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10,000-Meter Perspective: Parsing into Semantic Graphs

A similar technique is almost impossible to apply to other crops.
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A similar technique is almost |mp055|ble to apply to other crops .

top
BV ARG2

BY) (ARG3)
[ lf—[ARGl]—lf—[ARGI)%l[ (ARGD)

A similar technique is almost impossible to apply to other crops .

Jz : technique’(x) A similar’(z), 3y : crop'(y) A other'(y)
— almost’(—possible’ (apply’ (-, z,y)))

Different Desiderata and Levels of Abstraction

» Grammaticality (e.g. subject—verb agreement) vs. relational structure.
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Beyond Trees: General Graphs

» Argument sharing: nodes with multiple incoming edges (in-degree > 1);

> some surface tokens do not contribute (as nodes; many function words);
» (structurally) multi-rooted: more than one node with zero in-degree;

— massive growth in modeling and algorithmic complexity (NP-complete).
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Cross-Framework Comparability and Interoperability

» Vast, complex landscape of representing natural language meaning;
» diverse linguistic traditions, modeling assumptions, levels of ambition;

— clarify concepts and terminology; unify representations and evaluation.

Parsing into Graph-Structured Representations

» Cottage industry of parsers with output structures beyond rooted trees;
» distinct techniques, e.g. based on transitions, composition, ‘translation’;
» much framework-internal evolution: design reflects specific assumptions;

— evaluate across frameworks; learning from complementary knowledge.

Learning from Complementary Knowledge

» Cross-Framework Perspective: Seek commonality and complementarity.
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Graph Theory 101

G=(N,E,T)

G is a directed graph: N is set of nodes; E C N x N is set of edges;

T C N is possibly empty set of top node(s): the ‘main’ predicate(s);

in- and out-degree of n € N count edges to and from n; in = 0: root;
top in Abrams arrived quickly. is arrive, but can be argument of quick;
semantic graphs often multi-rooted: rootness just a structural property;
a node n is reentrant if in(n) > 1 (shared argument across predicates);
cycles can occur: directed path from m to n and (‘back’) from n to m;

G is connected if there is an undirected path between all pairs of nodes;

vV VvV VY VY VY VY

G is a tree if |[T'| =1 and there is a unique path to all other nodes.
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Relating Pieces of Meaning to the Linguistic Signal
Intuitively, sub-structures of meaning relate to sub-parts of the input;
semantic frameworks vary in how much weight to put on this relation;
anchoring of graph elements in sub-strings of the underlying utterance;
can be part of semantic annotations or not; can take different forms;
hierarchy of anchoring types: Flavor (0)—(2); bilexical graphs strictest;

anchoring central in parsing, explicit or latent; aka ‘alignment’ for AMR;

vV V. vV vV vV VY

relevant to at least some downstream tasks; should impact evaluation.

Flavor Name Example Type of Anchoring

(0) bilexical DM, PSD  nodes are sub-set of surface tokens
(1) anchored EDS, UCCA free node—sub-string correspondences

(2)  unanchored AMR no explicit sub-string correspondences
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A Selection of Semantic Graphbanks

Selection Criteria

» ‘Full-sentence’ semantics: all content-bearing units receive annotations;
» natively graph-based: meaning representation through (directed) graphs;
> large-scale, gold-standard annotations and parsers are publicly available;

— five distinct frameworks, bi-lexical to unanchored; sadly, English only.

(With Apologies to) Non-Graph or Non-Meaning Banks
» PropBank (Palmer et al., 2005), Framenet (Baker et al., 1998), .. .;

» Groningen Parallel Meaning Bank: GMB, PMB (Basile et al., 2012);
» Universal Decompositional Semantics (White et al., 2016);

» Enhanced Universal Dependencies (Schuster & Manning, 2016);

> ..
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» nodes limited to surface lexical units (words): lemmas, PoS
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» Two decades of great advances in syntactic dependencies and parsing;
» recently, renewed interest in meaning; algorithmic interest in graphs;

» nodes limited to surface lexical units (words): lemmas, PoS, frames;

A similar technique is almost impossib/e to apply to other crops.
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» Two decades of great advances in syntactic dependencies and parsing;
» recently, renewed interest in meaning; algorithmic interest in graphs;
» nodes limited to surface lexical units (words): lemmas, PoS, frames;

» edges encode argument roles and maybe some construction semantics;
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Arguably Basicest: Bi-lexical Semantic Dependencies

Two decades of great advances in syntactic dependencies and parsing;
recently, renewed interest in meaning; algorithmic interest in graphs;
nodes limited to surface lexical units (words): lemmas, PoS, frames;

edges encode argument roles and maybe some construction semantics;

vV vV v VY

limited expressivity, e.g. no lexical decomposition, no covert meaning.

A similar technique is almost impossible to apply to other crops.
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(0) Two Bi-Lexical Frameworks: DM & PSD

DM: DELPH-IN MRS Bi-Lexical Dependencies (Ivanova et al., 2012)

» Simplification from underspecified logical forms (ERS; coming later);
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DM: DELPH-IN MRS Bi-Lexical Dependencies (Ivanova et al., 2012)

» Simplification from underspecified logical forms (ERS; coming later);
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» Simplification from FGD tectogrammatical trees (Sgall et al., 1986).
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Break Free of Bi-Lexical Limitations (Oepen & Lgnning, 2006)

» Decomposition or construction meaning; anchors: arbitrary sub-strings.

_almost_a_1
(23:29)

_similar_a_to udef q

(53:100)

_technique_n_1 _crop_n_1
(10:19) (59:65)
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(1) Universal Conceptual Cognitive Annotation (UCCA)

Multi-Layered Design (Abend & Rappoport, 2013);

> Tree backbone: semantic ‘constituents’ are scenes (‘clauses’) and units;
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(1) Universal Conceptual Cognitive Annotation (UCCA)

Multi-Layered Design (Abend & Rappoport, 2013);

> Tree backbone: semantic ‘constituents’ are scenes (‘clauses’) and units;

» scenes (Process or State): pArticipants and aDverbials (plus F and U);

> complex units distinguish Center and Elaborator(s); allow remote edges.

(59:65)

A similar technique is almost impossible to apply to other crops.



(2) Abstract Meaning Representation (AMR)

Banarescu et al. (2013)

possible-01

|polarity - | > Abstractly (if not linguistically)

similar to EDS, but unanchored;
» verbal senses from PropBank™™;
> negation as node-local property;

» tree-like annotation: inversed
edges normalized for evaluation;

(ARG1)-of

resemble-01

A similar technique is almost impossible to apply to other crops.

mod (domain)  » originally designed for (S)MT;
various NLU applications to date.



Training and Evaluation Data in the Shared Task

DM PSD EDS UCCA AMR
Flavor 0 0 1 1 2

- lext Type newspaper newspaper newspaper mixed mixed
‘S Sentences 35,656 35,656 35,656 6,572 56,240
+ Tokens 802,717 802,717 802,717 138,268 1,000,217
- Text Type mixed mixed mixed mixed mixed
$ Sentences 3,359 3,359 3,359 1,131 1,998
= Tokens 64,853 64,853 64,853 21,647 39,520

» DM, PSD, and ESD annotate the same text (Sections 00-20 of WSJ);
» UCCA: samples of EWT & Wikipedia; AMR: twelve different sources;
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Training and Evaluation Data in the Shared Task

DM PSD EDS UCCA AMR
Flavor 0 0 1 1 2

- lext Type newspaper newspaper newspaper mixed mixed
‘S Sentences 35,656 35,656 35,656 6,572 56,240
+ Tokens 802,717 802,717 802,717 138,268 1,000,217
- Text Type mixed mixed mixed mixed mixed
$ Sentences 3,359 3,359 3,359 1,131 1,998
= Tokens 64,853 64,853 64,853 21,647 39,520

DM, PSD, and ESD annotate the same text (Sections 00-20 of WSJ);
UCCA: samples of EWT & Wikipedia; AMR: twelve different sources;

linguistics: 100-item WSJ sample in all frameworks publicly available;

vV vV v v

evaluation: subset of 100 sentences from The Little Prince is public.
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Graphbank Statistics (Kuhlmann & Oepen, 2016)

DM PSD EDS UCCA AMR™!

