performance on the FULL de-
velopment data as well as the average down-
stream performance of the PARIS-STANFORD and
STANFORD-PARIS parsers. Both of these parsers
were trained on the FULL training data, so these
numbers are comparable. While two data points
are clearly not sufficient to conclude that there is a
meaningful correlation, these results provide anec-
dotal evidence that better parsing performance
also translates to better downstream performance.

The lower part of Table 5 shows the results of
the PARIS-STANFORD parser on the DM develop-
ment data, which we included to allow for com-
parisons with shared task submissions from other
teams that also used this representation and data
set.

Domain sensitivity and training data size
When we train on a broader range of domains
using the FULL data set, the STANFORD-PARIS

parser shows a very systematic improvement of
1-1.5 points as compared to training on the DM

SPLIT. The PARIS-STANFORD results, on the other
hand, are more stable. Part of the reason for this
stability potentially comes from the random sam-
pling training process as well as the use of clusters
that were extracted from the combination of a very
balanced corpus and a very specific one such as
the BNC (170M tokens) and the Medline corpus
(22M).

As mentioned before, to the best of our knowl-
edge, the FULL data set is larger and more di-
verse than the data used by other participants in
this shared task. However, this is not true for
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the DM SPLIT, and it is noteworthy that even if
we only consider the systems trained on the DM

SPLIT, we would have still ranked first with our
UD enhanced++ run.

A note on our runs with the DM annotation
scheme If we compare our parser trained on the
DM treebank to the parsers of other participants
who trained their parsers on the same annotation
scheme, we observe that they all exhibit the same
levels of performance on average but differ con-
siderably on each task (see Table 6). Our parser
performed better on the Event Detection task than
the parsers by the Peking and UW teams, but it
performed considerably worse on the opinion min-
ing task. One explanation might be that we used
the 2014 data set whereas the other two teams pre-
sumably used the 2015 data sets but further inves-
tigations are needed on this point.

Team Event Neg. Op. Ave.
PARIS-STANFORD 46.04 59.78 57.37 54.40
PEKING 43.39 60.89 59.03 54.44
UW 42.84 56.75 60.18 53.26

Table 6: Results on the downstream tasks (F1) of
parsers trained on the DM scheme.

6 Conclusion

As our discussion hopefully conveyed, it is very
challenging to exactly pinpoint the factors that
contribute to a representation being useful for
downstream tasks, and the results are not conclu-
sive enough to make a specific recommendation
which representation should be used when build-
ing a downstream system. However, we found
that the enhanced UD graph representation con-
sistently outperformed the basic UD surface syn-
tax representation, which suggests that the addi-
tional edges and augmented labels provide an ad-
vantage in downstream tasks. The results for the
other graph-based UD representations were less
consistent and more work is needed to determine
whether they help in downstream tasks.

That all being said, based on the results of this
shared task, there is no evidence that represen-
tations that primarily focus on encoding the ar-
gument structures of predicates such as the DM
and PAS representations have benefits over rep-
resentations that are derived from surface-syntax
representations. At the same time, our results
indicate that the various representations derived

from UD are well suited for downstream tasks
as they constitute expressive representations for
which sophisticated data conversion tools and
high-performing parsers exist.
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Appendix A: Example Parses

Stanford Dependencies
The following dependency tree shows the sentence
Sue and Al want to be examined by both of the doc-
tors in the Stanford Dependencies representation.
The root of the tree, want, is highlighted in bold.

Sue and Al want to be examined by both of the doctors

nsubj

cc

conj aux

auxpass

xcomp

prep pobj prep det

pobj

UD v1 basic
The parse of this sentence in basic UD is very
similar to the one in SD. The main difference is
the treatment of prepositional phrases: In UD, the
head of the PP is the prepositional complement
whereas in SD, it is the preposition.

Sue and Al want to be examined by both of the doctors

nsubj

cc

conj mark

auxpass

xcomp

case

nmod case

det

nmod

UD v1 enhanced
The parse of this sentence in enhanced UD con-
tains two additional edges between the controlled
verb want and the two controllers (Sue and Al).
Further, it contains an additional edge to the sec-
ond subject of want (Al). Lastly, the relation labels

of the nominal modifiers (nmod) and conjuncts
(conj) contain the respective function word.

Sue and Al want to be examined by both of the doctors

nsubj

cc

conj:and

nsubj

nsubjpass:xsubj

nsubjpass:xsubj

mark

auxpass

xcomp

case

nmod:agent case

det

nmod:of

UD v1 enhanced++

This parse is identical to the parse in enhanced UD
with the exception that it treats the phrase both of
differently. As both of semantically acts as a quan-
tificational determiner, it attaches to doctors and
doctors directly attaches to the verb examined.

Sue and Al want to be examined by both of the doctors

nsubj

cc

conj:and

nsubj

nsubjpass:xsubj

nsubjpass:xsubj

mark

auxpass

xcomp

case

det:qmod

mwe det

nmod:agent

UD v1 diathesis

This parse differs from the one in enhanced++ UD
in the treatment of the passive constructions. The
passive-specific labels are replaced by nsubj and
dobj.

Sue and Al want to be examined by both of the doctors

nsubj

cc

conj:and

nsubj

dobj

dobj

mark

auxpass

xcomp

case

det:qmod

mwe det

nsubj

UD v1 diathesis--

This parse is identical to the previous one except
for the simplified conj label, which no longer
contains the function word.

58



Sue and Al want to be examined by both of the doctors

nsubj

cc

conj

nsubj

dobj

dobj

mark

auxpass

xcomp

case

det:qmod

mwe det

nsubj

PAS
The parse of this sentence in PAS differs in several
regards from the UD and SD parses. First, coordi-
nation is analyzed differently with the conjunction
being the head of the coordinated phrase. Second,
the auxiliary takes both the subject as well as the
main verb as an argument. Third, the determiner
the takes the noun doctors as an argument. How-
ever, doctors is still the argument of the preposi-
tion of. Lastly, the preposition of takes two argu-
ments, the verb that it is modifying as well as the
prepositional complement. Note that compared to
the enhanced variants of UD, this parse contains
more relations between verbs and arguments but it
does not contain a direct relation between the verb
and the two conjuncts Sue and Al.

Sue and Al want to be examined by both of the doctors

verb ARG1

coord ARG2

coord ARG1

verb ARG2

aux ARG1

comp ARG1

aux ARG2

verb ARG2

lgs ARG2

verb ARG1

prep ARG1

prep ARG2

det ARG1

DM
The parse in DM contains considerably fewer de-
pendencies as it primarily encodes the relations
between content words. It also neutralizes the pas-
sive alternation in a similar manner as the PAS and
the UD diathesis representations.

Sue and Al want to be examined by both of the doctors

ARG1

ARG2

and c
ARG2

ARG1

part

BV
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Abstract

This paper is a description of our system
for EPE 2017: Extrinsic Parser Evalua-
tion. We are concerned with three dif-
ferent models, namely tree approximation,
transition-based and Maximum Subgraph
models for semantic dependency parsing.
We present a preliminary comparison of
these models by showing some intrinsic
and extrinsic evaluation results.

1 Introduction

Semantic dependency parsing (SDP) has been ad-
dressed in the literature recently (Oepen et al.,
2014, 2015; Du et al., 2015a; Zhang et al., 2016;
Cao et al., 2017a). SDP provides a lightweight
and effective way to encode rich semantic in-
formation of natural language sentences. Exist-
ing approaches to data-driven parsing for seman-
tic dependency structures can be categorized into
four classes: tree approximation (Du et al., 2014,
2015b; Željko Agić et al., 2015), transition-based
(Zhang et al., 2016), factorization-based (Martins
and Almeida, 2014; Du et al., 2015a) and Max-
imum Subgraph (Kuhlmann and Jonsson, 2015;
Cao et al., 2017a) approaches.

Different from traditional intrinsic evaluation
method, the First Shared Task on Extrinsic Parser
Evaluation (EPE2017; Oepen et al., 2017) in-
troduces downstream systems which depend on
grammatical analysis to evaluate parser perfor-
mance.

For this task, we present a preliminary compar-
ison of tree approximation, transition-based and
Maximum Subgraph models by showing some in-
trinsic and extrinsic evaluation results.

2 Three Models

2.1 Tree Approximation

Previous work shows that a traditional depen-
dency tree parser can be combined with graph
transformation techniques to produce more gen-
eral graph structures (Schluter and Van Genabith,
2009; Cetinoglu et al., 2010; Schluter et al., 2014;
Du et al., 2014, 2015b; Željko Agić et al., 2015).
This approach is referred to as Tree Approxi-
mation by some authors. During the SemEval
SDP 2014, 2015 shared tasks (Oepen et al., 2014,
2015), we showed that Tree Approximation mod-
els can produce reasonably good semantic anal-
ysis (Du et al., 2014, 2015b). In addition, Tree
Approximation is very useful to enhance other
types of parsing techniques via feature engineer-
ing (Zhang et al., 2016) or model integration (Du
et al., 2015a).

In this paper, we evaluate a tree approximation
model based on the weighted graph-to-tree con-
version introduced in our previous work (Du et al.,
2014; Zhang et al., 2016).

2.2 Transition-based Parsing

Transition-based approach is a simple yet effective
approach for syntactic parsing (Yamada and Mat-
sumoto, 2003; Nivre et al., 2004; Chen and Man-
ning, 2014). It has been extended to build general
directed graphs (Sagae and Tsujii, 2008; Hender-
son et al., 2013; Sun et al., 2014; Zhang et al.,
2016). Especially, different transition systems
have been developed for generating more flexible
graphs, e.g. DAG or even arbitrary graphs. For
SDP, our previous work showed that the transition-
based approach can produce semantic graphs with
comparable accuracy to other more complicated
approaches, e.g. grammar-based or factorization-
based approahces (Zhang et al., 2016).

In this paper, we evaluate a two-stack based
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model introduced in our previous work (Zhang
et al., 2016).

