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10,000-Meter Perspective: Parsing into Semantic Graphs

A similar technique is almost impossible to apply to other crops.
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10,000-Meter Perspective: Parsing into Semantic Graphs
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10,000-Meter Perspective: Parsing into Semantic Graphs
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10,000-Meter Perspective: Parsing into Semantic Graphs
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Why Graph-Based Meaning Representation?

I saw Joe’s dog, which was running in the garden.
The dog was chasing a cat.
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Joe’s dog was chasing a cat in the garden.

surface realisation

Hardy & Vlachos (2018): 2+ ROUGE points over strong encoder–decoder.

3



Why Graph-Based Meaning Representation?

I saw Joe’s dog, which was running in the garden.
The dog was chasing a cat.

see-01

I dog

joe run-02

garden

ARG0 ARG1

poss ARG0

location

chase-01

dog cat

ARG0 ARG1

semantic parsing

see-01

I dog

joe run-02

garden

chase-01

cat

ARG0 ARG1

poss ARG0

location

ARG0 ARG1

merge

chase-01

dog catgarden

joe

ARG0 ARG1location

poss

summarize

Joe’s dog was chasing a cat in the garden.

surface realisation

Hardy & Vlachos (2018): 2+ ROUGE points over strong encoder–decoder.

3



Why Graph-Based Meaning Representation?

I saw Joe’s dog, which was running in the garden.
The dog was chasing a cat.

see-01

I dog

joe run-02

garden

ARG0 ARG1

poss ARG0

location

chase-01

dog cat

ARG0 ARG1

semantic parsing

see-01

I dog

joe run-02

garden

chase-01

cat

ARG0 ARG1

poss ARG0

location

ARG0 ARG1

merge

chase-01

dog catgarden

joe

ARG0 ARG1location

poss

summarize

Joe’s dog was chasing a cat in the garden.

surface realisation

Hardy & Vlachos (2018): 2+ ROUGE points over strong encoder–decoder.

3



Why Graph-Based Meaning Representation?

I saw Joe’s dog, which was running in the garden.
The dog was chasing a cat.

see-01

I dog

joe run-02

garden

ARG0 ARG1

poss ARG0

location

chase-01

dog cat

ARG0 ARG1

semantic parsing

see-01

I dog

joe run-02

garden

chase-01

cat

ARG0 ARG1

poss ARG0

location

ARG0 ARG1

merge

chase-01

dog catgarden

joe

ARG0 ARG1location

poss

summarize

Joe’s dog was chasing a cat in the garden.

surface realisation

Hardy & Vlachos (2018): 2+ ROUGE points over strong encoder–decoder.

3



Why Graph-Based Meaning Representation?

I saw Joe’s dog, which was running in the garden.
The dog was chasing a cat.

see-01

I dog

joe run-02

garden

ARG0 ARG1

poss ARG0

location

chase-01

dog cat

ARG0 ARG1

semantic parsing

see-01

I dog

joe run-02

garden

chase-01

cat

ARG0 ARG1

poss ARG0

location

ARG0 ARG1

merge

chase-01

dog catgarden

joe

ARG0 ARG1location

poss

summarize

Joe’s dog was chasing a cat in the garden.

surface realisation

Hardy & Vlachos (2018): 2+ ROUGE points over strong encoder–decoder.

3



Why Graph-Based Meaning Representation?

I saw Joe’s dog, which was running in the garden.
The dog was chasing a cat.

see-01

I dog

joe run-02

garden

ARG0 ARG1

poss ARG0

location

chase-01

dog cat

ARG0 ARG1

semantic parsing

see-01

I dog

joe run-02

garden

chase-01

cat

ARG0 ARG1

poss ARG0

location

ARG0 ARG1

merge

chase-01

dog catgarden

joe

ARG0 ARG1location

poss

summarize

Joe’s dog was chasing a cat in the garden.

surface realisation

Hardy & Vlachos (2018): 2+ ROUGE points over strong encoder–decoder.
3



Syntactic Trees vs. Semantic Graphs

A similar technique is almost impossible to apply to other crops .
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A similar technique is almost impossible to apply to other crops .
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ARG2 ARG3
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∃x : technique’(x) ∧ similar’(x), ∃y : crop’(y) ∧ other’(y)
→ almost’(¬possible’(apply’( , x, y)))

Different Desiderata and Levels of Abstraction
I Grammaticality (e.g. subject–verb agreement) vs. relational structure.