- (01) number of graphs 35,656 35,656 35,656 6,572 56,240
£ (01) number of tokens 802,717 802,717 802,717 138,268 1,000,217
3 (02) average number of tokens 2251 2251 2251  21.03 17,78
© (03) average nodes per token 077 064 129 137 0.65
(04) number of edge labels 59 90 10 15 101
(05) %, trees 231 4226 009 348 2224
(06) %, treewidth one 69.82 43.08 68.99 41.57 50.00
(07) average treewidth 1.30 1.61 1.31 1.61 1.56

@ (08) maximal treewidth 3 7 3 4 5
@ (09) average edge density 1.019 1.073 1.015 1.053 1.092
® (10) %p, reentrant 27.43 1141  32.78 4.98 19.89
5 (11) %, cyclic 000 000 012 0.0 0.38
(12) %y not connected 6.57 0.70 1.74 0.00 0.00
(13) %, multi-rooted 97.47  40.60  99.93 0.00 71.37
(14) percentage non-top roots 44.94 434  54.85 0.00 20.09

+ (15) average edge length 2.684  3.320 - - -
S (16) %, noncrossing 69.21  64.61 - - -
© (17) %4 pagenumber two 99.59  98.08 - - -

16
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Cross-Framework Evaluation: MRP Graph Similarity

» Break down graphs into types of information: per-type and overall Fy;

Different Types of Semantic Graph ‘Atoms’

_retire_v_1 proper_q
(7:14) (0:6) DM PSD EDS UCCA AMR

ARG v Top Nodes v v v v v
Labeled Edges v 7/ v 4 v

Node Labels v / v X v

|CARG Pierre| Node Properties v v v X v
0:6) Node Anchoring v/ v v X

X X X v X

Edge Attributes

Pierre retired.
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Cross-Framework Evaluation: MRP Graph Similarity

» Break down graphs into types of information: per-type and overall Fy;
> tops and (labeled) edges; labels, properties, anchors, and attributes;
» requires node—node correspondences; search for overall maximum score;

» maximum common edge subgraph isomorphism (MCES) is NP-hard;
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Cross-Framework Evaluation: MRP Graph Similarity

Break down graphs into types of information: per-type and overall Fy;
tops and (labeled) edges; labels, properties, anchors, and attributes;
requires node—node correspondences; search for overall maximum score;

maximum common edge subgraph isomorphism (MCES) is NP-hard;

I v v vy

smart initialization, scheduling, and pruning yield strong approximation.

Different Types of Semantic Graph ‘Atoms’

DM PSD EDS UCCA AMR

proper_q

_retire_v_1
(7:14)

ARGL Top Nodes v v v v v
Labeled Edges v 7/ v 4 v

Node Labels v / v X v

|CARG Pierre| Node Properties v v v X v
0:6) Node Anchoring v/ v 4 X

X X X v X

Edge Attributes

Pierre retired.



Teams DM PSD EDS UCCA AMR MTL Approach
ERGHST v X v X X X Composition
TUPAST v 4 v/ v v X/v Transition
HIT-SCIR v v v v v X Transition
SJTU-NICT v v v v v X Factorization
SUDA-Alibaba v v v v v ()  Factorization
Saarland v v v v v X Composition
Hitachi v v v v v (V)  Factorization
UFAL MRPipe v v v v/ v/ X Transition
ShanghaiTech v v v X v X Factorization
Amazon v v X X v X Factorization
JBNU v v X v X X Factorization
SJTU v v v v v v Transition
UFAL-Oslo v v v v v X Transition
HKUST v v X v X ?

Bocharov X X X X v ?

Peking v v v v X X Factorization
CUHK? v v v v v v Transition
Anonymous® X v X X X ?

High-Level Overview of Submissions
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Score Distributions

1 Composition
A Factorization
g @ Transition
E: : ?
0.8 A = A
A 8 2
o A
0.6 ~ O
A 9 A
A
| A
04| O -
0.2 =
Overall DM PSD EDS UCCA AMR
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Composition-Based Approaches

1 5 9
os| O O
£l O 0]

0.6
04| [
0.2

0

Overall DM PSD EDS UCCA AMR

» Explicitly modeling the derivation process.

» A parser evaluates a derivation licensed by a symbolic system.
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Factorization-Based Approaches

1 A
" . :
0.8 A
A A A
A
0.6
A A
& A
0.4
0.2
0 Overall DM PSD EDS UCCA AMR

» Inspired by graph-based dependency parsers.
» Explicitly modeling the target structure.

» A parser evaluates factors of a candidate graph.
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Transition-Based Approaches

1
o Q A O
0.8 8 O o
O O o) O 0
@) e @)
0.6
O e) 9 o
0.4 8 o §
.-
0.2
@)
0 Overall DM PSD EDS UCCA AMR
» Inspired by transition-based dependency parsers.
» Incremental (left-to-right, word-by-word).
» Partial parse constrains subsequent actions.
» Greedy/beam search to get a parse.
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Score Distributions: Zoom In

1
Composition
A Factorization
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Transition
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State of the Art

Submissions from established top-performing teams:
» ShanghaiTech (DM, PSD)

> Peking (EDS)

» SUDA-Alibaba (UCCA)

> Saarland (AMR)

Outperformed in most cases!

SITU-NICT |
HIT-SCIR|
ShanghaiTech
HIT-SCIR
SITU-NICT
SITU-NICT
Hitachi
Saarland
SITU-NICT |
HIT-SCIR |
SUDA-Alibaba |
HIT-SCIR |

SUDA-Alibaba |
SITU-NICT |
SUDA-Alibaba |
SITU-NICT |
HIT-SCIR
Amazon

Overall DM PSD EDS UCCA AMR
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Limiting Factors in Comparison to State of the Art

» New cross-framework metric: MRP
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Limiting Factors in Comparison to State of the Art

New cross-framework metric: MRP

Different task definition (DM, PSD: nodes, not just edges)

>

>

» Different evaluation set (EDS: not just WSJ)
» Different normalization (AMR: inverted edges)
>

Revised and extended annotation (UCCA, AMR)
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Limiting Factors in Comparison to State of the Art

vV vV v v v Y

New cross-framework metric: MRP

Different task definition (DM, PSD: nodes, not just edges)
Different evaluation set (EDS: not just WSJ)

Different normalization (AMR: inverted edges)

Revised and extended annotation (UCCA, AMR)

No gold tokenization (or tags or lemmas)!

27
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Interim Conclusions & Outlook

Lessons Learned

> Great community interest: 160 subscribers; 38 data licenses (via LDC);

» task complexity is technical barrier to entry: 16 + 2 teams submitted;
— advanced state of the art on four frameworks (but possibly not AMR);

— greatly increased cross-framework uniformity; but limited MTL so far.