2.3 Maximum Subgraph Parsing
Parsing for deep dependency representations can
be viewed as the search for Maximum Subgraphs
for a certain graph class G (Kuhlmann and Jon-
sson, 2015). This is a natural extension of the
Maximum Spanning Tree (MST) perspective (Mc-
Donald et al., 2005) for dependency tree pars-
ing. Previous work showed that this perspective
is not only elegant in theory but also effective
in practice (Kuhlmann and Jonsson, 2015; Cao
et al., 2017a). Our previous work showed that
1-endpoint-crossing, pagenumber-2 graphs are an
appropriate graph class for modeling semantic de-
pendency structures. On the one hand, it is highly
expressive to cover a majority of semantic analy-
sis. On the other hand, the corresponding Maxi-
mum Subgraph problem with an arc-factored dis-
ambiguation model can be solved in low-degree
polynomial time (Cao et al., 2017a,b).

In this paper, we evaluate the 1-endpoint-
crossing, C-free parsing model introduced in our
previous work (Cao et al., 2017a).

3 Downstream Systems

The EPE2017 Shared Task uses three applica-
tions which depend strongly on syntactic or se-
mantic analysis of the sentence. a) The biological
event extraction system (Johansson, 2017) origi-
nated from the BioNLP 2009 Shared Task (Kim
et al., 2009) focus on the extraction of bio-events,
including the event type and theme, particularly on
proteins or genes. b) The negation scope resolu-
tion system (Lapponi and Oepen, 2017) originated
from the 2012 *SEM Shared Task (Morante and
Blanco, 2012) is aimed at detecting the scope and
focus from negation phenomenon in a sentence. c)
The fine-grained opinion analysis system (Johans-
son, 2017) based on the MPQA Opinion Corpus
(Wiebe et al., 2005) focus on marking up opin-
ion expressions, finding opinion holders, and de-
termining the polarities of opinion expressions.

4 Experiments

4.1 Training Data
We use Minimal Recursion Semantics (Copes-
take et al., 2005) derived Semantic Dependencies
(DM; Ivanova et al., 2012), whose annotations are
based on the parsing results given a large-scale

linguistically-precise grammar and manually dis-
ambiguated, and Combinatory Categorial Gram-
mar (Steedman, 1996, 2000) derived Deep Depen-
dencies (CCD; Clark et al., 2002), which repre-
sents Functor-Argument Structures that are based
on type-logical semantics, for training and intrin-
sic evaluation. Figure 1 demonstrates the two rep-
resentations. The data is provided by Linguistic
Data Consortium1 (Oepen et al., 2016).

4.2 Tree Parsing Models

A tree approximation model need to be coupled
with a tree parser. For EPE 2017, we use the first-
order graph-based projective parser introduced in
(Kiperwasser and Goldberg, 2016). The data is
transformed into projective approximation trees,
and then fed into a neural tree parser. The out-
puts of this tree parser can be directly converted
to the corresponding graphs, and can also as-
sist the transition-based and Maximum Subgraph
parsers as features. Different from tree pars-
ing, the transition-based and Maximum Subgraph
parsers apply linear models for disambiguation.

4.3 Intrinsic Evaluation

Table 4.3 presents the intrinsic evaluation using
the standard test data. We can see that when
equipped with state-of-the-art neural parsing tech-
niques, Tree Approximation is simple yet effec-
tive. The Maximum Subgraph model, which is
comparable to graph-based tree parsing models, is
slightly better than the transition-based model for
both DM and CCD representations. We think the
transition-based and Maximum Subgraph models
can benefit from neural disambiguation models.

4.4 Extrinsic Evaluation

EPE 2017 includes three successive tasks, namely
Event Extraction, Negation Resolution and Opin-
ion Analysis. The extrinsic evaluation results on
the development set and the evaluation set are
summarized in Table 4.4 and 4.42.

5 Conclusion

We present a preliminary evaluation of three ap-
proaches, namely tree approximation, transition-
based and Maximum Subgraph approaches, to

1https://catalog.ldc.upenn.edu/LDC2016T10
2Due to our mistakes, the evaluation result of transition-

based parser is missing.
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A similar technique is almost impossible to apply to other crops, such as cotton, soybeans and rice.

ROOT

BV

arg1 arg1 arg1
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arg2

arg3

arg1

arg2 implicit conj

and c

(a) Format 1: MRS-derived dependencies, from DeepBank HPSG annotations.

A similar technique is almost impossible to apply to other crops , such as cotton , soybeans and rice
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arg2

arg2

arg2

(b) Format 2: Functor-argument structures, from CCGBank.

Figure 1: Dependency representations in (a) DeepBank (DM) and (b) CCGBank (CCD) formats.

DM
UP UR UF LP LR LF

Tree Approximation 91.21 88.88 90.03 89.74 87.45 88.58
Transition-based 90.10 89.90 90.00 87.92 87.73 87.82
Maximum Subgraph 92.77 88.17 90.41 91.45 86.91 89.12

CCD
UP UR UF LP LR LF

Tree Approximation 94.41 91.30 92.83 91.22 88.20 89.68
Transition-based 93.31 93.58 93.44 89.83 90.10 89.96
Maximum Subgraph 95.17 92.54 93.84 91.96 89.42 90.67

Table 1: Accuracy of different graph parsing models on the test data sets.

SDP. We show both intrinsic and extrinsic evalua-
tion results. We hope to extend the empirical study
in the future.
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Abstract

We present our contribution to The First
Shared Task on Extrinsic Parser Evalua-
tion (EPE 2017). Our participant system,
the UDPipe, is an open-source pipeline
performing tokenization, morphological
analysis, part-of-speech tagging, lemma-
tization and dependency parsing. It is
trained in a language agnostic manner for
50 languages of the UD version 2. With a
relatively limited amount of training data
(200k tokens of English UD) and with-
out any English specific tuning, the sys-
tem achieves overall score 56.05, placing
as the 7th participant system.

1 Introduction

Language syntax has been a topic of interest and
research for hundreds of years. Syntactical anal-
ysis, most commonly in form of constituency or
dependency trees, has therefore been one of the
long-standing goals of computational linguistics.

Syntactic analysis was considered crucial to un-
derstand the semantics of a message. Lately,
statistical and especially neutral network models
have achieved superb results in natural language
processing without explicit syntax recognition, by
considering sentences to be merely a sequence of
words. However, quite recently, syntactic trees
have been shown to improve performance com-
pared to the sequential models, especially in tasks
requiring deeper understanding of text, like text
summarization (Kong et al., 2017) or textual en-
tailment (Hashimoto et al., 2016).

Consequently, syntactic parsing has its merit
both as a standalone application and as a prepro-
cessing step for further language processing, re-
sulting in two kinds of evaluation methods – ei-
ther intrinsic or extrinsic. While the intrinsic eval-

uation is straightforward and commonly used, ex-
trinsic evaluation is much more complex, and to
our best knowledge, there had been no standard-
ized set of tasks serving as extrinsic evaluation.

Recently, performance of raw text parsing has
been evaluated in the CoNLL 2017 Shared Task:
Multilingual Parsing from Raw Text to Univer-
sal Dependencies (Zeman et al., 2017),1 provid-
ing a rich intrinsic evaluation of 33 systems across
81 treebanks in 49 languages of the latest ver-
sion of UD, the Universal Dependencies project
(Nivre et al., 2016), which seeks to develop cross-
linguistically consistent treebank annotation of
morphology and syntax.

The First Shared Task on Extrinsic Parser Eval-
uation (EPE 2017) (Oepen et al., 2017)2 pro-
poses an extrinsic parser evaluation metric, by
means of three downstream applications that are
known to depend heavily on syntactic analysis.
All tasks, the biological event extraction (Björne
et al., 2017), negation scope resolution (Lapponi
et al., 2017) and fine-grained opinion analysis (Jo-
hansson, 2017), require pre-processing of raw En-
glish texts into the EPE interchange format, which
is a general format encoding arbitrary dependency
graphs. Each such graph represents a sentence
and consists of several nodes, which correspond
to substrings of the original document and include
POS tags, lemmas and arbitrary morphological
features. The aforementioned tasks then process
these graphs and compute individual evaluation
metrics, whose unweighted combination is the fi-
nal EPE score.

This paper describes performance of the UD-
Pipe system in the EPE 2017 shared task. UDPipe
(Straka and Straková, 2017)3 is an open-source

1
http://ufal.mff.cuni.cz/conll-2017-shared-task

2http://epe.nlpl.eu
3http://ufal.mff.cuni.cz/udpipe
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tool which automatically performs sentence seg-
mentation, tokenization, POS tagging, lemmatiza-
tion and dependency trees, using UD version 2
treebanks as training data. This system has been
used both as a baseline system and also a partici-
pant system in CoNLL 2017 shared task, ranking
8th in the official (intrinsic) evaluation (Straka and
Straková, 2017).

Even if the EPE 2017 shared task is only in En-
glish, the submitted UDPipe system is trained in
a strictly language-agnostic manner without any
specific handling of English, using UD 2.0 train-
ing data only. It is therefore interesting to compare
it to other English-tailored participating systems.

In Section 2, we briefly discuss related work.
The UDPipe system including chosen hyperpa-
rameters for English is described in Section 3.
The extrinsic evaluation results of UDPipe are pre-
sented in Section 4, together with intrinsic metrics
and discussion of observed performance. Finally,
we conclude in Section 5.

2 Related Work

Deep neural networks have achieved remarkable
results in many areas of machine learning. In
NLP, end-to-end approaches were initially ex-
plored by Collobert et al. (2011). With a prac-
tical method for precomputing word embeddings
(Mikolov et al., 2013) and utilization of recur-
rent neural networks (Hochreiter and Schmid-
huber, 1997; Graves and Schmidhuber, 2005)
and sequence-to-sequence architecture (Sutskever
et al., 2014; Cho et al., 2014), deep neural net-
works achieved state-of-the-art results in many
NLP areas like POS tagging (Ling et al., 2015),
named entity recognition (Yang et al., 2016) or
machine translation (Vaswani et al., 2017).