4



Syntactic Trees vs. Semantic Graphs

A similar technique is almost impossible to apply to other crops .

root

nmod
nmod sbj amod

prd
amod im adv nmod

pmod

p

A similar technique is almost impossible to apply to other crops .

top
ARG2 ARG3

ARG1ARG1
BV

ARG1 ARG1

∃x : technique’(x) ∧ similar’(x),∃y : crop’(y) ∧ other’(y)
→ almost’(¬possible’(apply’( , x, y)))

Different Desiderata and Levels of Abstraction
I Grammaticality (e.g. subject–verb agreement) vs. relational structure.

4



Syntactic Trees vs. Semantic Graphs

A similar technique is almost impossible to apply to other crops .

root

nmod
nmod sbj amod

prd
amod im adv nmod

pmod

p

A similar technique is almost impossible to apply to other crops .

top
ARG2 ARG3

ARG1ARG1
BV

ARG1 ARG1

∃x : technique’(x) ∧ similar’(x), ∃y : crop’(y) ∧ other’(y)
→ almost’(¬possible’(apply’( , x, y)))

Different Desiderata and Levels of Abstraction
I Grammaticality (e.g. subject–verb agreement) vs. relational structure.

4



Syntactic Trees vs. Semantic Graphs

A similar technique is almost impossible to apply to other crops .

root

nmod
nmod sbj amod

prd
amod im adv nmod

pmod

p

A similar technique is almost impossible to apply to other crops .

top
ARG2 ARG3

ARG1ARG1
BV

ARG1 ARG1

∃x : technique’(x) ∧ similar’(x), ∃y : crop’(y) ∧ other’(y)
→ almost’(¬possible’(apply’( , x, y)))

Different Desiderata and Levels of Abstraction
I Grammaticality (e.g. subject–verb agreement) vs. relational structure.

4



Syntactic Trees vs. Semantic Graphs

A similar technique is almost impossible to apply to other crops .

root

nmod
nmod sbj amod

prd
amod im adv nmod

pmod

p

A similar technique is almost impossible to apply to other crops .

top
ARG2 ARG3

ARG1ARG1
BV

ARG1 ARG1

∃x : technique’(x) ∧ similar’(x), ∃y : crop’(y) ∧ other’(y)
→ almost’(¬possible’(apply’( , x, y)))

Different Desiderata and Levels of Abstraction
I Grammaticality (e.g. subject–verb agreement) vs. relational structure.

4



Syntactic Trees vs. Semantic Graphs

A similar technique is almost impossible to apply to other crops .

root

nmod
nmod sbj amod

prd
amod im adv nmod

pmod

p

A similar technique is almost impossible to apply to other crops .

top
ARG2 ARG3

ARG1ARG1
BV

ARG1 ARG1

∃x : technique’(x) ∧ similar’(x), ∃y : crop’(y) ∧ other’(y)
→ almost’(¬possible’(apply’( , x, y)))

Different Desiderata and Levels of Abstraction
I Grammaticality (e.g. subject–verb agreement) vs. relational structure.

4



Syntactic Trees vs. Semantic Graphs

A similar technique is almost impossible to apply to other crops .

root

nmod
nmod sbj amod

prd
amod im adv nmod

pmod

p

A similar technique is almost impossible to apply to other crops .

top
ARG2 ARG3

ARG1ARG1
BV

ARG1 ARG1

∃x : technique’(x) ∧ similar’(x), ∃y : crop’(y) ∧ other’(y)
→ almost’(¬possible’(apply’( , x, y)))

Different Desiderata and Levels of Abstraction
I Grammaticality (e.g. subject–verb agreement) vs. relational structure.

4



Semi-Formally: Trees vs. Graphs

Structural Wellformedness Conditions on Trees
I Unique root, connected, single parent, free of cycles; maybe: projective;
→ all nodes (but the root) reachable by unique directed path from root.