Outlook: Toward MRP 2020
» Invitation from SIGNLL to re-run (a follow-up variant) at CoNLL 2020;

? add Discourse Representation Graphs; maybe a few other languages;
? increased focus on evaluation metrics: score ‘larger pieces’; SEMBLEU;

— open discussion with 2019 participants towards the end of this session.
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Transition-Based UCCA Parser
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Scarcity of Training Data
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Multi- Task Parser

Multi-task improves UCCA parsing (Hershcovich et al., 2018).
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Intermediate graph representation,
extended transition system.

After graduation ,

moved at New York City
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Transition Classifier

BiLSTM + BERT (Devlin et al., 2019).

Shared BiLSTM &
Private BiLSTM y.
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Transition Classifier

BiLSTM + BERT (Devlin et al., 2019).
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Results

Baseline: single-task 4+ multi-task.
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Results

Baseline: single-task 4+ multi-task.
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Background: English Resource Semantics (ERS)

LinGO English Resource Grammar (Flickinger, 2000; Flickinger et al., 2017)
» Hand-designed computational grammar for English in HPSG framework;
» declarative, unification-based: parsing and realization; multiple engines;
» 257 person years; coverage of 85-95 % of running text across domains;

» underspecified meaning representation in MRS (Copestake et al., 2005).

LinGO Redwoods Treebank (Carter, 1997; Oepen et al., 2004)

» Grammar-based annotation: select ‘correct’ reading from parse forest;

» version 1214: some 85,000 annotated sentences, six™ different domains;
> Bender et al. (2015) report inter-annotator agreement of 0.94 EDM;;
» EDS: graph-based simplification of ERS; DM: its bi-lexical ‘reduction’;

PET Unification-Based Parser (Callmeier, 2002)

» Highly optimized chart parser; (exact) n-best MaxEnt parse selection.
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EDSs are ‘Radically Compositional’

Named Entities
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Pierre Vinken
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thirty-two

l

» Underspecified structure in names;

> few, lexically determined sub-types.

Michelle and Barack Obama

Prepositions (and Similar)
» Predicates: distinct two-place relation;

» specialized sub-senses as appropriate.

before and during the meeting

Literal Numbers
» syntax yields arithmetic expressions;

» trivial ‘downstream’ normalization.

ten to twenty thousand



Comparison to Top-Performing Data-Driven Parsers

Tops Labels Properties Anchors Edges

PR F PRF PRF PRF PR F

ERG .92 .92 918 .99 .99 .987 .96 .96 .956 .99 .99 .994 .91 .91 .912

SJTU-NICT .93 .93 .933 .95 .95 .949 .96 .95 .955 .99 .99 .993 .93 .92 .924

E HIT-SCIR .93 .93 1926 .93 .93 .930 .95 .95 .953 .99 .99 .993 .93 .92 .925
SUDA-Alibaba .91 .91 .911 .90 .91 .903 .91 .92 .915 .97 .99 .982 .89 .91 .898
Peking .93 .93 927 .92 .91 915 .95 .94 945 .99 .99 .991 .92 .92 .924
ERG .90 .90 .902 .97 .96 .965 .96 .96 .960 .96 .96 .963 .93 .93 .929
SUDA-Alibaba .90 .90 .899 .91 .91 .912 .89 .91 .897 .95 .95 .949 .90 .90 .897

‘8 HIT-SCIR .88 .82 .852 .90 .89 .894 .89 .91 .895 .95 .94 .943 .89 .88 .888

w

SJTU-NICT .91 .85 .877 .93 .86 .894 .79 .76 .775 .97 .90 .934 .95 .82 .878

Peking .83 .83 .829 .95 .94 946 .91 .96 .936 .96 .96 .961 .94 .93 .933
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Background: English Resource Semantics On-Line

M Inbox (61,66 X | 1 Google Cale: X | Cross-Framew: X | B SearchResu X | | Codalab-S X |  CONLL2008 X | € cfmrpftutori X | English Resourc X
<« c @ 0 delph-in.net 120%

Enguallex-© X | % LINDAT/CL/ x [+ - B

L4 Se i & @ 9 €

Sample Resel | A similar technique is almost impossible to apply to other crops. Analyze
allow: (¥ sentences [ | fragments [ | textbook grammar [ minor errors | unknown words: (v
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5 of 5 (of 29) analyses; processing time: 0.33 seconds; 1039 edges]

latex compare selection v | generate

A similar technique is almost impossible to apply to other crops.

s
rw w ey W ot
A similar technique is almost impossible to apply to other Crops .
S e12:
1:_a_q(0:1)[BV x6]

vH €9:_similar_a_to(2:9)[ARG1 x6]
m rs‘ ADV e11:comp(2:9)[ARG1 e9]
ADJ a/mosq ADJ ¥6:_technique_n_1(10:19)]
#0 |similar rechmaue ADJ 12:_almost a_1(23:29)[ARG1 &3]
impossiblel

ﬁ = €3: impossible_a_for(30:40)[ARG1 e18]
o €18:_apply_v_{o(44:49)ARG2 X6, ARG3 x19]
_2:udef_q(53:65)[BV x19]
;e,‘ €24 other_a_1(53:58)[ARG1 x19]
x19:_crop_n_1(59:65)[]
crops.

ﬁ
E/— ARG\ - ARG, Ann,\ﬁ/@ m,m, s

A simiar_technique is almostimpossible {0 apply to other  crops .

s ] [et6:

http://erg.delph-in.net/

n


http://erg.delph-in.net/

References |

Emily M. Bender, Dan Flickinger, Stephan Oepen, Woodley Packard, and
Ann Copestake. 2015. Layers of interpretation. On grammar and
compositionality. In Proceedings of the 11th International Conference
on Computational Semantics, pages 239-249, London, UK.

Ulrich Callmeier. 2002. Preprocessing and encoding techniques in PET. In
Stephan Oepen, Daniel Flickinger, J. Tsujii, and Hans Uszkoreit, editors,
Collaborative Language Engineering. A Case Study in Efficient
Grammar-based Processing, pages 127 —-140. CSLI Publications,
Stanford, CA.

David Carter. 1997. The TreeBanker. A tool for supervised training of
parsed corpora. In Proceedings of the Workshop on Computational
Environments for Grammar Development and Linguistic Engineering,
pages 9—15, Madrid, Spain.

Ann Copestake, Dan Flickinger, Carl Pollard, and lvan A. Sag. 2005.
Minimal Recursion Semantics. An introduction. Research on Language
and Computation, 3(4):281-332.



http://www.aclweb.org/anthology/W15-0128
http://www.aclweb.org/anthology/W15-0128

References |l

Dan Flickinger. 2000. On building a more efficient grammar by exploiting
types. Natural Language Engineering, 6 (1):15—-28.

Dan Flickinger, Stephan Oepen, and Emily M. Bender. 2017. Sustainable
development and refinement of complex linguistic annotations at scale.
In Nacy Ide and James Pustejovsky, editors, Handbook of Linguistic
Annotation, pages 353 —-377. Springer, Dordrecht, The Netherlands.

Stephan Oepen, Daniel Flickinger, Kristina Toutanova, and Christopher D.
Manning. 2004. LinGO Redwoods. A rich and dynamic treebank for
HPSG. Research on Language and Computation, 2(4):575-596.