The wave of neural network parsers was started
recently by Chen and Manning (2014), who pre-
sented a fast and accurate transition-based parser.
The proposed neural network architecture is sim-
ple, consisting of only an input layer, one hidden
layer and an output softmax layer, without any re-
current connections. The UDPipe parser (Straka
and Straková, 2017) is based on this architecture,
and adds partially non-projective and fully non-
projective transition systems, as well as a search-
based oracle (Straka et al., 2015).

Many other parser models followed, employing
various techniques like stack LSTM (Dyer et al.,
2015), global normalization (Andor et al., 2016),

contextualization of embeddings using bidirec-
tional LSTM (Kiperwasser and Goldberg, 2016),
biaffine attention (Dozat and Manning, 2017)
or recurrent neural network grammars (Kuncoro
et al., 2016), improving LAS score in English and
Chinese dependency parsing by more than 2 points
in 2016.

2.1 Motivation For Structured Sentence
Processing

Although the sequence-to-sequence architecture
provides overwhelming performance compared to
traditional methods, there have been several at-
tempts to enhance it utilizing syntactic informa-
tion. Many such designs employ dependency trees
not merely as features, but either to encode an in-
put sentence according to syntactic tree (Tai et al.,
2015; Li et al., 2017; Chen et al., 2017) or gener-
ate an output sentence as a dependency tree (Wu
et al., 2017; Rabinovich et al., 2017).

A comprehensive comparison of processing in-
put sentence either as a sequence or as a tree
was performed by Yogatama et al. (2016). Ad-
ditionally, the authors also considered the even-
tuality of utilizing task-specific syntax trees, both
in semi-supervised manner (i.e., bootstrapping the
task-specific syntax with manually annotated trees
and allowing their change later) and in unsuper-
vised manner. While the supervised syntax did
not demonstrate much improvement, both semi-
supervised and unsupervised approach (i.e., learn-
ing task-specific syntax) yielded substantial gains
in all four examined tasks.

3 UDPipe

UDPipe4 is an open-source pipeline which per-
forms tokenization, morphological analysis, part-
of-speech tagging, lemmatization and dependency
parsing. It is a simple-to-use tool consisting of one
binary and one model (per language) and can be
easily trained using solely data in CoNLL-U for-
mat, without additional linguistic knowledge on
the users’ part. Precompiled binaries for Win-
dows, Linux and OS X are available, as are bind-
ings for Python,5 Perl,6 Java and C#. Source code
is available on GitHub7 under MPL license.

The initial UDPipe 1.0 release (Straka et al.,
2016) processed CoNLL-U v1 files and was dis-

4http://ufal.mff.cuni.cz/udpipe
5PyPI package ufal.udpipe
6CPAN package UFAL::UDPipe
7http://github.com/ufal/udpipe
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tributed with 36 pretrained models8 on UD 1.2
data. Updated UDPipe 1.1 and UDPipe 1.2
versions (Straka and Straková, 2017) process
CoNLL-U v2 files and were employed in CoNLL
2017 shared task, with UDPipe 1.1 serving as a
baseline system and UDPipe 1.2 attending as a
participant system. Recently, pretrained models
for 50 languages were released based on UD 2.0
data.9

All UDPipe models, especially the ones partici-
pating in the CoNLL 2017 shared task, have been
evaluated using several intrinsic metrics (Zeman
et al., 2017). Therefore, we employed these ex-
act models to participate in EPE 2017, in order to
facilitate comparison between the extrinsic and in-
trinsic measurements.

We now briefly describe the most recent ver-
sion, UDPipe 1.2, together with the chosen hy-
perparameters for the English model (according
to performance on the development set). More
detailed language-independent description of the
system and its gradual updates are available in
Straka and Straková (2017) and in Straka et al.
(2016).

3.1 Tokenizer

The tokenizer performing sentence segmentation
and tokenization is trained purely with the UD
training data. The CoNLL-U format allows for the
reconstruction of the original pre-tokenized text
using the SpaceAfter=No feature, which in-
dicates that a given token was not followed by a
space separator in the original text. This facilitates
training a model which predicts the probability of
a token break after every character in a given plain
text.

Sentence breaks can be trained analogously.
However, the CoNLL-U v1 format does not pro-
vide markup for paragraph and document bound-
aries. These are often indicated by visual layout
and/or spacing, but if not annotated in the data,
a sentence segmenter has to predict the sentence
boundary at the end of a paragraph only from the
raw text. Considering the examples from the En-
glish UD data presented in Figure 1, such sentence
breaks confuse the segmenter and prompt it to split
sentences more often than necessary.
The CoNLL-U v2 format has been updated to in-
clude markup for paragraph and document bound-

8http://hdl.handle.net/11234/1-1659
9http://hdl.handle.net/11234/1-2364

Keep in touch, / Mike / Michael J. McDermott
i have two options / using the metro or the air france
bus / can anybody tell me if the metro runs directly ...

Figure 1: Examples of sentence breaks (denoted
with slash) in English UD data which are hard to
predict without inter-sentence spacing and layout.

aries. Unfortunately, only document boundaries
are marked in English UD 2.0 data, resulting in the
segmenter still being trained on sentence bound-
aries marked in Figure 1.

Technically, the UDPipe tokenizer predicts for
each character whether it is followed by a token
break, sentence break or none of above. Each
character is represented using randomly initial-
ized embedding of dimension d and a bidirectional
GRU (Cho et al., 2014) network is employed dur-
ing the prediction. The details of the architecture,
training and inference are explained in Straka et al.
(2016).

For English, embedding and GRU dimension
are set to 64. The network is trained using dropout
rate of 10% before and after the GRU cells for
100 epochs, each consisting of 200 batches con-
taining 50 segments of 50 characters. The network
weights are updated using Adam (Kingma and Ba,
2014) with initial learning rate of 0.002. Addition-
ally, space is assumed to always separate tokens
(due to no training token containing a space) and
the network is therefore trained to only predict to-
ken breaks which do not precede a space character.

3.2 Tagger
Part-of-speech tagging is performed in two steps:
firstly, a set of candidate (UPOS, XPOS, FEATS)
triples are generated for each token using its suf-
fix of length at most 4, and secondly, these candi-
dates are disambiguated on a sentence-level using
averaged perceptron (Collins, 2002) with Viterbi
decoding of order 3.

To facilitate the candidate generation, a guesser
dictionary with a predefined number of most com-
mon candidate triples for every possible suffix of
length 4 is constructed according to the training
data. When searching the guesser dictionary, en-
tires with longer suffix match are always preferred.
Additionally, for every token in the training data,
all its appearing (UPOS, XPOS, FEATS) analyses
are kept.

In order to generate candidates for a given to-
ken, two cases are considered. If the token was
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present in the training data, all its analyses ap-
pearing in the training data are returned, together
with 6 another (differing) most common candi-
dates from the guesser dictionary. If the tokes was
not present in the training data, 10 most common
candidates from the guesser dictionary are gener-
ated.

The candidates are disambiguated using aver-
aged perceptron utilizing a predefined rich set of
feature templates based on classification features
developed by Spoustová et al. (2009) for Czech.

A lemmatizer is nearly identical to the above de-
scribed part-of-speech tagger. For every token, the
candidates are (UPOS, lemma rule) pairs, where
the lemma rule is the shortest formula for generat-
ing a lemma from a given token, using any com-
bination of “remove a specific prefix“, “remove a
specific suffix“, “append a prefix“ and “append a
suffix“ operations. For the English lemmatizer, at
most 4 candidates are generated for every token,
because of the smaller number of lemmas (com-
pared to XPOS and morphological features).

Theoretically, both the part-of-speech tagging
and lemmatizing could be performed jointly us-
ing candidate quadruples, but such approach re-
sults in lower performance (we hypothesise that
the required number of candidate quadruples is too
high for the disambiguation step to be performed
effectively).

3.3 Dependency Parser

UDPipe utilizes fast transition-based neural de-
pendency parser inspired by Chen and Manning
(2014). The parser is based on a simple neural net-
work with just one hidden layer and without any
recurrent connections, using locally-normalized
scores.

The parser offers several transition systems,
from projective and partially non-projective to
fully non-projective. For English, a projective
arc-standard system (Nivre, 2008) with both a dy-
namic oracle (Goldberg et al., 2014) and a search-
based oracle (Straka et al., 2015) yield the best
performance. It is possible to combine both ora-
cles, because the search-based oracle employs an
arbitrary transition-based parser – even the one uti-
lizing a dynamic oracle.

Even if a projective transition system is used,
non-projective trees are used during training, with
the parser trying to predict a (projective) subset of
dependency edges.

The parser employs FORM, UPOS, FEATS and
DEPREL embeddings. The form embeddings of
dimension 64 are precomputed with word2vec on
the training data only, with the following options:
word2vec -cbow 0 -size 64 -window 10 -negative 5

-hs 0 -sample 1e-1 -iter 15 -min-count 2

The precomputed embeddings are used only for
forms occurring at least twice in the training data;
forms appearing only once are considered un-
known forms and used to train the (initially ran-
dom) embedding of unknown words. The UPOS,
FEATS and DEPREL embeddings have dimension
20 and are initialized randomly. All embeddings
are updated during training.

The size of the hidden layer is 200. The network
is trained using SGD with minibatches of size 10,
starting with learning rate 0.01 and gradually de-
caying it to the final 0.001. L2 regularization with
weight 1.5e-6 is applied to reduce overfitting.

3.4 Training UDPipe

UDPipe is trained without any language specific
knowledge. Even if we have so far described spe-
cific hyperparameter values used by the English
models, the hyperparameters for each treebank are
extensively tuned on the development set.

The UD 2.0 data contain three English tree-
banks. Consequently, in addition to training
treebank-specific models, we also experiment with
training a model using a union of all these tree
treebanks. Even if the treebanks use different
XPOS tags and there are annotation inconsisten-
cies among the treebanks (which are observable
using the intrinsic evaluation of the merged model
on the individual treebanks’ test sets), we hypoth-
esise that the larger training data should benefit
real-word applications.