A similar technique is almost impossible to apply to other crops .

top
ARG2 ARG3

ARG1ARG1
BV

ARG1 ARG1

Beyond Trees: General Graphs
I Argument sharing: nodes with multiple incoming edges (in-degree > 1);
I some surface tokens do not contribute (as nodes; many function words);
I (structurally) multi-rooted: more than one node with zero in-degree;
→ massive growth in modeling and algorithmic complexity (NP-complete).
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High-Level Goals of the Shared Task

Cross-Framework Comparability and Interoperability
I Vast, complex landscape of representing natural language meaning;

I diverse linguistic traditions, modeling assumptions, levels of ambition;

→ clarify concepts and terminology; unify representations and evaluation.

Parsing into Graph-Structured Representations
I Cottage industry of parsers with output structures beyond rooted trees;

I distinct techniques, e.g. based on transitions, composition, ‘translation’;

I much framework-internal evolution: design reflects specific assumptions;

→ evaluate across frameworks; learning from complementary knowledge.

Learning from Complementary Knowledge
I Cross-Framework Perspective: Seek commonality and complementarity.
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Graph Theory 101

G = 〈N, E, T 〉
I G is a directed graph: N is set of nodes; E ⊆ N ×N is set of edges;
I T ⊆ N is possibly empty set of top node(s): the ‘main’ predicate(s);

I in- and out-degree of n ∈ N count edges to and from n; in = 0: root;
I top in Abrams arrived quickly. is arrive, but can be argument of quick;
I semantic graphs often multi-rooted: rootness just a structural property;
I a node n is reentrant if in(n) > 1 (shared argument across predicates);
I cycles can occur: directed path from m to n and (‘back’) from n to m;
I G is connected if there is an undirected path between all pairs of nodes;
I G is a tree if |T | = 1 and there is a unique path to all other nodes.
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Anchoring in the Surface String

Relating Pieces of Meaning to the Linguistic Signal
I Intuitively, sub-structures of meaning relate to sub-parts of the input;
I semantic frameworks vary in how much weight to put on this relation;

I anchoring of graph elements in sub-strings of the underlying utterance;
I can be part of semantic annotations or not; can take different forms;
I hierarchy of anchoring types: Flavor (0)–(2); bilexical graphs strictest;
I anchoring central in parsing, explicit or latent; aka ‘alignment’ for AMR;
I relevant to at least some downstream tasks; should impact evaluation.

Flavor Name Example Type of Anchoring

(0) bilexical DM, PSD nodes are sub-set of surface tokens
(1) anchored EDS, UCCA free node–sub-string correspondences
(2) unanchored AMR no explicit sub-string correspondences
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A Selection of Semantic Graphbanks

Selection Criteria
I ‘Full-sentence’ semantics: all content-bearing units receive annotations;

I natively graph-based: meaning representation through (directed) graphs;

I large-scale, gold-standard annotations and parsers are publicly available;

→ five distinct frameworks, bi-lexical to unanchored; sadly, English only.

(With Apologies to) Non-Graph or Non-Meaning Banks
I PropBank (Palmer et al., 2005), Framenet (Baker et al., 1998), . . . ;

I Groningen Parallel Meaning Bank: GMB, PMB (Basile et al., 2012);

I Universal Decompositional Semantics (White et al., 2016);

I Enhanced Universal Dependencies (Schuster & Manning, 2016);

I . . .
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Arguably Basicest: Bi-lexical Semantic Dependencies

I Two decades of great advances in syntactic dependencies and parsing;
I recently, renewed interest in meaning; algorithmic interest in graphs;

I nodes limited to surface lexical units (words):

I edges encode argument roles and maybe some construction semantics;
I limited expressivity, e.g. no lexical decomposition, no covert meaning.

A similar technique is almost impossible to apply to other crops.

• • • • • • • •
a similar technique almost impossible apply other crop
DT JJ NN RB JJ VB JJ NNS
q a_to n a a_for v_to a n

top

BV
ARG1 ARG1 ARG1

ARG2 ARG3
ARG1
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(0) Two Bi-Lexical Frameworks: DM & PSD

DM: DELPH-IN MRS Bi-Lexical Dependencies (Ivanova et al., 2012)
I Simplification from underspecified logical forms (ERS; coming later);

a similar technique almost impossible apply other crop

top

BV

ARG1 ARG1 ARG1

ARG2 ARG3

ARG1

PSD: Prague Semantic Dependencies (Hajič et al., 2012)
I Simplification from FGD tectogrammatical trees (Sgall et al., 1986).

similar technique be almost impossible apply other crop

RSTR

top

ACT

PAT

EXT

ADDR

PAT

RSTR
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(1) Elementary Dependency Structures (EDS)

Break Free of Bi-Lexical Limitations (Oepen & Lønning, 2006)
I Decomposition or construction meaning; anchors: arbitrary sub-strings.