No Presentation

SJITU-NICT at MRP 2019: Multi-Task Learning for End-to-End Uniform
Semantic Graph Parsing

Zuchao Li“>®, Hai Zhao'?>*; Zhuosheng Zhang'->*,
Rui Wang'*, Masao Utiyama?, and Eiichiro Sumita*
'Department of Computer Science and Engineering, Shanghai Jiao Tong University (SJITU)
2Key Laboratory of Shanghai Education Commission for Intelligent Interaction
and Cognitive Engineering, Shanghai Jiao Tong University, Shanghai, China
3MOoE Key Lab of Artificial Intelligence, Al Institude, Shanghai Jiao Tong University, China
“4National Institute of Information and Communications Technology (NICT), Kyoto, Japan

Abstract

This paper describes our SITU-NICT’s system
for participating in the shared task on Cross-
Framework Meaning Representation Parsing
(MRP) at the 2019 Conference for Compu-
tational Language Learning (CoNLL). Our
system uses a graph-based approach to model
a variety of semantic graph parsing tasks. Our
main contributions in the submitted system
are summarized as follows: 1. Our model
is fully end-to-end and is capable of being
trained only on the given training set which
does not rely on any other extra training source
including the companion data provided by the

However, due to the variety of semantic graph
flavors, the framework-specific “balkanization”
of semantic parsing is worth noting.  The
2019 Conference on Computational Language
Learning (CoNLL) hosts a shared task on
Cross-Framework Meaning Representation Pars-
ing (MRP 2019) (Oepen et al., 2019). From
the perspective of the formal representation of
semantic graphs, MRP 2019 uses the directed
graphs to unify the five different semantic
representation frameworks: DELPH-IN MRS Bi-
Lexical Dependencies (DM), Prague Semantic
Dependencies (PSD), Elementary Dependency
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ShanghaiTech at MRP 2019: Sequence-to-Graph Transduction with
Second-Order Edge Inference for Cross-Framework Meaning
Representation Parsing
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Abstract

This paper presents the system used in
our submission to the CoNLL 2019 shared
task: Cross-Framework Meaning Representa-
tion Parsing. Our system is a graph-based
parser which combines an extended pointer-
generator network that generates nodes and
a second-order mean field variational infer-
ence module that predicts edges. Our sys-
tem achieved 1% and 2" place for the DM
and PSD frameworks respectively on the in-
framework ranks and achieved 3 place for the
DM framework on the cross-framework ranks.

tween these frameworks is their level of abstrac-
tion from the sentence. SDP is a bi-lexical depen-
dency graph, where graph nodes correspond to to-
kens in the sentence. EDS and UCCA are general
forms of anchored semantic graphs, in which the
nodes are anchored to arbitrary spans of the sen-
tence and the spans can have overlaps. AMR is
an unanchored graph, which does not consider the
correspondence between nodes and the sentence
tokens. The shared task also provides a cross-
framework metric which evaluates the similarity
of graph components in all frameworks.



Compositional Parsing Across
All Graphbanks

Saarland at MRP 2019

L. Donatelli, M. Fowlie, J. Groschwitz, A. Koller, M. Lindemann, M. Mina, P. WeilRenhorn

 Compositional neural parser with competitive results across all
MRP shared task graphbanks (only compositional parser to do so!)
e A4th place overall
* 1ston PSD
e 1st The Little Prince subset

e Parser previously held SOTA on MRP graphbanks apart from UCCA
at ACL 2019




Apply-Modify (AM) Algebra and graph decomposition

n Input | The tall giraffe wants to eat

neural supertagging

E + dependency parsing
APrpP,

MODy APPg
The tall giraffe wants to eat
L G L

ARGO\ARGI

AM dependency tree

Evaluates
deterministically

Sentence

E AM Dependency tree

B Graph

* Linguistically-motivated
compositional structure

* Diverse meaning representations
mapped to similar AM trees
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A Unified Pipeline for Meaning Representation Parsing
via Efficient Training and Effective Encoding

Wanxiang Che, Longxu Dou, Yang Xu, Yuxuan Wang, Yijia Liu, Ting Liu
Research Center for Social Computing and Information Retrieval
Harbin Institute of Technology
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Overview of Our Techniques

* Rank 1%t according to ALL-F1
* Baseline model: Transition-based Parser with Stack LSTM (Dyer et al., 2015)

* Our Extensions:
* Efficient Training of Stack LSTM via parallel training
* Effective Encoding via adopting BERT

System DM PSD EDS UCCA AMR ALL-F1
HIT-SCIR 9508 90.55 90.75 81.67 7294 86.2
SJTU-NICT 9550 9119 8990 /780 71.97 85.3
Suda-Alibaba 9226 8556 91.85 /843 71.72 84.0
Saarland 9469 9128 89.10 6755 66.72 81.9
Hitachi 91.02 9121 83.74 7036 43.86 76.0
Amazon 93.26  89.98 - - 73.38 -




@ HIT-SCIR

Parallel Training Stack-LSTM

* Aligning the similar operations in Stack-LSTM within a batch
* Computing them simultaneously

operation buffer stacks

| LSTM | 500
batch states

a state a

_/’—> state b
state b 200 -

C state ¢ :
100 - L —
1 4 8 16 32 64
state ¢

Batch Size

—— DM
— UCCA

a » a

400 A

300 A

Training Time/epoch (minutes)

N
x

. Conduct experiments with GloVe
. 5.3x on DM
. 2.7x on UCCA
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BERT Is Amazing!

We fine-tune the BERT
* Layer-wise scalar weighed BERT is adopted

Feature DM PSD EDS UCCA AMR Avg
GloVe 87.1 4.1 88.2 87.5 05.3 80.4
BERT(base) 94.3 83.6 91.5 92.8 /1.4 86.7

Metric: ALL-F1 based on mtool
Dataset: Splited training data on 8:1:1 proportion



Structure vs Representation

* Transition-based Parser achieves comparable results with Graph-based Parser

Kulmizev et al. (2019) found similar conclusion in PTB

aB......

Model Feature DM PAS PSD
Id ood Id ood Id ood
Wang et al word2vec 89.3 832 i 914 87.2 76.1 73.2
Dozat et al Glove+char 92.7 878 i 94.0 90.6 80.5 /8.6
Transition GloVe+char 86.1 /9.2 | 89.8 85.2 72.8 68.5
Graph GloVe+char 91.6 86.1 : 93.1 89.6 774 73.0
Transition BERT 929 892 i 944 924 816 81.0
Graph BERT 941 90.8 . 94.8 92.9 80.7 79.5

Wang et al: <A Neural Transition-Based Approach for Semantic Dependency Graph Parsing>
Dozat et al: <Simpler but More Accurate Semantic Dependency Parsing>
Kulmizev et al: <Deep Contextualized Word Embeddings in Transition-Based and Graph-Based Dependency Parsing — A Tale of Two Parsers Revisited>
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* In follow up experiment, we obtain further improvement on lpps dataset

Model Ensemble

* Ensemble model consists of 5 single model

Systems DM PSD EDS UCCA AMR Avg
Single 90398 8741 89.83 8261 69.03 84.57

Ensemble 94.00 87.79 89.57 8341 7135 85.16




Conclusion

* Our Contribution:
* Efficient Training of Stack LSTM via parallel training
* Effective Encoding through adopting BERT

* The performance gap between Graph and Transition on SDP is almost
eliminated under BERT

* Our code: https://github.com/HIT-SCIR/HIT-SCIR-CoNLL2019
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Abstract

This paper describes the system of our team
SJTU for our participation in the CONLL 2019
Shared Task: Cross-Framework Meaning Rep-
resentation Parsing. The goal of the task
is to advance data-driven parsing into graph-
structured representations of sentence mean-
ing. This task includes five meaning represen-
tation frameworks: DM, PSD, EDS, UCCA,
and AMR. These frameworks have different
properties and structures. To tackle all the
frameworks in one model, it is needed to find
out the commonality of them. In our work, we
define a set of the transition actions to once-

zhaohai@cs.sjtu.edu.cn

shallow syntax and in particular for representa-
tions of the semantic structure. Many works have
shown that these meaning representations are ben-
eficial to other tasks such as machine translation
and abstractive summarization. However, there
are several types of meaning representations with
different definitions, structures, and abstractions,
which hinder the applications.