3.5 Example Parse Tree

To illustrate the UD-style trees with universal de-
pendency relations and universal POS tags, we
provide an example of a (correctly parsed) tree in
Figure 2.

4 Experiments and Results

We submitted five different UDPipe configura-
tions to the EPE 2017 shared tasks. These runs
are described in Table 1. The run 0 is the English
treebank model of UDPipe 1.2 from the CoNLL
2017 shared task (Zeman et al., 2017). The exactly
same model is used as a run 1, but using the tok-
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Run name Run Description Tokens
UD2.0 En/UDPipe/20 0 UDPipe 1.2, UD 2.0 English data, UDPipe tokenizer, beam size 20 204.5k
UD2.0 En/EPE/20 1 UDPipe 1.2, UD 2.0 English data, EPE provided tokenizer, beam size 20 204.5k
UD2.0 EnMerged/UDPipe/20 2 UDPipe 1.2, UD 2.0 English + English LinES + English ParTUT data,

UDPipe tokenizer, beam size 20
292.2k

UD2.0 EnMinus/UDPipe/5 3 UDPipe 1.1, first 95% of UD 2.0 English data, UDPipe tokenizer, beam size 5 192.5k
UD1.2 En/UDPipe/5 4 UDPipe 1.0, UD 1.2 English data, UDPipe tokenizer, beam size 5 204.5k
Stanford-Paris 6 UD v1 enhanced dependencies, WSJ+Brown+GENIA data 1692.0k

Table 1: Description of employed systems

He
nsubj
PRON

gave
root
VERB

no
det
DET

indication
obj
NOUN

on
case
ADP

the
det
DET

value
nmod
NOUN

of
case
ADP

the
det
DET

highest
amod
ADJ

bid
nmod
NOUN

.
punct
PUNCT

Figure 2: An example parse tree from UD 2.0 En-
glish data. For every word, its form, dependency
relation and universal POS tag is displayed.

enization and segmentation of the data provided
by the EPE 2017 organizers. The consequent run
is the CoNLL 2017 shared task model trained on
all three English treebanks. The last two runs are
the English treebank models of UDPipe 1.1 and
UDPipe 1.0. The first four runs are based on UD
2.0, and only the last run utilizes UD 1.2 data.
Note that the run 3 uses only a subset of the train-
ing data, because the models were released for the
CoNLL 2017 shared task before the release of the
test data, using official development data for eval-
uation. For comparison, we additionally include
the overall best participant system of the shared
task.

The overall results of UDPipe in the EPE 2017
shared task are presented in Table 2. According to
the overall score, UDPipe placed 7th out of 8 par-
ticipants of the shared task, by a large margin com-
pared to the best participating system. The perfor-
mance on the three individual tasks are detailed in
Tables 3, 4 and 5.

To enable interpretation of the results, we also
provide the intrinsic evaluation of the employed
models on the UD test sets in Table 6.

Overall Results
With the overall score of 56.05, UDPipe lacks
behind nearly all other participant systems. The
overall scores of the systems ranking immedi-
ately above UDPipe are 56.23, 56.24, 56.65, 56.81
and 58.57, with the best system achieving a re-
spectable score of 60.51. The best overall UD-
Pipe score is achieved by the English-only CoNLL
2017 UDPipe 1.2 model with EPE-provided tok-
enization.

One of the probable cause of our lower perfor-
mance is the size of the training data – while the
UD 2.0 data offer training data of 200k tokens
(290k if all three English treebanks are merged),
most other participants use Wall Street Journal
corpus (Marcus et al., 1993) with 800k tokens,
sometimes also together with Brown corpus (Fran-
cis and Kucera, 1979) an GENIA corpus (Ohta
et al., 2002), resulting in circa 1700k tokens.

Furthermore, we emphasize that even though
the EPE 2017 shared task focused on English lan-
guage only, UDPipe is trained in a language ag-
nostic manner for 50 languages without any adap-
tation for English other than setting up the hyper-
parameters of the artificial neural networks.

Tokenization Issues
The overall results in Table 2 indicate that the
UDPipe tokenization is of lower quality – using
the EPE-provided tokenizer improves the overall
score by 2 points. By contrast, the evaluation
on the UD 2.0 data (the Words and Sentences
columns of Table 6) show opposite results, with
the EPE-provided tokenizer substantially degrad-
ing performance on UD 2.0 test sets.

We therefore hypothesise that the lower extrin-
sic performance of UDPipe tokenization is a con-
sequence of the tokenization and sentence seg-
mentation annotated in the UD data. We argue that
to improve the annotation, one possible course of
action is to indicate paragraph boundaries in En-
glish UD 2.0 data, which might improve the per-
formance of trained sentence segmenter.
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UDPipe run
Event Negation Opinion Overall
extraction resolution analysis score

0-UD2.0 En/UDPipe/20 43.58 58.83 59.79 54.07
1-UD2.0 En/EPE/20 45.54 61.62 61.00 56.05
2-UD2.0 EnMerged/UDPipe/20 44.25 59.95 58.71 54.30
3-UD2.0 EnMinus/UDPipe/5 42.70 59.95 58.90 53.85
4-UD1.2 En/UDPipe/5 43.22 50.85 58.53 50.86
Stanford-Paris, run 6 50.23 66.16 65.14 60.51

Table 2: Overall EPE evaluation results

UDPipe run
Approximate span & recursive mode
Precision Recall F1-score

0-UD2.0 En/UDPipe/20 53.84 36.61 43.58
1-UD2.0 En/EPE/20 56.35 38.21 45.54
2-UD2.0 EnMerged/UDPipe/20 53.22 37.87 44.25
3-UD2.0 EnMinus/UDPipe/5 51.91 36.27 42.70
4-UD1.2 En/UDPipe/5 51.71 37.12 43.22
Stanford-Paris, run 6 58.36 44.09 50.23

Table 3: Event extraction evaluation results

UDPipe run Scope match Scope tokens Event match Full negation
P R F P R F P R F P R F

0-UD2.0 En/UDPipe/20 99.39 65.73 79.13 90.12 86.76 88.41 66.23 61.82 63.95 99.10 41.83 58.83
1-UD2.0 En/EPE/20 98.77 64.26 77.86 88.58 87.75 88.16 70.44 66.67 68.50 99.16 44.70 61.62
2-UD2.0 EnMerged/UDPipe/20 99.40 67.34 80.29 91.45 87.49 89.43 65.81 61.82 63.75 99.12 42.97 59.95
3-UD2.0 EnMinus/UDPipe/5 99.38 64.92 78.54 90.84 85.48 88.08 66.46 63.25 64.82 99.12 42.97 59.95
4-UD1.2 En/UDPipe/5 97.81 54.03 69.61 90.40 83.36 86.74 62.11 59.88 60.97 98.90 34.22 50.85
Stanford-Paris, run 6 99.44 70.68 82.63 93.06 85.48 89.11 72.33 68.45 70.34 99.24 49.62 66.16

Table 4: Negation resolution evaluation results

UDPipe run Expressions Holders Polarity Holders (in vitro)
P R F P R F P R F P R F

0-UD2.0 En/UDPipe/20 64.32 55.07 59.33 49.03 41.71 45.08 54.44 45.36 49.49 62.61 57.21 59.79
1-UD2.0 En/EPE/20 63.57 55.15 59.06 48.81 44.31 46.46 53.68 45.93 49.50 62.31 59.74 61.00
2-UD2.0 EnMerged/UDPipe/20 64.57 54.58 59.15 50.01 39.79 44.32 54.93 45.22 49.60 63.45 54.63 58.71
3-UD2.0 EnMinus/UDPipe/5 64.15 54.43 58.89 48.20 41.25 44.46 54.30 44.82 49.11 61.26 56.72 58.90
4-UD1.2 En/UDPipe/5 63.98 54.46 58.84 48.38 40.99 44.38 53.99 44.50 48.79 61.00 56.25 58.53
Stanford-Paris, run 6 63.90 56.07 59.73 54.14 46.41 49.98 54.04 45.87 49.62 68.86 61.81 65.14

Table 5: Opinion analysis evaluation results

Row Data Plain text processing Using gold tokenization
Words Sents UPOS XPOS UAS LAS UPOS XPOS UAS LAS

0-UD2.0 En/UDPipe/20
UD 2.0 En 99.0 75.3 93.5 92.9 80.3 77.2 94.4 93.8 84.6 81.3
UD 2.0 EnMerged 98.9 79.5 91.8 —- 78.4 73.9 92.7 —- 81.4 76.6
UD 1.2 En 99.0 75.3 87.9 92.9 75.7 63.7 88.8 93.8 79.1 66.8

1-UD2.0 En/EPE/20
UD 2.0 En 96.2 59.9 90.7 90.0 74.6 71.8 94.4 93.8 84.6 81.3
UD 2.0 EnMerged 97.8 71.0 90.6 —- 75.8 71.4 92.7 —- 81.4 76.6
UD 1.2 En 96.2 59.9 85.1 90.0 70.3 58.7 88.8 93.8 79.1 66.8

2-UD2.0 EnMerged/UDPipe/20
UD 2.0 En 99.0 75.3 93.4 92.6 79.8 76.7 94.4 93.6 84.0 80.6
UD 2.0 EnMerged 98.9 79.5 92.0 —- 79.1 74.9 92.9 —- 82.2 77.7
UD 1.2 En 99.0 75.3 87.8 92.6 75.6 63.4 88.7 93.6 78.9 66.3

3-UD2.0 EnMinus/UDPipe/5
UD 2.0 En 98.7 73.2 93.1 92.4 78.9 75.8 94.5 93.9 83.8 80.7
UD 2.0 EnMerged 98.8 78.6 91.6 —- 77.7 73.1 92.8 —- 81.1 76.3
UD 1.2 En 98.7 73.2 87.5 92.4 74.6 62.6 88.9 93.9 78.6 66.3

4-UD1.2 En/UDPipe/5
UD 2.0 En 98.4 72.3 87.3 92.2 73.9 62.0 88.8 93.8 78.8 66.3
UD 2.0 EnMerged 98.7 77.8 86.5 —- 73.9 60.1 87.6 —- 77.2 63.0
UD 1.2 En 98.4 72.3 92.9 92.2 78.3 75.1 94.5 93.8 84.2 80.7

Table 6: Intrinsic evaluation of UDPipe runs on the Universal Dependencies test data (Nivre et al., 2017).
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Merged English Treebanks
Although the model trained on the three merged
UD 2.0 English treebanks provide inconsistent
XPOS tags and shows slight performance drop on
the main English UD 2.0 treebank (cf. Table 6),
the extrinsic evaluation of this model shows no-
ticeable improvement. The improvement may be
attributed both to the increased size and diversity
of the training data, but also to the different anno-
tation, which might serve as a regularization.