_almost_a_1
〈23:29〉

_impossible_a_for
〈30:40〉

ARG1

_a_q
〈0:1〉

_technique_n_1
〈10:19〉

BV

_similar_a_to
〈2:9〉

ARG1

comp
〈2:9〉

ARG1

_apply_v_to
〈44:49〉

ARG1

ARG2

_crop_n_1
〈59:65〉

ARG3

udef_q
〈53:100〉

BV

_other_a_1
〈53:58〉

ARG1

A similar technique is almost impossible to apply to other crops.
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(1) Universal Conceptual Cognitive Annotation (UCCA)

Multi-Layered Design (Abend & Rappoport, 2013); Foundational Layer
I Tree backbone: semantic ‘constituents’ are scenes (‘clauses’) and units;

I scenes (Process or State): pArticipants and aDverbials (plus F and U);
I complex units distinguish Center and Elaborator(s); allow remote edges.

〈0:1〉

〈2:9〉

S

〈10:19〉

A

F E

C

〈20:22〉

〈23:29〉 〈30:40〉

E C

〈41:43〉 〈44:49〉

〈50:52〉 〈53:58〉 〈59:65〉

R E C

A F D F P A

〈65:66〉

U

A similar technique is almost impossible to apply to other crops.
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(2) Abstract Meaning Representation (AMR)

possible-01
polarity -

almost

mod (domain)

apply-02

ARG1

technique

ARG1

crop

ARG2

resemble-01

(ARG1)-of

other

mod (domain)

Banarescu et al. (2013)

I Abstractly (if not linguistically)
similar to EDS, but unanchored;

I verbal senses from PropBank++;

I negation as node-local property;

I tree-like annotation: inversed
edges normalized for evaluation;

I originally designed for (S)MT;
various NLU applications to date.

A similar technique is almost impossible to apply to other crops.
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Training and Evaluation Data in the Shared Task

DM PSD EDS UCCA AMR

Flavor 0 0 1 1 2

tr
ai

n Text Type newspaper newspaper newspaper mixed mixed
Sentences 35,656 35,656 35,656 6,572 56,240
Tokens 802,717 802,717 802,717 138,268 1,000,217

te
st

Text Type mixed mixed mixed mixed mixed
Sentences 3,359 3,359 3,359 1,131 1,998
Tokens 64,853 64,853 64,853 21,647 39,520

I DM, PSD, and ESD annotate the same text (Sections 00–20 of WSJ);
I UCCA: samples of EWT & Wikipedia; AMR: twelve different sources;

I linguistics: 100-item WSJ sample in all frameworks publicly available;
I evaluation: subset of 100 sentences from The Little Prince is public.
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Graphbank Statistics (Kuhlmann & Oepen, 2016)

DM PSD EDS UCCA AMR−1

co
un

ts

(01) number of graphs 35,656 35,656 35,656 6,572 56,240
(01) number of tokens 802,717 802,717 802,717 138,268 1,000,217
(02) average number of tokens 22.51 22.51 22.51 21.03 17,78
(03) average nodes per token 0.77 0.64 1.29 1.37 0.65
(04) number of edge labels 59 90 10 15 101

tr
ee

ne
ss

(05) %g trees 2.31 42.26 0.09 34.83 22.24
(06) %g treewidth one 69.82 43.08 68.99 41.57 50.00
(07) average treewidth 1.30 1.61 1.31 1.61 1.56
(08) maximal treewidth 3 7 3 4 5
(09) average edge density 1.019 1.073 1.015 1.053 1.092
(10) %n reentrant 27.43 11.41 32.78 4.98 19.89
(11) %g cyclic 0.00 0.00 0.12 0.00 0.38
(12) %g not connected 6.57 0.70 1.74 0.00 0.00
(13) %g multi-rooted 97.47 40.60 99.93 0.00 71.37
(14) percentage non-top roots 44.94 4.34 54.85 0.00 20.09

or
de

r (15) average edge length 2.684 3.320 – – –
(16) %g noncrossing 69.21 64.61 – – –
(17) %g pagenumber two 99.59 98.08 – – –
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Cross-Framework Evaluation: MRP Graph Similarity

I Break down graphs into types of information: per-type and overall F1;

I

I requires node–node correspondences; search for overall maximum score;
I maximum common edge subgraph isomorphism (MCES) is NP-hard;
→ smart initialization, scheduling, and pruning yield strong approximation.