The CoNLL 2019 Shared Task (Oepen et al.,
2019) combines formally and linguistically dif-
ferent meaning representation in graph form on
a uniform training and evaluation setup for the
first time. This task includes five MRP frame-
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Attention for Semantic Dependency Parsing

Seung-Hoon Na, Jinwoo Min, Kwanghyeon Park
Dept. Computer Science, Jeonbuk National University

Jong-Hun Shin, Young-Kil Kim

Electronics and Telecommunication Research Institute
(ETRI)



Introduction

e Our issue: Multi-task learning for DM/PSD/UCCA

— To enable multi-task learning, we explicitly make
shared common components in a neural network
architecture across different frameworks

e Models

— Biaffine attention: we propose a unified neural model
for the DM/PSD/UCCA frameworks based on the
biaffine attention [Dozat and Manning, 2017, 2018;
Zhang et al., 2019]

— Multi-level biaffine attention:

* Motivated by the multi-level architecture of FusionNet in the
machine reading comprehension task [Huang et al., 2018]
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Decoder: Biaffine attention € framework specific
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Encoder: BERT-BiLSTM (shared across frameworks)
* Word representation layer using BERT

Given a sentence, the BERT encoder is applied to its wordpieces and the
encoded wordpiece-level represenations are composed to the word-level
embeddings based on BiLSTM

Wllaert leaert Wl;ert
1 ! T BERT word-level embeddin
BiLSTM BiLSTM | | BiLSTM X — [w?e"“t;egl‘m;e fos}
Tt 1 1
BERT

I A A A A . g

[CLS] SO ##y ##be ##ans and rice _ _
| ~2 T T BiLSTM sentence encoding
Wordpiece tokenzier ;= BiLST M (% ==X;)

f 1 |

soybeans and rice




Decoder: Biaffine attention (framework specific)
« Biaffine attention is performed on the role-dependent

representations to predict the existence of an edge and its labels
Biaffine attention

BiAff.(x,y) = xTullmly 4 v [ ] +b
S(edge) _ BZAff(edge (h(dep) h(head))

5]

(label) _ BZAff(label (h(l dep) h(l head))

:J

S(top) _ FFN(top (rz)

2 | HEN N BN — —

I R o T
1 ! I 1 I 1

BERT-BiLSTM sentence encoder layer




Multi-level Biaffine attention

The hidden representations at three levels are composed to the final
(dep) _(head)

hidden representation z; ) Z; using a semantic fusion unit
(dep) (head) (dep) (head)
z;"" z % Zj
sful A sful  sfy’ A sfu ’
(dep) (head) (dep) (head)
hi,3 \ /’I hi,3 hj,3 \ /’I hj,3
: .« . r.
h(dep) Tis ,| (head) h(dep) L3 ,| h(head]
i,2 \ )z h;, J,2 \ Vs j,2
Ti2 head) (dep) T2 (head
hiG l‘ ’I hieet h;y ‘ ’I h;y
. ' /\ / . Y, . /\ / . J
< " ri 1 < ! < ! ri ‘1 < _




Prellmlnary Experlment Framework | Train | Dev
DM | 32091 | 3565
: . 32091 | 3565
For more details, please visit our poster.  ycca | 5015 | 656
Thank you.
od DM PSD UCCA
Top UF LF | Top UF LF | Top UF LF
Biaffine 93.67 92.08 90.86/95.97 90.50 78.21[72.60 69.67 65.17
BERT+Biaffine 95.06 93.85 93.00[96.89 9230 80.24|77.09 74.85 70.15
BERT+Multi-level Biaffine | 95.09 93.86 93.02/96.76 91.95 79.76|78.12 74.42 69.81
BERT+Biaffine+MTL || N/A 93.66 92.73| N/A 92.13 79.63| N/A 75.40 70.59

* BERT+Biaffine performs better than Biaffine, in particular,
obtaining the increases of about 5% for UF and LF on the
UCCA framework

 BERT+Multi-level Biaffine does not achieve any further
improvements with respect to BERT-Biaffine model

 BERT+Biaffine+MTL only achieves small improvements on
UCCA framework whereas no improvements on DM and
PSD frameworks can be observed



CUHK at MRP2019: Transition-Based Parser
with Cross-Framework Variable-Arity Resolve Action

Sunny Lai Chun Hei Lo Kwong Sak Leung Yee Leung
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Our system:

- transition-based parser

- directed acyclic graph (DAG) to tree preprocessor

- cross-framework variable-arity RESOLVE action
that generalizes over five different representations.

- Although we ranked low in the competition, we have
shown the current limitations and potentials of including
variable-arity action in MRP and concluded with
directions for improvements in the future.



Arity: is the number
[CETERTS - .- or operands (No. of nodes

that the function takes (Wikipedia)

Standard shift reduce: 2, This paper: n

4

- cross-framework variable-arity RESOLVE action
that generalizes over five different representations.



IMEE-

0 LEFT-REDUCE(L), RIGHT-SHIFT(L), NO-SHIFT,NO-REDUCE, LEFT-PASS(L), (Wang et al.,

RIGHT—PASS( ), NO-PASS 2018)
UCCA 1 SHIFT, REDUCE, NODE(X), LEFT-EDGE(X), RIGHT-EDGE(X), LEFT- (Hershcovich
REMOTE(X), RIGHT-REMOTE(X), SWAP, FINISH et al., 2017)
AMR 2 SHIFT, REDUCE, RIGHT-LABEL(R), LEFT-LABEL(R), SWAP, MERGE, (Guo and Lu,
PRED(N), ENTITY(L), GEN(N) 2018)

A SHIFT, IGNORE, RESOLVE s peipet




A SHIFT, IGNORE, RESOLVE Il perpEr

We introduce the cross-framework variable-arity RESOLVE action as:

1.

2.

there is N0 heed to include additional binarization of the dependencies and
reduce the number of transitions

It is also more natural to consider the dependency of multiple nodes

jointly as meaning representations like semantic frames usually involve multiple
arguments

Learn cross-framework features to generalize our model




Approach

Top-node
oriented tree

DM Top-node
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Approach

Top-node
oriented tree




A node can be RESOLVED
ApproaCh when all its child is RESOLVED
Top-node RESOLVE:

- Predict node labels (framework specific)
- Build edges (framework specific)

DM

Top-node
oriented tree

Initial tokenized nodes queue: [A, full, ,, four-color, page, in, Newsweek, will, cost, $, 100,980]




A node can be RESOLVED
ApproaCh when all its child is RESOLVED
Top-node RESOLVE:

- Predict node labels (framework specific)
- Build edges (framework specific)

DM

Top-node
oriented tree

Action n  Stack
]

SHIFT (A]

RESOLVE 1 a]

Initial tokenized nodes queue: [A, full, ,, four-color, page, in, Newsweek, will, cost, $, 100,980]




A node can be RESOLVED
ApproaCh when all its child is RESOLVED
Top-node RESOLVE:

- Predict node labels (framework specific)
- Build edges (framework specific)

DM

Top-node

oriented tree
Action n  Stack

[a, full, color, page, in]
RESOLVE 5 [page]

BV ARG1
page — a, page — full

compound ARG1 .
page > color, page —— in

Initial tokenized nodes queue: [A, full, ,, four-color, page, in, Newsweek, will, cost, $, 100,980]




ubmisson\F top bl prperies anchors _adges | atbutes |3l

TUPA(multi) 0.616 0.457 0.327 0.626 0.347 0.037 0.453
RESOLVER  0.502 0.365 0.317 0.568 0.095 0.00 0.378

« Cross-framework variable-arity actions are hard to learn

* Information loss happens when converting graphs to
tree structures.