According to the extrinsic results, the merged
model used together with the EPE-provided tok-
enizer should surpass the overall score of the best
submitted UDPipe run.

Negation Resolution Results Drop of Run 4
The Table 2 indicates a surprising drop of perfor-
mance of the run 4 (UDPipe 1.0 English model
trained using UD 1.2 data) on the Negation reso-
lution task, without a corresponding change on the
two other tasks.

Note that the three EPE tasks are able to use
only one kind of POS tags, i.e., either UPOS or
XPOS in case of UDPipe. The decision on the type
of POS tags used is performed by the EPE organiz-
ers according to the performance on the develop-
ment set. For the UDPipe systems, XPOS tags are
utilized overwhelmingly, with the UPOS tags be-
ing used only once – by the run 4 on the Negation
resolution task. Therefore, we initially hypothe-
sised that the drop is caused by the fact that the
UPOS tags are much more coarse than the XPOS
tags.

However, after evaluating the results on both
XPOS and UPOS tags, we found out that XPOS
tags are in fact used, and the information about
used UPOS tags in the official results is incorrect.

After further investigation, we found out that
the Negation resolution task texts are the only
one containing non-ASCII characters (i.e., Uni-
code quotation marks, apostrophes and hyphens)
and that the UDPipe 1.0 tokenizer does not cor-
rectly process them, resulting in poor tokenization
and segmentation.

5 Conclusions and Future Work

We described the UDPipe systems used in the EPE
2017 shared task, presented the extrinsic and in-
trinsic evaluation of the submitted models, dis-
cussed the results and offered several hypotheses
to interpret the data. For the immediate future

work, we will carry out several experiments to
support the hypotheses:
• When the paragraph boundaries are anno-

tated in the UD data, does the trained sen-
tence segmenter achieve better performance?
• Can a rule-based English tokenizer also im-

prove the results?
• What effect would larger training data (like

WSJ) have?
• What performance would a state-of-the-art

dependency parser attain using the UD 2.0
data only?
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Abstract

In this article, we describe the submissions
of Team Szeged for the EPE 2017 shared
task. We introduce three approaches and
first experiments to exploit the opportuni-
ties of the general dependency graph rep-
resentation of the shared task.

1 Introduction

The goal of the First Shared Task on Extrin-
sic Parser Evaluation1 (EPE 2017) (Oepen et al.,
2017) was to estimate “the relative utility of differ-
ent types of dependency representations for a vari-
ety of downstream applications that depend heav-
ily on the analysis of grammatical structure.”

To enable different types of dependency repre-
sentations, the organizers of the shared task in-
troduced a very general graph-based representa-
tion of ’relational’ structure reflecting syntactic-
semantic analysis. The nodes of this graph cor-
respond to lexical units, and its edges repre-
sent labeled directed relations between two nodes.
Nodes can be defined in terms of (in principle ar-
bitrary) sub-strings of the surface form of the in-
put sentence. This representation allows overlap-
ping and empty (i.e. zero-span) node sub-strings
as well. Moreover, nodes and edges are labeled
by attribute–value maps without any restriction on
the attribute set.

This very general graph-based representation
opens brand new ways for expressing syntactic or
semantic information besides the standard depen-
dency tree formalism. We understood the call of
the shared task in a generalized way and came up
with ideas which aim to leverage the opportunities
of the general representation beyond dependency
parse trees. We experimented with a couple of

1all submissions, results, and the complete evaluation in-
frastructure are available in http://epe.nlpl.eu

such ideas (instead of trying to achieve high scores
in the shared task) and we shall introduce them in
this paper.

The contribution of this work consists of three
independent sets of experiments in the EPE 2017
setting. We emphasize that these are only first
experimental results and there are plenty of ways
for further analyzing these approaches and also to
come up with other ideas leveraging the broadly
understood task specification.

In the first set of experiments (§2), we start from
the classic dependency parsing approach but in-
stead of a single dependency parse we express the
distribution of possible dependency parses given
a sentence in the graph-based general represen-
tation. In (§3), we introduce a possible solution
for enriching the dependency parse by constituent
information given by a standard phrase-structure
parser. In this way, various syntactic representa-
tions can be represented in the graph and infor-
mation is not lost because the downstream appli-
cation can only accept a single dependency parse
tree. Furthermore, in the EPE 2017 setting we can
send a blended relational structure to the down-
stream task, like a parse distribution and blended
version of different syntactic approaches, and the
downstream application is able to machine learn
which type of syntactic structure or phenomenon
or even which combination of syntactic informa-
tion is useful for itself.

Our last batch of experiments (§4) is a conse-
quence of this objective, i.e. the relational repre-
sentation has to be useful for the downstream ap-
plication. Here, we tried to automatically recog-
nize which dependency parse labels are useful to a
downstream task and collapsed the useless ones.
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Figure 1: Alternatives for representing constituent trees in the general dependency graph format.

2 Parse Distribution as Input for
Downstream Applications

Standard dependency parsers output a single de-
pendency parse tree. Our hypothesis was that a
downstream application could profit from having
access to the distribution of possible parses and
not just to the most likely parse tree. The distribu-
tion over possible parses estimated by the parsing
model might be useful for a downstream applica-
tion because it might reveal that edges or their la-
bels are less confident or also point out relatively
highly probable dependencies which are not part
of the best single parse tree. The general graph-
based representation of EPE 2017 enables one to
express the distribution over possible edges and la-
bels, i.e. possible parses.

Getting out the density estimation from a par-
ticular parser is usually complicated because of
both theoretical and practical (software implemen-
tation) issues. Hence we decided to use an approx-
imation of edge and label likelihoods based on top-
k parses for our first experiments. Our assumption
here is that the top k outputs of a parser model
contains most of the useful bi-lexical dependen-
cies and the frequency of a particular dependency
counted among the k parses is a good enough ap-
proximation for its likelihood (this idea is similar
to constituent-level strategy of the Berkeley prod-
uct parser (Petrov, 2010)).

We added all edges from the k-best trees of a
parser to the general dependency graph. We also
added a new label to all edges whose value is the
frequency of the same edge label pairs among the
k parses. For these experiments we used the MST-
Parser (McDonald et al., 2005) that we trained on
Universal Dependencies v2 (Nivre et al., 2015)
and we asked for the 10-best trees with default pa-
rameters.

3 Constituents in the (Bi-Lexical)
Relational Representation

Constituency parsers focus on the
phrases/constituents and phrase structure of
the sentence, i.e. follow a non bi-lexical syntactic
representation. Several applications might prefer
bi-lexical representations (like the ones based
on predicate-argument structures) while others
might prefer constituency (like scope detection).
Fortunately, the general graph representation of
EPE 2017 enables us to put both the dependency
and constituency parse output into a blended
syntactic graph. Hence we do not have to choose
between the two approaches but the downstream
application can machine learn which syntactic
phenomena is useful for itself or even can learn
patterns in the graph consisting of information
from both constituency and dependency. Several
previous work has shown that the two syntactic
representation and their parsers can work together
efficiently cf. Farkas and Bohnet (2012). We
believe that is especially true for using them
jointly in downstream applications.

There are many possible ways to represent a
constituent tree in the general dependency graph
format. Although these representations contain
the same information because of the feature ex-
tractors of the downstream applications they can
have different effect in practice.

An interesting opportunity of the EPE 2017
general graph representaton is that it enables the
creation of virtual nodes (which are not directly
associated with a word). This feature gives the
posibility to create a new node for each non-
terminal in a constituent tree. Our three proposals
differs in the way these virtual nodes are linked to
the overt nodes in the graph.

1. In the first setup, shown by the Figure 1a, we
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Figure 2: Label adjustment graph.

connect each of the children to their direct
parents. In this way our graphs will be very
similar to a constituent tree. In this example
Word 2 and Word 3 are connected to an NP,
that NP and Word 1 is connected to another
NP.

2. Another posibility is when each of the nodes
are connected to all ancestor non-terminals
(Figure 1b). In that case there is a direct
relation between a constituent and their de-
scendants. In the current example the higher
level NP directly contains the children (Word
2, Word 3) of its child. We hope this repre-
sentation that the feature extractor of down-
stream applications can directly generate fea-
tures about the ancestors without recursive
rules

3. A different approach is where we give the
covering area for each new non-terminal
(Figure 1c). In these cases like in the previ-
ous we have not got direct information about
the connection between the nonterminals. On
the other hand, it can help for an application
which uses the position of a node.

For constituent parsing we used the Berkeley
Parser (Petrov et al., 2006) with default parame-
ters and pretrained model (eng-sm6). In our sub-
mission we used the second and third methods in
the dependency graph format.

4 Label Set Adjustment Driven by
Downstream Applications

Different downstream applications might utilize
different types of grammatical patterns. The sim-
plest case is that a downstream application might
extract important features from particular edge la-
bels while features over other edge labels are neg-
ligible in its machine learnt model. Moreover, dif-
ferent applications might utilize different types of

dependencies, see for example event recognition
versus negation scope detection.