_retire_v_1
〈7:14〉

named
CARG Pierre

〈0:6〉

ARG1

proper_q
〈0:6〉

BV

Pierre retired.

Different Types of Semantic Graph ‘Atoms’

DM PSD EDS UCCA AMR

Top Nodes 3 3 3 3 3

Labeled Edges 3 3 3 3 3

Node Labels 3 3 3 7 3

Node Properties 3 3 3 7 3

Node Anchoring 3 3 3 3 7

Edge Attributes 7 7 7 3 7
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Edge Attributes 7 7 7 3 7
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High-Level Overview of Submissions

Teams DM PSD EDS UCCA AMR MTL Approach

ERG∦§† 3 7 3 7 7 7 Composition
TUPA§† 3 3 3 3 3 7/3 Transition

HIT-SCIR 3 3 3 3 3 7 Transition
SJTU–NICT 3 3 3 3 3 7 Factorization
SUDA–Alibaba 3 3 3 3 3 (3) Factorization
Saarland 3 3 3 3 3 7 Composition
Hitachi 3 3 3 3 3 (3) Factorization
ÚFAL MRPipe 3 3 3 3 3 7 Transition
ShanghaiTech 3 3 3 7 3 7 Factorization
Amazon 3 3 7 7 3 7 Factorization
JBNU 3 3 7 3 7 7 Factorization
SJTU 3 3 3 3 3 3 Transition
ÚFAL–Oslo 3 3 3 3 3 7 Transition
HKUST 3 3 7 3 7 ?
Bocharov 7 7 7 7 3 ?

Peking∦ 3 3 3 3 7 7 Factorization
CUHK§ 3 3 3 3 3 3 Transition
Anonymous§ 7 3 7 7 7 ?
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Score Distributions

Overall DM PSD EDS UCCA AMR
0

0.2

0.4

0.6

0.8

1 Composition
Factorization
Transition

?
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Composition-Based Approaches

Overall DM PSD EDS UCCA AMR
0

0.2

0.4

0.6

0.8

1

I Explicitly modeling the derivation process.
I A parser evaluates a derivation licensed by a symbolic system.
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Factorization-Based Approaches

Overall DM PSD EDS UCCA AMR
0

0.2

0.4

0.6

0.8

1

I Inspired by graph-based dependency parsers.
I Explicitly modeling the target structure.
I A parser evaluates factors of a candidate graph.
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Transition-Based Approaches

Overall DM PSD EDS UCCA AMR
0

0.2

0.4

0.6

0.8

1

I Inspired by transition-based dependency parsers.
I Incremental (left-to-right, word-by-word).
I Partial parse constrains subsequent actions.
I Greedy/beam search to get a parse.

22



Score Distributions: Zoom In

Overall DM PSD EDS UCCA AMR
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Official Leaderboard: All Evaluation Data

Overall DM PSD EDS UCCA AMR
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Leaderboard: LPPS Subset of Evaluation Data

Overall DM PSD EDS UCCA AMR
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State of the Art
Submissions from established top-performing teams:
I ShanghaiTech (DM, PSD)
I Peking (EDS)
I SUDA–Alibaba (UCCA)
I Saarland (AMR)
Outperformed in most cases!
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Limiting Factors in Comparison to State of the Art

I New cross-framework metric: MRP

I Different task definition (DM, PSD: nodes, not just edges)
I Different evaluation set (EDS: not just WSJ)
I Different normalization (AMR: inverted edges)
I Revised and extended annotation (UCCA, AMR)
I No gold tokenization (or tags or lemmas)!
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Interim Conclusions & Outlook

Lessons Learned
I Great community interest: 160 subscribers; 38 data licenses (via LDC);

I task complexity is technical barrier to entry: 16+ 2 teams submitted;

→ advanced state of the art on four frameworks (but possibly not AMR);

→ greatly increased cross-framework uniformity; but limited MTL so far.