* Model design can still be improved.
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Hitachi at MRP 2019: Unified Encoder-to-Biaffine Network for Cross-
Framework Meaning Representation Parsing

HITACHI

Inspire the Next

Yuta Koreeda*, Gaku Morio*, TerufumiMorishita*, Hiroaki Ozaki*, Kohsuke Yanai (*equal contribution)

B Our Approach

. Unify graph predictions — ey =
: : Converter. | G L A =y Legend:
with a single encoder- ) Raw dats
tO'blafflne network Postprocess | | Postprocess | | Postprocess Bzzzmcessed
. . Postprocess i N G Inferred data
. Multi-task variant of the A . Biafine Network (74.1) ) SP )
. . = = = e roceaure
Un|f|ed System (|n pOSt B'afﬁn?&?cm”ng Elmggéla%t;éall
evaluatl 0 n) i ——P——3Pointer Networkfe— —> S:t:r::w
1.  Extract task-independent Fncoder () | fFoer Genertor Séjr'a“%f‘f& |
. etwor inference
contextualized token = Eifj\‘j;:w
representations with shared : signal)
rapns rapns
encoder — = —
oo AMR NER NE-to-AMR NE-to-AMREntity| | AMR Preprocessor UCCA Preprocessor
2. Complement missing nodes Mapper P
. . T T T
3. Predictedges and their 2 r

Tokenized input texts

© Hitachi, Ltd. 2019. All rights reserv ed.

labels with biaffine networks
[Dozat+18]



Hitachi at MRP 2019: Unified Encoder-to-Biaffine Network for Cross-
Framework Meaning Representation Parsing

HITACHI

Inspire the Next

. Frame Specific Approaches

Framework BiaffinelLike Net. Rule Linear model Generator

DM and PSD Edge + Frame Properties - -

EDS Node anchor Node & Edge gen. Node & Edge gen. -

UCCA Edge - - Non-terminal node:
pointer network

AMR Edge Preprocess + serialize - Node: pointer-generator
network

B Results

Variant Average DM PSD EDS UCCA AMR

SFL 0.7575/5| 0.9071/9 0.9064/3 0.8339// 0.7014/6 0.4386/8

SFL(ensemble)* ( 0.7604/5 0.9102/9 0.9121/2 0.8374/7 0.7036/6 0.4386/8

BERT+SFL(NT) |—| 0.7450/6 - 0.9038/9 0.9069/3 0.8301// 0.6945/6 0.3896/8

BERT+MTL(NT) 0.7144/6 | 0.8726/9 0.8791/7/ 0.7987/7 0.6422/6 0.3794/9

BERT+MTL+FT(NT) 0.7507/5- 0.9045/9 0.9054/4 0.8304/7 0.7126/6 0.4008/8

© Hitachi, Ltd. 2019. All rights reserv ed.



UFAL MRPipe at MRP2019, Nov 3 2019

UFAL MRPipe at MRP20109:
UDPipe Goes Semantic in the Meaning
Representation Parsing Shared Task

Milan Straka, Jana Strakova

@ November 3, 2019

Charles University in Prague
Faculty of Mathematics and Physics
Institute of Formal and Applied Linguistics
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MRPipe Design
MRPipe Design

® start completely from scratch

UFAL MRPipe at MRP2019, Nov 3 2019 Design

Parsing Algorithm

Representations

Example

Results

Future Work

U=
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MRPipe Design
® start completely from scratch

® uniform architecture for simple directed graph parsing
O i.e., we consider at most one edge for all pairs of nodes in both directions
O therefore, we can model trees, DAGs, even cycles
o we could model hypergraphs (i.e., parallel edges) easily, but we did not
yet evaluated it (~0.4% parallel edges in AMR, ~1.25% in UCCA)

Design 2/7
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MRPipe Design
® start completely from scratch

® uniform architecture for simple directed graph parsing
O i.e., we consider at most one edge for all pairs of nodes in both directions

O therefore, we can model trees, DAGs, even cycles
o we could model hypergraphs (i.e., parallel edges) easily, but we did not
yet evaluated it (~0.4% parallel edges in AMR, ~1.25% in UCCA)

® no linguistic information, structural constraints, dicts, ...

® rich pretrained embeddings — frozen BERT embeddings

Design 2/7



MRPipe Parsing Algorithm

MRPipe Parsing Algorithm

® consider tokens as nodes, anchors as edges to them

UFAL MRPipe at MRP2019, Nov 3 2019 Design

Parsing Algorithm

Representations

Example

Results

Future Work

U=
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MRPipe Parsing Algorithm
® consider tokens as nodes, anchors as edges to them

® construct the graph layerwise by interleaving following two operations:

Parsing Algorithm 3/7
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® construct the graph layerwise by interleaving following two operations:
0 AddNodes: for every node, independently consider creating its new child

or parent, with all its properties
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MRPipe Parsing Algorithm
® consider tokens as nodes, anchors as edges to them

® construct the graph layerwise by interleaving following two operations:
0 AddNodes: for every node, independently consider creating its new child

or parent, with all its properties

O AddEdges: for every created node, independently consider connecting it
to every other node (existing or new), generating all attributes if required

Parsing Algorithm 3/7



MRPipe Node Representation

® cach node is represented as
O the underlying token which generated it (recursively)

O embeddings of all node properties
O embeddings of all adjacent edges attributes

Representations 4/7
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MRPipe Node Representation

® cach node is represented as
O the underlying token which generated it (recursively)

O embeddings of all node properties
O embeddings of all adjacent edges attributes

® node properties can be encoded relatively
O with respect to the anchored tokens

O automatically choosing absolute (e.g., POS, frames) or relative
encoding (e.g., labels, cargs, op[1-9], ARG[1-9])

Representations 4/7



MRPipe Example FaL

| Input word Mr. |

v M
Pretrained Pretrained .
. Trained
regular | |contextualized .

_ -y . . embeddings. 1 )
;‘71‘1(1()L(1> _proper_q (-(_)1111)()1111(1, embeddmgs. embeddlngs. GRU‘_GRU‘_GRU

A , , . =\ Y Y v
JIligteLn,D " (named) 7’71(\,;,1‘(‘1,\’71 the.q) Cbuy+outn_I - LST' M e L S'*TM T ST' M e

Mr.||Merksamer|| is || leading || the || buy-out || . ceH LSTM e ILSTM [ ILSTM [

st | — b\ N

(a) Left: Initial configuration with tokens only. Right: Token representation encoder architecture.