We propose a simple procedure to recognize
edge labels which can be collapsed into other edge
labels because their discrimination does not give
any added value to the downstream application in
question. We start from the full set of edge labels
and systematically check what is the effect of col-
lapsing two particular labels evaluated through the
downstream application.

We calculated for all label pairs what is going to
happen if we replace one dependency label with
another. For our experiments we used the Turku
Event Extraction System (TEES) (Björne et al.,
2017), but because we did not have enough time
to retrain the TEES system for all combinations,
we trained it once with the full label set and we
did the prediction part separately to each depen-
dency label pairs. In this prediction part we re-
placed each of the labels with each of the another
labels on the full development set. We got a com-
plete directed graph where the nodes are the la-
bels and edges contains the scores from the TEES
system with the merged labels. For each node we
kept the outcoming edge with maximum weight
i.e. when the replacement was the most efficient.
When there were two edges between two nodes we
removed the smaller.

Figure 2 contains the graph we got. (When
we ran the TEES system with default parame-
ters we got 49.76 with original labels). By us-
ing this graph we started replacing the nodes from
the highest edge weight to the lowest. We evalu-
ated the new label set in every step and we found
the best result after three steps, 50.36, which is
slightly better than the best merged pair. After that
we did the three replace steps in the full dataset.
Because of lack of time, we could not make the
replacement in the full dataset and retrain TEES
before the submission deadline. We sent the trees
with collapsed label set. We found lower scores
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Event Extraction Negation Resolution Opinion Analysis
mate - baseline 47.84 61.98 65.87
mate + label adjustment 47.37 60.53 66.33
mate + constituent 46.71 61.26 63.13
mate + mst - baseline 46.69 59.78 63.25
mate + mst - k-best 45.96 59.05 62.5

Table 1: Final result in evaluation set.

than the baseline on the TEES test set. We also
could not use this method for the other down-
stream applications.

5 Results

Table 1 shows our official results achieved on
the shared task. The baseline - mate is one of
our baselines where we just run the mate parser
(Bohnet, 2010) with a pretrained model. The sec-
ond and third rows contain the result of label
adjustment and constituent parsing experiments.
The fourth row contains another baseline when we
applied the MSTParser and the last row shows the
scores of our k-best experiment (we used MST-
Parser here).

Unfortunately, the deeper analysis of results is
left for future work. For example, the reason why
the combination of k-best parses gets lower result
in every task than the baseline-MST is maybe that
feature extractors were prepared for dependency
representations and not for distribution graphs.

5.1 Event Extraction

In the event extraction task we can not beat our
baselines, all of our modifications – including the
label adjustment which is optimized for this task –
get a negative effect. The dependency label merg-
ing mechanism that we directly developed on this
task also failed.

5.2 Negation Resolution

One of the main motivations of the constituent
based approach was the negation resolution task
(Lapponi and Oepen, 2017). The scope of the
negations are usually a grammatical phrase that
can we identify with constituent parsers. This
constituency-based system got better results in
three out of four scope-focused evaluation metrics
than our baseline. Table 2 shows the detailed com-
parison of the baseline and the constituent system.

The following example shows how can the con-
stituent parse helps:

baseline mate + const
dev test dev test

Scope Match 78.42 80.00 77.98 81.14
Scope Tokens 86.64 89.17 87.38 89.27
Event Match 75.47 67.90 72.90 65.20
Full Negation 62.15 61.98 59.91 61.26

Table 2: Detailed results of the baseline - mate and
the mate + constituent systems in negation resolu-
tion task.

“I join in it because there is no other way in the
world by which justice can be gained.”

The scope of the no negation clue started from
there and ends with the gained. Our baseline sys-
tem marked the negation from there to justice, but
the constituent based method found the correct
scope. If we look at the constituent tree we see
that the full scope is covered by a constituent with
S label. Instead of scope detection the constituent
based information can’t help in the event detection
subtask.

5.3 Opinion Analysis

In the opinion analysis task (Johansson, 2017) the
label adjustment method imporved 0.5 percetage
points against the mate-baseline and got the best
results in the shared task in Holders (In Vitro)
metric. It seems the label combinations that our
method found in the event extraction task is more
general than we expected. On the other hand, it is
still an open question why this label collapsing did
not work at the event extraction task’s evaluation
set.

6 Conclusions

We introduced the contribution of team Szeged to
the EPE 2017 Shared Task. We proposed three
approaches for relational representation of syntax
beyond the canonical dependency parse tree ap-
proach. Although these experiments are only the
very first tries for such representations we hope
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that this might give ideas about the important topic
of syntactic and semantic parser solutions which
aim to be (automatically) fine-tuned for a particu-
lar downstream applications demands.
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Abstract
This paper describes the runs submit-
ted to EPE 2017 by Universitat Pompeu
Fabra. The three outputs correspond to
three different levels of linguistic abstrac-
tion: (i) a surface-syntactic tree, (ii) a
deep-syntactic tree, and (iii) a predicate-
argument graph. The surface-syntactic
tree is obtained with an off-the-shelf parser
trained on the CoNLL’09 Penn Treebank,
and the deeper representations by running
a sequence of graph transduction gram-
mars on the output of the parser.

1 Credits

The work described in this paper has been par-
tially funded by the European Commission un-
der the contract numbers H2020-645012-RIA,
H2020-700024-RIA, and H2020-700475-RIA.

2 Introduction

The Extrinsic Parser Evaluation shared task
(Oepen et al., 2017)1 aims at evaluating differ-
ent dependency representations from the perspec-
tive of three downstream applications: biological
event extraction, negation scope resolution, and
fine-grained opinion analysis; see (Björne et al.,
2017; Lapponi et al., 2017; Johansson, 2017) re-
spectively for the descriptions. The NLP group at
UPF (UPF-TALN) submitted three different sys-
tem outputs (“runs”) to be used as input to the
selected applications; each of the outputs corre-
sponds to a different level of abstraction of the lin-
guistic description:

• SSynt: surface-syntactic structures
(SSyntSs), i.e., syntactic trees with fine-
grained relations over all the words of a
sentence;

1http://epe.nlpl.eu

• DSynt: deep-syntactic structures (DSyntSs),
i.e., syntactic trees with coarse-grained rela-
tions over the meaning-bearing units of a sen-
tence;

• PredArg: predicate-argument structures
(PerdArgSs), i.e., directed acyclic graphs
with predicate-argument relations over the
meaning-bearing units of a sentence.

This stratified view largely follows the model
of the Meaning-Text Theory (MTT); see, e.g.,
(Mel’čuk, 1988) for more details on the defini-
tion of the different types of structures. The
MTT model supports fine-grained annotation at
the three main levels of the linguistic descrip-
tion of written language: semantics, syntax and
morphology, while facilitating a coherent transi-
tion between them via intermediate levels of deep-
syntax and deep-morphology. At each level, a
clearly defined type of linguistic phenomena is de-
scribed in terms of distinct dependency structures.

The first representation is obtained with a sta-
tistical dependency parser, on top of which rule-
based graph transduction grammars are applied,
similarly to, e.g., the conversions in (Ribeyre et al.,
2012) and (Schuster and Manning, 2016).

The idea behind submitting three very different
types of outputs is to see to what extent the down-
stream applications chosen by the organizers of
the shared task are sensitive to the variations in the
linguistic representation. In what follows, we de-
scribe the targeted dependency structures and the
respective systems used to obtain them. We then
discuss briefly the results.

3 Run 1: Surface-syntactic trees

3.1 Targeted dependency representation
For the surface-syntactic (SSynt) annotation,
many annotation schemes and parsers are avail-

80



Women , children and men have been forced to leave the village last week
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Figure 1: SSyntS for Women, children and men have been forced to leave the village last week.

able. We chose to use the representation followed
in the CoNLL’09 shared task on dependency pars-
ing (Hajič et al., 2009), because we believe that it
is one of the most syntactically sound representa-
tions that are available; in particular:

(i) Its dependency tagset is fine-grained enough
to take into account the most basic syntac-
tic properties of English (37 different labels,
without counting composed and gapped rela-
tions).

(ii) One lexeme corresponds to one and only one
node in the tree. For instance, in a relative
clause, the relative pronoun is viewed from
the perspective of its function in the relative
clause and not from the perspective of its con-
junctive properties.

(iii) The subject is a dependent of the inflected top
verb, not of the non-finite verb, which might
also occur in the sentence. This accounts for
the syntactic agreement that holds between
the auxiliary and the subject; the relation be-
tween the non-finite verb and the subject is
more of a “semantic” one, and thus made ex-
plicit at a higher level of abstraction. The fi-
nite verb in an auxiliary construction is a de-
pendent of the closest auxiliary.

(iv) Subordinating and coordinating conjunctions
depend on the governor of the first group, and
govern the one of the second group. This hi-
erarchical approach accounts for the linking
properties of conjunctions. The only excep-
tion to this are the relative pronouns, as men-
tioned above.

Another advantage of the SSynt target represen-
tation is that it facilitates the mapping to the ab-
stract structures used in Runs 2 and 3.

3.2 Implementation
The surface syntactic (SSynt) analysis is per-
formed in three steps, including two pre-
processing steps and the proper parsing. First, the

raw text needs to be broken down into sentences,
and the sentences into tokens, as the surface syn-
tactic parser runs at sentence level and takes a one-
word-per-line format as input. For this task, we
use the Stanford Core NLP sentence splitter and
tokenizer.2

Then, in order to match the training data of
the syntactic parser, we replace some punctuation
marks that cannot be found in the training set with
equivalents that are present. For example, left and
right single quotation marks are replaced by one
single straight quotation mark; double quotation
marks are replaced by two single straight quota-
tion marks; the different types of dashes are all
replaced by a classic dash; square brackets are re-
placed by round brackets; etc. If these substitu-
tions do not take place, the parser tends to assign
proper noun tags to all unknown symbols, which
affects negatively the quality of the resulting struc-
ture.