Outlook: Toward MRP 2020
I Invitation from SIGNLL to re-run (a follow-up variant) at CoNLL 2020;

? add Discourse Representation Graphs; maybe a few other languages;

? increased focus on evaluation metrics: score ‘larger pieces’; SEMBLEU;

→ open discussion with 2019 participants towards the end of this session.
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Transition-Based UCCA Parser
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Scarcity of Training Data
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Multi-Task Parser
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MRP

Intermediate graph representation,
extended transition system.
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Transition Classifier

BiLSTM + BERT (Devlin et al., 2019).
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Results

Baseline: single-task + multi-task.

Overall DM PSD EDS UCCA AMR
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Background: English Resource Semantics (ERS)

LinGO English Resource Grammar (Flickinger, 2000; Flickinger et al., 2017)
I Hand-designed computational grammar for English in HPSG framework;
I declarative, unification-based: parsing and realization; multiple engines;
I 25+ person years; coverage of 85–95% of running text across domains;

I underspecified meaning representation in MRS (Copestake et al., 2005).

LinGO Redwoods Treebank (Carter, 1997; Oepen et al., 2004)
I Grammar-based annotation: select ‘correct’ reading from parse forest;
I version 1214: some 85,000 annotated sentences, six+ different domains;
I Bender et al. (2015) report inter-annotator agreement of 0.94 EDMna;
I EDS: graph-based simplification of ERS; DM: its bi-lexical ‘reduction’;

PET Unification-Based Parser (Callmeier, 2002)
I Highly optimized chart parser; (exact) n-best MaxEnt parse selection.
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I Grammar-based annotation: select ‘correct’ reading from parse forest;
I version 1214: some 85,000 annotated sentences, six+ different domains;
I Bender et al. (2015) report inter-annotator agreement of 0.94 EDMna;
I EDS: graph-based simplification of ERS; DM: its bi-lexical ‘reduction’;

PET Unification-Based Parser (Callmeier, 2002)
I Highly optimized chart parser; (exact) n-best MaxEnt parse selection.
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EDSs are ‘Radically Compositional’

named
CARG Pierre

named
CARG Vinken

compound

ARG2 ARG1

Pierre Vinken

Named Entities
I Underspecified structure in names;
I few, lexically determined sub-types.

Michelle and Barack Obama

dofw
CARG Monday

_on_p_temp

ARG2
ARG1

on Monday

Prepositions (and Similar)
I Predicates: distinct two-place relation;
I specialized sub-senses as appropriate.

before and during the meeting

card
CARG 30

card
CARG 2

plusARG1

ARG2 ARG3

thirty-two

Literal Numbers
I syntax yields arithmetic expressions;
I trivial ‘downstream’ normalization.

ten to twenty thousand
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Comparison to Top-Performing Data-Driven Parsers