UFAL MRPipe at MRP2019, Nov 3 2019 Design Parsing Algorithm Representations Example Results Future Work 5/7



MRPipe Example

Ludef,(p Cproper-@ (compound

C (fnd D P Gy o | [

Underlying Token
Representation

| Node Representation |

e i ------ T = .
- Create || Node | i " Node - Node |

I '
new node' | label ilprop 1!...iprop P! — 4 N =

| softmax Eoftmax 'softmax. softmaxi

label ||prop 1|...|prop P New Node
Mr. ||Merksamer|| is || leading || the || buy-out || . embed. | | embed. embed. Representation
Y v ... ¥ :

(b) Left: First AddNodes operation. Right: Architecture of the new node classifier and representation encoder.

UFAL MRPipe at MRP2019, Nov 3 2019 Design Parsing Algorithm Representations Example Results Future Work

5/7



MRPipe Example

udef_q) er_q )OT

].

Mr. || Merksamer|| is

leading

the

buy-out

otential Parent| | Potential Child ‘ Node
Node Repr. Node Repr. Representation
r~—->— T A r~—- /A l --------- - 3
" “tanh | | tanh Edge i Connecting
”””””” Y _softmax | repr. of all
A .~ 4 WGy -~ "y
| Edge !i Edge ! | Edge ! ... Srented
| label : attr 1 :' attr A : e.dges
Eoit%n,&xi !§o£t1rn,&xi Eoit%n,&xi . aéiﬁaceng
Edge Edge Edge A
label attr 1 |---| attr A New Node
gm%ed. gm%ed. m . Representation
s 5@; B

(c) Left: First AddEdges operation. Right: Architecture of the edge classifier and updated node representation encoder.

UFAL MRPipe at MRP2019, Nov 3 2019 Design

Parsing Algorithm

Representations Example

Future Work 5/7

Results



MRPipe Example

Mr. | [Merksamer

1S

leading

buy-out

Node Representation

Node Node Node

label || prop 1|...|prop P

embed. | |embed. embed.
| J  J 4

Underlying Token
Representation

(d) Left: Second AddNodes operation. Right: Architecture of the new node classifier and representation encoder.

UFAL MRPipe at MRP2019, Nov 3 2019 Design Parsing Algorithm

Representations Example

Results

Future Work

5/7



MRPipe Example

Connecting
repr. of all
created
edges
adjacent
to the node.

v
(e) Left: Second AddEdges operation. Right: Architecture of the edge classifier and updated node representation encoder.

UFAL MRPipe at MRP2019, Nov 3 2019 Design Parsing Algorithm Representations Example Results Future Work 5/7




MRPipe Results

® we utilized incorrect companion test data for three treebanks (the ones

without anchors)

® our fixed submission ranked on a shared 3" place

® best overall labels and properties scores, worse edges

System |  Tops | Labels | Properties | Anchors | Edges | Attributes | All

Original ST submission 75.12% 6| 63.99% 7 | 56.53% 6| 6953% 6| 62.17% 7| 7.85% 4 [(14.14% 6
Bugfix ST submission 81.47% 6| 73.06% 1 |6995% 1| 77.23% 3| 73.89% 5 7.87% 4 | 83.96% 3
99% training data 80.59% 6| 73.06% 1 |7018% 1 |77.35% 3 |7427% 5| 796% 4 | 84.14% 3
No BERT embeddings 70.50% 8 | 70.71% 4 | 67.01% 4 | 76.02% 4 | 65.02% 6| 5.30% 6 | 718.99% S
Ensemble 81.13% 6| 73.39% 1 |7082% 1| 77.57% 3| 7585% 4| 828% 3 [[85.05% 3
HIT-SCIR (Che et al., 2019) 90.41% 2| 70.85% 3| 69.86% 1 |77.61% 2 |7937% 1 | 12.40% 1 | 86.20% 1
SJTU-NICT (Li et al., 2019) 91.50% 1| 71.24% 2 | 68.73% 2 |77.62% 1| 77.74% 2 940% 2 | 85.27% 2
SUDA-Alibaba (zhang et al., 2019b)) 86.01% 5 | 69.50% 4 | 68.24% 3 | 77.11% 3| 76.85% 3| 816% 3 | 83.96% 3
Saarland (Donatelli et al., 2019) 86.70% 4| 71.33% 1| 61.11% 5 | 7508% 5 | 75.01% 4 — 81.87% 4

Results

6/7



MRPipe Future Work

® allow anchoring to sub-token by addint attributes with character indices

® pgenerate nodes one-by-one so that they are conditioned on already
generated ones (important for constituency structure)

® better node representation

® better architecture of edge generation (not an independent decision for
every edge)

Future Work 7/7



Remote Presentation

Amazon at MRP 2019: Parsing Meaning Representations with Lexical
and Phrasal Anchoring

Jie Caol} Yi Zhang!, Adel Youssef®, Vivek Srikumar'
School of Computing, University of Utah
tAWS Al Amazon
{jcao, svivek}@cs.utah.edu, {yizhngn, adel}@amazon.com

Abstract

This paper describes the system submission
of our team Amazon to the shared task on
Cross Framework Meaning Representation
Parsing (MRP) at the 2019 Conference for
Computational Language Learning (CoNLL).
Via extensive analysis of implicit alignments
in AMR, we recategorize five meaning rep-
resentations (MRs) into two classes: Lexical-
Anchoring and Phrasal-Anchoring. Then we
propose a unified graph-based parsing frame-
work for the lexical-anchoring MRs, and a
phrase-structure parsing for one of the phrasal-
anchoring MRs, UCCA. Our system submis-

sometimes also with assumptions on underlying
syntactic structures.

Anchoring is crucial in graph-based meaning
representation parsing. Training a statistical parser
typically starts with a conjectured alignment be-
tween tokens/spans and the semantic graph nodes
to help to factorize the supervision of graph struc-
ture into nodes and edges. In our paper, with
evidence from previous research on AMR align-
ments (Pourdamghani et al., 2014; Flanigan et al.,
2014; Wang and Xue, 2017; Chen and Palmer,
2017; Szubert et al., 2018; Lyu and Titov, 2018),
we propose a uniform handling of three meaning

o . . TR A TYNSESNY 1



SUDA-Alibaba at MRP 2019: Graph-

Based Models with BERT

Yue Zhang',Wei Jiang?, Qingrong Xia?,
Junjie Cao', Rui Wang', Zhenghua Li**, Min Zhang?

! Alibaba Group, China
? School of Computer Science and Technology, Soochow University, China
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EDS aaok

* Node prediction: original node & append node
e Original nodes: take coarse POS tag and sense as joint label
e Append nodes: predict begin/end index (anchor) and type
for each node
e Edge prediction:
e Compute the score of each edge relation between two
nodes by the biaffine scorer

Append nodes: ( compound ) ( compound j
Sentence: Pension Reserves : Holdings by pension funds
Original nodes: (Tl ) Ca-)GadCaa) (@) (o) (aop) (0)

Append nodes:
(udfg ) (_udfq )
( udf q )




e

-

UCCA qank 222

e Convert UCCA to constituent tree (Jiang et al. 2019)

e Remove remote edges
e Handle discontinuous nodes

e Utilize minimal span-based parser (Stern et al. 2017)
e Remote recovery as a new task (multi-task learning)

/RO{
After p ,  A-remote p

| I

graduation John C A-ancestorl C

After graduation , John gaveeverythingup gave everything up

/




Welcome to our poster for more
details about our work!