UAS LAS PoS
93.67 92.68 97.42

Table 1: Reported accuracy scores for Bohnet and
Nivre’s system (Unlabeled and Labeled Attach-
ment Scores and PoS tagging accuracy).

Module Toolkit used
Sentence splitting Stanford Core NLP

Tokenization Stanford Core NLP
Character normalization In-house Script
Joint tagging and parsing (Bohnet and Nivre, 2012)

Speed ≈ 65 ms/sentence
Memory used ≈ 4GB

Table 2: Steps for surface-syntactic parsing

Finally, for lemmatizing, tagging and parsing,
we use the joint tagger and parser described in
(Bohnet and Nivre, 2012)3, which was trained on
the CoNLL’09 dataset (Hajič et al., 2009), and

2https://nlp.stanford.edu/software/
3https://code.google.com/archive/p/

mate-tools/downloads
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evaluated on Section 23 of the WSJ; see Table 1.
Table 2 summarizes the different steps followed
for this run.

4 Run 2: Deep-syntactic trees

4.1 Targeted dependency representation

Deep syntactic (DSynt) structures are dependency
structures that capture the argumentative, attribu-
tive and coordinative relations between full words
(lexemes) of a sentence. Compared to SSynt struc-
tures, in DSynt structures, functional prepositions
and conjunctions, auxiliaries, modals, and deter-
miners are removed. Each lexeme is associated
with attribute/value pairs that encode such infor-
mation as part of speech, verbal finiteness, modal-
ity, aspect, tense, nominal definiteness, etc. The
nodes are labeled with lemmas; in addition, they
are aligned with the surface nodes through at-
tribute/value pairs (each DSynt node points to one
or more SSynt node, using the surface IDs). All
nodes have a PoS feature, which is copied from the
SSynt output. The resulting English annotation is
the same as found in the AnCora-UPF treebank of
Spanish (Mille et al., 2013).

The abstraction degree of the DSynt structures
is in between the output of a syntactic dependency
parser as in Run 1 and the output of a seman-
tic role labeler as in Run 3: on the one hand,
they maintain the information about the syntac-
tic structure and relations, but, on the other hand,
dependency labels are oriented towards predicate-
argument relations, and the dependencies directly
connect meaning-bearing units, that is, meaning-
void functional elements are not available any-
more. Predicate-argument relations include I, II,
III, IV, V, VI; modifier relations include ATTR
and APPEND (the latter is used for modifiers
that generally correspond to peripheral adjuncts);
the other two relations are COORD (for coordi-
nations) and NAME (connecting parts of proper
nouns).

The degree of “semanticity” of DSynt struc-
tures can be directly compared to Prague’s tec-
togrammatical structures (PDT-tecto (Hajič et al.,
2006), from which the PSD runs by some EPE par-
ticipants stem from), which contain autosemantic
words only. Thanks to the distinction between ar-
gumental and non-argumental edges, tectogram-
matical structures are also trees, thus they main-
tain the syntactic structure of the sentence. The
main differences between the two representations

are: (i) in tectogrammatical structures, no distinc-
tion is made between governed and non-governed
prepositions and conjunctions, and (ii) in tec-
togrammatical structures, the vocabulary used for
edge labels emphasizes “semantic” content over
predicate-argument information.

Although the annotations are not really of the
same nature, DSynt structures can be also con-
trasted to the Collapsed Stanford Dependencies
(SD) (de Marneffe and Manning, 2008). Collapsed
SDs differ from DSynt structures in that: (i) in
the same fashion as in the Prague Dependency
Treebank, they collapse only (but all) preposi-
tions, conjunctions and possessive clitics, whereas
DSynt structures omit functional nodes; (ii) they
do not involve any removal of (syntactic) infor-
mation since the meaning of the preposition re-
mains encoded in the label of the collapsed de-
pendency, while DSynt structures omit or gener-
alize the purely functional elements; (iii) they do
not add predicate-argument information compared
to the surface annotation. That is, Collapsed SDs
keep the surface-syntactic information, represent-
ing it in a different format, while DSynt structures
keep only deep-syntactic information.

4.2 Implementation

In order to obtain DSynt structures, we run a se-
quence of rule-based graph transducers on the out-
put of the SSynt parser. Our graph-transduction
grammars are thus rules that apply to a subgraph
of the input structure and produce a part of the out-
put structure. During the application of the rules,
both the input structure (covered by the leftside of
the rule) and the current state of the output struc-
ture at the moment of application of a rule (i.e., the
rightside of the rule) are available as context. The
output structure in one transduction is built incre-
mentally: the rules are all evaluated, the ones that
match a part of the input graph are applied, and
a first piece of the output graph is built; then the
rules are evaluated again, this time with the right-
side context as well, and another part of the output
graph is built; and so on; cf. (Bohnet and Wan-
ner, 2010). The transduction is over when no rule
is left that matches the combination of the leftside
and the rightside.

The SSynt-DSynt mapping is based on the no-
tion of hypernode. A hypernode, known as syn-
tagm in linguistics, is any surface-syntactic con-
figuration with a cardinality ≥1 that corresponds
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woman child and man force leave village last week
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II
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Figure 2: DSyntS for Women, children and men have been forced to leave the village last week.

Grammars #rul. Description
ALL 165

Pre-Proc. 1 15
Assign default PB/NB IDs.
Mark passive, genitive,
possessive constructions.

Pre-Proc. 2 17 Mark hypernodes.

SSynt-DSynt 55

Wrap hypernodes.
Assign DSynt dependencies.
Transfer aspect/modality as attr.
Mark duplicate relations.
Mark relative clauses.

Post-Proc. 78
Relabel duplicate relations.
Reestablish gapped elements.
Mark coord. constructions.

Speed ≈ 25 ms/sentence
Memory used ≈ 300MB

Table 3: Rules for SSynt-DSynt mapping

to a single deep-syntactic node. For example,
to leave or the village constitute hypernodes that
correspond to the DSynt nodes leave and village
respectively (see Figures 1 and 2). Hypernodes
can also contain more than two nodes, as in the
case of more complex analytical verb forms, e.g.,
have been forced, which corresponds to the node
force in the DSyntS of Figure 2. In this way,
the SSyntS–DSyntS correspondence boils down to
a correspondence between individual hypernodes
and between individual arcs, such that the trans-
duction embraces the following three subtasks: (i)
hypernode identification, (ii) DSynt tree recon-
struction, and (iii) DSynt arc labeling.4

Table 3 shows the different steps of the
SSynt–DSynt mapping. During a two-step pre-
processing, specific constructions and hypernodes
are marked. Auxiliaries, meaning-void conjunc-
tions and determiners are easy to identify, but to
know which prepositions belong to the valency
pattern (subcategorization frame) of their gover-
nor, we need to consult a lexicon extracted from
PropBank (Palmer et al., 2005), and NomBank
(Meyers et al., 2004).5 The output of these pre-
processing steps is still a SSynt structure. The

4For more details about the SSynt-DSynt correspon-
dences, see (Ballesteros et al., 2015).

5See (Mille and Wanner, 2015).

third transduction is the core of this module: it
“wraps” the hypernodes into a single node and
manages the labeling of the edges, again look-
ing at the PropBank-based lexicon (i.e., at the va-
lency pattern of the predicates), together with the
surface dependencies. For instance, a subject of
a passive verb is mapped to a first argument (I),
while the subject of a passive verb is mapped to
a second argument (II). An object introduced by
the functional preposition to is mapped to second
argument in the case of the predicate want, but to
the third in the case of give, etc. Consider, for
illustration, a sample rule from the SSynt-DSynt
mapping in Figure 3. This rule, in which we can
see the leftside and the rightside fields, collapses
the functional prepositions (?Xl identified during
the pre-processing stage with the BLOCK=YES at-
tribute/value pair) with their dependent (?Yl).

Figure 3: A sample graph-transduction rule . ?
indicates a variable; ?Xl{} is a node, ?r→ is a re-
lation, a=b is an attribute/value pair.

The SSynt-DSynt mapping inevitably produces
duplications of argumental relations, which need
to be fixed. The post-processing grammar evalu-
ates the different argument duplications and mod-
ifies some edge labels in order to get closer to a
correct structure.6

For indicative purposes, a former evaluation
658 rules in the post-processing grammar are dedicated to

mark coordinations for the representation on the next level;
they are duplicates of other rules with other values and are
thus not counted in order not to distort the numbers. In gen-
eral, about 30% of the total number of rules (90/313) are ded-
icated to simply copy attribute/value pairs on the nodes; these
rules are not counted either in the totals shown in Table 3.
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performed on 300 manually annotated DSynt
structures from Section 23 of the WSJ (6,979
SSynt and 4,976 DSynt tokens) is presented in Ta-
ble 4.7 On the EPE data, due to the current state
of the rule-based system, the output contains 18
cases of duplicated arguments labels and 89 dis-
connected structures (out of approximately 40,000
sentences).

Hypernode Identification
Precision Recall

97.00 99.96
Attachment and labeling

UAP UAR LAP LAR
93.88 96.74 88.54 91.24

Table 4: Reported accuracy scores for our SSynt-
DSynt graph transducer; see (Ballesteros et al.,
2015).

5 Run 3: Predicate-argument graphs

5.1 Targeted dependency representation

For this run, we target predicate-argument
(PredArg) structures with abstract semantic role
labels which also capture the underlying argument
structure of predicative elements (which is not
made explicit in syntax). Lexical units are tagged
according to several existing lexico-semantic re-
sources, namely PropBank, NomBank, VerbNet
(Schuler, 2005) and FrameNet (Fillmore et al.,
2002). The presented system is currently limited
to choose the first meaning for each word.8 Dur-
ing this transition, we also aim at removing sup-
port verbs. For the time being, this is restricted
to light be-constructions, that is, constructions in
which the second argument of be in the DSyntS
is a predicate P that can have a first argument and
that does not have a first argument in the struc-
ture. In this case, the first argument of the light
be becomes the first argument of P in the PredArg
representation.