Tops Labels Properties Anchors Edges

P R F1 P R F1 P R F1 P R F1 P R F1

ERG .92 .92 .918 .99 .99 .987 .96 .96 .956 .99 .99 .994 .91 .91 .912

SJTU–NICT .93 .93 .933 .95 .95 .949 .96 .95 .955 .99 .99 .993 .93 .92 .924

D
M HIT-SCIR .93 .93 .926 .93 .93 .930 .95 .95 .953 .99 .99 .993 .93 .92 .925

SUDA–Alibaba .91 .91 .911 .90 .91 .903 .91 .92 .915 .97 .99 .982 .89 .91 .898

Peking .93 .93 .927 .92 .91 .915 .95 .94 .945 .99 .99 .991 .92 .92 .924

ERG .90 .90 .902 .97 .96 .965 .96 .96 .960 .96 .96 .963 .93 .93 .929

SUDA–Alibaba .90 .90 .899 .91 .91 .912 .89 .91 .897 .95 .95 .949 .90 .90 .897

ED
S HIT-SCIR .88 .82 .852 .90 .89 .894 .89 .91 .895 .95 .94 .943 .89 .88 .888

SJTU–NICT .91 .85 .877 .93 .86 .894 .79 .76 .775 .97 .90 .934 .95 .82 .878

Peking .83 .83 .829 .95 .94 .946 .91 .96 .936 .96 .96 .961 .94 .93 .933

4

graphics/acl



Comparison to Top-Performing Data-Driven Parsers

Tops Labels Properties Anchors Edges

P R F1 P R F1 P R F1 P R F1 P R F1

ERG .92 .92 .918 .99 .99 .987 .96 .96 .956 .99 .99 .994 .91 .91 .912

SJTU–NICT .93 .93 .933 .95 .95 .949 .96 .95 .955 .99 .99 .993 .93 .92 .924

D
M HIT-SCIR .93 .93 .926 .93 .93 .930 .95 .95 .953 .99 .99 .993 .93 .92 .925

SUDA–Alibaba .91 .91 .911 .90 .91 .903 .91 .92 .915 .97 .99 .982 .89 .91 .898

Peking .93 .93 .927 .92 .91 .915 .95 .94 .945 .99 .99 .991 .92 .92 .924

ERG .90 .90 .902 .97 .96 .965 .96 .96 .960 .96 .96 .963 .93 .93 .929

SUDA–Alibaba .90 .90 .899 .91 .91 .912 .89 .91 .897 .95 .95 .949 .90 .90 .897

ED
S HIT-SCIR .88 .82 .852 .90 .89 .894 .89 .91 .895 .95 .94 .943 .89 .88 .888

SJTU–NICT .91 .85 .877 .93 .86 .894 .79 .76 .775 .97 .90 .934 .95 .82 .878

Peking .83 .83 .829 .95 .94 .946 .91 .96 .936 .96 .96 .961 .94 .93 .933

4

graphics/acl



Comparison to Top-Performing Data-Driven Parsers

Tops Labels Properties Anchors Edges

P R F1 P R F1 P R F1 P R F1 P R F1

ERG .92 .92 .918 .99 .99 .987 .96 .96 .956 .99 .99 .994 .91 .91 .912

SJTU–NICT .93 .93 .933 .95 .95 .949 .96 .95 .955 .99 .99 .993 .93 .92 .924

D
M HIT-SCIR .93 .93 .926 .93 .93 .930 .95 .95 .953 .99 .99 .993 .93 .92 .925

SUDA–Alibaba .91 .91 .911 .90 .91 .903 .91 .92 .915 .97 .99 .982 .89 .91 .898

Peking .93 .93 .927 .92 .91 .915 .95 .94 .945 .99 .99 .991 .92 .92 .924

ERG .90 .90 .902 .97 .96 .965 .96 .96 .960 .96 .96 .963 .93 .93 .929

SUDA–Alibaba .90 .90 .899 .91 .91 .912 .89 .91 .897 .95 .95 .949 .90 .90 .897

ED
S HIT-SCIR .88 .82 .852 .90 .89 .894 .89 .91 .895 .95 .94 .943 .89 .88 .888

SJTU–NICT .91 .85 .877 .93 .86 .894 .79 .76 .775 .97 .90 .934 .95 .82 .878

Peking .83 .83 .829 .95 .94 .946 .91 .96 .936 .96 .96 .961 .94 .93 .933

4

graphics/acl



Comparison to Top-Performing Data-Driven Parsers

Tops Labels Properties Anchors Edges

P R F1 P R F1 P R F1 P R F1 P R F1

ERG .92 .92 .918 .99 .99 .987 .96 .96 .956 .99 .99 .994 .91 .91 .912

SJTU–NICT .93 .93 .933 .95 .95 .949 .96 .95 .955 .99 .99 .993 .93 .92 .924

D
M HIT-SCIR .93 .93 .926 .93 .93 .930 .95 .95 .953 .99 .99 .993 .93 .92 .925

SUDA–Alibaba .91 .91 .911 .90 .91 .903 .91 .92 .915 .97 .99 .982 .89 .91 .898

Peking .93 .93 .927 .92 .91 .915 .95 .94 .945 .99 .99 .991 .92 .92 .924

ERG .90 .90 .902 .97 .96 .965 .96 .96 .960 .96 .96 .963 .93 .93 .929

SUDA–Alibaba .90 .90 .899 .91 .91 .912 .89 .91 .897 .95 .95 .949 .90 .90 .897

ED
S HIT-SCIR .88 .82 .852 .90 .89 .894 .89 .91 .895 .95 .94 .943 .89 .88 .888

SJTU–NICT .91 .85 .877 .93 .86 .894 .79 .76 .775 .97 .90 .934 .95 .82 .878