SUDA-Alibaba at MRP 2019: Graph-Based Models

with BERT
Yue Zhang?, Wei Jiang?, Qingrong Xia? Junjie Cao?, Rui Wang?, Zhenghua Li**, Min Zhang?
W‘F{M SAAARAAAS

AE6X Eroup, ARG Soochow University, Ching

Overview
»Our participating systems for the five frameworks can be characterized in the following aspects:
« Graph-Based. we directly predict edges among nodes, instead of using a transition system.
+ Joint Model. sharing the encoder component under the MTL framework and it is adopted by the DM, PSD, and UCCA models
+ BERT. using BERT as our extra inputs is effective for all the models, except AMR.

EDS
»convert into two subtasks: node prediction & edge prediction
»Node prediction: as sequence labeling task

+ Split nodes into two types: original node and append node
according to whether its label begin with "_"
+ Original nodes (yellow nodes): take coarse POS tag and
sense of each node as joint label, predict it for each word

+ Append nodes (purpose and pink nodes): predict begin
index, end index(anchor) and type for each node, like SRL
predicate and argument prediction correspondingly

Pension. Reserves

C—wa )
»Edge prediction:
« Use labels in edges to tag the relation between two nodes

Mdings

pension funds.

« compute the score of each candidate edge relation between
two nodes by the biaffine mechanism

SDP

» Graph-based SDP parser (Dozat and Manning. 2018)
+ One biaffine module to predict arcs between nodes
AAAAA
+ One biaffine module to predict relations between nodes
AAAAA
»MTL
« Train the tagger simultaneously with the parser

(oterpmicnee ) (Crrmmetogme ] (08 toes )

X

Main Reference
# Timothy Dozat and Christopher D. Manning. 2018 Simpler but more
accurate YeR¥3htic dependency parsing
# Zhixing Tan, Minaxuan Wang, Jun Xie, Yidong Chen, and Xiaodong Shi.
2018 eep AMIMICASIe label- inY Wil e Sttention. WA
» Wei Jiang, Zhenghua Li, Yu Zhang, and Min Zhang. 2019. Hit@suda at
semeval-2009YX(Ucca graph parsing as constituent XYY,

» Chunchuan Lyu and Ivan Titov. 2018. Amr parsing as graph prediction
ent. VWV
» Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanava
P

2018. BERT: g
language under- standing

ucca

» Graph-based UCCA parser (Jiang et al. 2019)
« Convert UCCA graphs to constituent trees
Stepl: remove remote edges
Step2: handle discontinuous structures
»Employ minimal-span based parser (Stern et al. 2017)
»Use biaffine structure and MTL for recovering remote edges

y
& Aaporna
P

After graduation ,  John  gave everything up. Bive everything Up

»Utilize BERT
« Extract fixed features from last four transformer layers

AMR

»Joint model alignments, concepts and relations (Lyu and Titov.
2018) NA

« The concept identification model chooses a concept
conditioned on the aligned word based on the BILSTM state.

+ The relation identification model employs a log-linear module
with bilinear scorer to compute the probabilities of each
concept pair.

« The alignment model is only used in training.

»Our work
« Convert the MRP AMR text to original AMR text.
* Generate the PoS and NER tagas with the NER taggers in the
white list. ™V 22047
Results on provided test data

oA P veen Ens
PR B PR B P R B PR

soo o W M s @ o«
- i T w e

o @ o |s s sn o % male w ass|n

»Our overall result on all five tasks ranks third, and our results
ranks first on EDS and second on UCCA.

CaNLL-2019 MRP shared task #14

INIVERSITY




UFAL-Oslo at MRP 2019:
Garage Sale Semantic Parsing

Kira Droganova,’ Andrey Kutuzov,
Nikita Mediankin' and Daniel Zeman'

fCharles University, Faculty of Mathematics and Physics, UFAL
HUniversity of Oslo, Faculty of Mathematics and Natural Sciences, Language
Technology Group

f{droganova|mediankin|zeman } @Qufal.mff.cuni.cz
tandreku@ifi.uio.no
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Garage Sale Semantic Parsing

Hao Peng, Sam Thomson, and Noah A. Smith. 2017. Deep multitask
learning for semantic dependency parsing. In Proceedings of the 55th
Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 2037-2048, Vancouver, Canada.
Association for Computational Linguistics.

Jeffrey Flanigan, Dyer Chris, Noah A. Smith, and Jaime Carbonell.
CMU at SemEval-2016 task 8: Graph-based AMR parsing with infinite
ramp loss. In Proceedings of the 10th International Workshop on
Semantic Evaluation (SemEval-2016), pp. 1202-1206. 2016.

e Houg Kong , 03.11.2019 24



Garage Sale Semantic Parsing

e create forward conversion scripts;

e create training/development splits;

e create/download all accompanying files;
e convert the data and train a model;

@ create backwards conversion scripts.

Y Hong Kong , 03.11.2019
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Garage Sale Semantic Parsing
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Peking at MRP 2019: Composition- and
Factorization-Based Parsing for Elementary
Dependency Structures

Yufei Chen, Yajie Ye and Weiwei Sun

Wangxuan Institute of Computer Technology
Peking University

November 3, 2019
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English Resource Semantics

(1) a. Every dog chases some white cats.
b. some(y,white(y) A cat(y), every(x, dog(x), chase(e, x,y)))

C. every(x,dog(x), some(y, white(y) A cat(y), chase(e, x,7)))

A compact graph-based representation of the two readings

@p e oo

RSTR/H ARG1/NEQ ARG2/NEQ RSTR/H

Variables (e, x and y) are implicitly patched to the predicates that
treat them as intrinsic variables (chase, dog and cat)

Elementary Dependency Structures Removing H, EQ, NEQ, etc.
PIFPE]

PEKING UNIVERSITY




String-to-graph parsing approaches

v

Factorization-based approach

v

Composition-based approach

v

Transition-based approach

v

Translation-based approach

Oy ez XY

PEKING UNIVERSITY




String-to-graph parsing approaches

v

Factorization-based approach

» Composition-based approach

v

Transition-based approach

v

Translation-based approach
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Factorization-based approach

Input

Tom wants to go.

Tom / wants

Tokenization

/to/go/.

Concept
Identification

proper_q
named _x_v_1
Tom wants

g *xwv
to go

%)

Output

proper_q(®3)

ARG2

/_\

_want_v_1(+9

_go_v_1(1319)
RN ﬁm

named (" Tom") (:3)

Relation

Detection
—

Property
Prediction
proper q ARG2
h _want_v_1
gov_1
BV ARG 1& ARG1
named
»
Je g K ¥

PEKING UNIVERSITY




Neural models

SCOREEDGE(pron + go_v_1)

IAFFINE

(0 @

. //,// Targmax T N
@+]/ 000 @00 @é
T

lencoder ~—|encoder *~—*|encoder}«—>|encoder|

S e

He wants to go
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Composition-based approach

—
_some_q —gov_1
BV
ARG2
_boymn_1 want v 1
= L
_some_q _boyn_1
0 *—>
Some boys want to

ez rF
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Thanks for your attention!
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Meaning Representation
Parsing Shared Task
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The MRP Shared Task — towards the 2"¢ ed. (2020)

Discussion about the MRP task 201952020

* Some possible discussion points

e Evaluation metric(s) — what to avoid? Improvements?
 One main metric (even if approximate)? Several “equal” metrics (~ several “winners”

* Extending the task

* More languages (within the same frameworks)?

* Additional frameworks?

e Same text across frameworks ([mostly] evaluation only)?
* Time schedule

* How much time needed for “ingesting” whitelisted resources?
* Or limit them to basics, like embeddings? Or not allow them at all?
* Any tools to whitelist/blacklist?

* Any general remarks?