X Y = X time Y
Time A1 A2

Figure 4: Correspondence between a non-core re-
lation and a binary predicate

7‘UAP’\‘UAR’ stands for“unlabeled attachment
precision\recall”; ‘LAP’\‘LAR’ for “labeled attachment
precision\recall”.

8The selected downstream applications do not use any
sense information; only the lemma and PoS features are taken
into account.

The predicate-argument relations are sorted in
two subtypes: on the one hand, the “core” rela-
tions: Argument1, Argument2, Argument3, Ar-
gument4, Argument5, Argument6; and, on the
other hand, the “non-core” relations: Benefactive,
Direction, Extent, Location, Manner, Purpose,
Time, NonCore (which is the only underspeci-
fied relation). The non-core labels come mainly
from the corresponding labels in the Penn Tree-
bank, that is, they are provided by the surface-
syntactic parser. Our system also uses the pres-
ence of certain prepositions in order to derive these
labels (e.g., for often indicates a purpose, so non-
argumental for dependents are simplistically la-
beled as purpose by default). The non-core rela-
tions allow for avoiding the introduction of new
nodes without a counterpart in the original sen-
tences, which at the same time simplifies the rep-
resentation. These relations are actually a com-
pact representation of binary predicates, as illus-
trated in Figure 4. The other available relations
are NAME (between parts of proper nouns), Set
(between a coordinating predicate and each of its
conjuncts), and Elaboration (which connects el-
ements with no argumental relation). PredArg
nodes are the same as the DSynt nodes, that is,
they are lemmas that can correspond to more than
one surface node (hypernodes).9 The PoS feature
set at this level is slightly different from the other
two levels in that all morphological information is
removed from the tags; that is, all common nouns
are tagged NN while all verbs are tagged VB.

The predicate-argument graphs show some sim-
ilarities with PropBank structures, with three main
differences, namely: (i) PropBank representations
capture existing dependencies governed by nomi-
nal and verbal elements only; (ii) PropBank repre-
sentations are forests of trees defined over individ-
ual lexemes or phrasal chunks; and (iii) PropBank
representations do not differentiate between func-
tional prepositions and meaning-bearing ones.

Predicate-argument structures are also compa-
rable to the target structures of the SemEval 2014
shared task on Broad-Coverage Semantic Depen-
dency Parsing (Oepen et al., 2014). For instance,
the DELPH-IN annotation, which is a rough con-
version of the Minimal Recursion Semantics tree-
bank (Oepen and Lønning, 2006) into bi-lexical
dependencies, also captures the lexical argument

9Only in a very limited number of cases nodes can be
added in the graph, for example, a coordination conjunction
is added in the case of a conjunctionless coordination.
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woman child and man force leave village last week
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Figure 5: PredArgS for Women, children and men have been forced to leave the village last week.

(or valency) structure and ignores some func-
tional elements (such as the be copula and gov-
erned prepositions) in the graph. DELPH-IN
corresponds to the DM run of some EPE par-
ticipants; see, e.g. (Chen et al., 2017; Schus-
ter et al., 2017). The main differences are in
the direction of some edges, the labels used, and
the fact that all the words of the original sen-
tence are in the representation, although not al-
ways connected with a dependency (in the same
fashion as PropBank). Another example is the
Enju annotation (Miyao, 2006), which is a pure
predicate-argument graph over all words of a sen-
tence. However, it distinguishes arguments of
functional elements (auxiliaries, infinitive and da-
tive TO, THAT, WHETHER, FOR complementiz-
ers, passive BY) in that they are attached to the
semantic heads of these elements (rather than to
the elements themselves). This facilitates the dis-
regard of functional elements—as in DSyntSs.10

5.2 Implementation

In order to obtain the PredArg structures, we run
another sequence of graph-transducers on the out-
put of the DSynt parser (see Section 4.2 for a
general description of the grammars); that is, this
module takes as input the output provided by Run
2.

The first grammar in this module creates a pure
predicate-argument graph, with the mapping of
DSynt relations onto PredArg relations according
to PropBank/NomBank, and the introduction of
new predicates, as time on the right part of Fig-
ure 4.11 Coordinating conjunctions are linking
elements in the Penn Treebank and DSynt rep-
resentations; in a predicate-argument graph, they

10See (Ivanova et al., 2012) for a more complete overview
of Enju and DELPH-IN, and (Oepen et al., 2014) for a paral-
lel illustration of these and tectogrammatical structures.

11This kind of representation is useful for some applica-
tions such as paraphrasing, but having doubts about their rel-
evance for the EPE tasks, we did not submit a run based on
them.

are represented as predicates, which have all the
conjuncts as arguments and which receive all in-
coming edges to the coordinated group; cf. Fig-
ure 5. Lexical units are assigned a VerbNet class.
Once this is done, a few post-processing gram-
mars are applied; they recover the shared argu-
ments in coordinated constructions, remove light
verbs, remove the distinction between external and
non-external arguments (i.e., for all predicates that
have an A0, we push all the arguments one rank
up: A0 becomes A1, A1 becomes A2, etc.), assign
FrameNet frames and introduce the non-core de-
pendencies – that is, turn the right part of Figure 4
into the left part.

PropBank, NomBank, VerbNet, and FrameNet
classes are assigned through a simple dictionary
lookup. For this purpose, we built dictionaries
that can be consulted by the graph-transduction
environment and that contain the classes and
their members, together with the mappings be-
tween them, using the information from SemLink
(Palmer, 2009).

Table 5 summarizes the different steps of this
module.12

Grammars #rul. Description
ALL 154

DSynt-Sem 59

Assign core dependencies.
Recover shared arguments.
Establish coord. conj. as predicates.
Assign VerbNet classes.

Post-Proc. 1 11 Recover shared arguments
in coordinated constructions.
Mark light verbs.

Post-Proc. 2 23 Remove light verbs.
Assign frames (FrameNet).

Post-Proc. 3 30 Normalize argument numberings.
Post-Proc. 4 31 Introduce non-core dependencies

Speed ≈ 55 ms/sentence
Memory used ≈ 300MB

Table 5: Rules for DSynt-PredArg mapping

12As for the deep-syntactic analysis module, we take out
of the count 160 rules that are dedicated to transfer at-
tribute/value pairs only.
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Predicate-argument structures are supposed to
be connected acyclic graphs, such that each single
node can occupy more than one argumental posi-
tion. Due to the current limitations of the rule-
based system, 15 cases of double dependencies be-
tween nodes and 150 disconnected structures were
produced (out of approximately 40,000 sentences
in the EPE data). There is no systematic intrinsic
evaluation for this module available as yet.

6 Results and discussion

In order to have an idea of the performance level
of the whole pipeline, we carried out an informal
evaluation of the whole pipeline on 30 manually
annotated sentences from three general domain
press articles (about 520 words in total). Due to
time restrictions we only evaluated the unlabeled
precision and recall, for which the system obtained
74.40 and 71.02 points respectively.

The three selected downstream applications re-
quire surface syntactic structures as input: Event
Extraction and Negation Scope Detection in the
fashion of Stanford (de Marneffe and Manning,
2008), and Opinion Analysis in the CoNLL’08
style (Surdeanu et al., 2008). Thus, it is not sur-
prising that surface-syntactic schemes generally
perform better that abstract ones across the dif-
ferent approaches. This is reflected in the extrin-
sic evaluations of Negation Scope Detection and
Opinion Analysis (see Table 6), for which the ac-
curacy of our pipeline seems to drop with the de-
gree of abstraction. However, this is not true for
the Event Extraction application, for which the re-
sults of SSynt and PredArg are exactly the same,
whereas the DSynt exhibits only a light drop.

Run Event Negation Opinion Avg.
SSynt 46.54 59.78 63.62 56.65
DSynt 45.94 33.34 60.42 46.57

PredArg 46.54 30.67 55.86 44.36

Table 6: Results (F1) obtained for the Event
Extraction, Negation Scope Resolution, Opinion
Analysis downstream applications, and the aver-
age scores for the three representations (starting
from raw text)

It is possible that there is a correlation between
the scores and the presence of all the nodes of
the sentence in the representation. Indeed, the
three downstream applications use all the words
of the sentence, thus, it is possible that the fact
that we remove a lot of words in the DSynt and

PredArg structures had a negative impact on the
results. This is true for Negation and Opinion,
while Event Extraction would be rather insensitive
to the change.

Our DSynt and PredArg representations are
similar to the DM used by several other partic-
ipants, but do not seem to trigger the same re-
sults: DSynt seems to perform on average slightly
better for Event Extraction and Opinion Analysis,
but much worse for Negation Scope Resolution.
PredArg achieves an even higher score for Event
Extraction, but lower scores for the other two ap-
plications. Across participants, it seems like main-
taining a tree structure helps for Opinion Analysis
(PredArg, DM and PSD are all graphs). On the
contrary, for Event Extraction, graphs seem to be
able to perform as well as trees.

7 Future work

We presented three system outputs to the shared
task: (i) a classic syntactic tree, (ii) a deep-
syntactic tree with functional words removed and
generalized edge labels, and (iii) a predicate-
argument graph that shows implicit and explicit
argumental relations. These three runs correspond
to three different levels of abstraction in the lin-
guistic analysis.

Two interesting conclusions can be drawn from
the results: first, an application designed on syn-
tactic trees can work equally well on a seman-
tic graph (Event Extraction); and second, simi-
lar types of predicate-argument graphs can lead
to very different results. It would be interesting
to investigate the impact of missing nodes, of the
number of dependencies, and of the type of PoS
used in the structure in order to try to explain the
different behaviors.

In the future, the current implementation will
be improved according to the following aspects:
(i) integration of a word sense disambiguation
component; (ii) removal of more support verbs
in the predicate-argument structures, in particu-
lar through the identification of lexical functions
(Mel’čuk, 1996). Furthermore, experiments will
be carried out on the effect of collapsing of all
prepositions (not only the functional ones) in an-
other downstream application, namely, abstractive
summarization.
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