Peking .83 .83 .829 .95 .94 .946 .91 .96 .936 .96 .96 .961 .94 .93 .933

4

graphics/acl



Comparison to Top-Performing Data-Driven Parsers

Tops Labels Properties Anchors Edges

P R F1 P R F1 P R F1 P R F1 P R F1

ERG .92 .92 .918 .99 .99 .987 .96 .96 .956 .99 .99 .994 .91 .91 .912

SJTU–NICT .93 .93 .933 .95 .95 .949 .96 .95 .955 .99 .99 .993 .93 .92 .924

D
M HIT-SCIR .93 .93 .926 .93 .93 .930 .95 .95 .953 .99 .99 .993 .93 .92 .925

SUDA–Alibaba .91 .91 .911 .90 .91 .903 .91 .92 .915 .97 .99 .982 .89 .91 .898

Peking .93 .93 .927 .92 .91 .915 .95 .94 .945 .99 .99 .991 .92 .92 .924

ERG .90 .90 .902 .97 .96 .965 .96 .96 .960 .96 .96 .963 .93 .93 .929

SUDA–Alibaba .90 .90 .899 .91 .91 .912 .89 .91 .897 .95 .95 .949 .90 .90 .897

ED
S HIT-SCIR .88 .82 .852 .90 .89 .894 .89 .91 .895 .95 .94 .943 .89 .88 .888

SJTU–NICT .91 .85 .877 .93 .86 .894 .79 .76 .775 .97 .90 .934 .95 .82 .878

Peking .83 .83 .829 .95 .94 .946 .91 .96 .936 .96 .96 .961 .94 .93 .933

4

graphics/acl



Background: English Resource Semantics On-Line

http://erg.delph-in.net/
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SJTU-NICT at MRP 2019: Multi-Task Learning for End-to-End Uniform
Semantic Graph Parsing

Zuchao Li1,2,3, Hai Zhao1,2,3,∗, Zhuosheng Zhang1,2,3,
Rui Wang4,∗, Masao Utiyama4, and Eiichiro Sumita4

1Department of Computer Science and Engineering, Shanghai Jiao Tong University (SJTU)
2Key Laboratory of Shanghai Education Commission for Intelligent Interaction

and Cognitive Engineering, Shanghai Jiao Tong University, Shanghai, China
3MoE Key Lab of Artificial Intelligence, AI Institude, Shanghai Jiao Tong University, China
4National Institute of Information and Communications Technology (NICT), Kyoto, Japan

Abstract

This paper describes our SJTU-NICT’s system
for participating in the shared task on Cross-
Framework Meaning Representation Parsing
(MRP) at the 2019 Conference for Compu-
tational Language Learning (CoNLL). Our
system uses a graph-based approach to model
a variety of semantic graph parsing tasks. Our
main contributions in the submitted system
are summarized as follows: 1. Our model
is fully end-to-end and is capable of being
trained only on the given training set which
does not rely on any other extra training source
including the companion data provided by the
organizer; 2. We extend our graph pruning
algorithm to a variety of semantic graphs,
solving the problem of excessive semantic
graph search space; 3. We introduce multi-
task learning for multiple objectives within the
same framework. The evaluation results show
that our system achieved second place in the
overall F1 score and achieved the best F1 score
on the DM framework.

1 Introduction

In recent years, the semantic graph parsing has
received a lot of attention from researchers.

∗ Corresponding authors. †This work was conductd
when Zuchao Li and Zhuosheng Zhang visited NICT
as internship students. Email: charlee@sjtu.edu.cn,
zhaohai@cs.sjtu.edu.cn, zhangzs@sjtu.edu.cn, {wangrui,
mutiyama, eiichiro.sumita}@nict.go.jp. This paper was par-
tially supported by National Key Research and Development
Program of China (No. 2017YFB0304100) and Key Projects
of National Natural Science Foundation of China (U1836222
and 61733011). This work was partially conducted under
the program “Research and Development of Enhanced
Multilingual and Multipurpose Speech Translation Systems”
of the Ministry of Internal Affairs and Communications
(MIC), Japan. Masao Utiyama is partly supported by
JSPS KAKENHI Grant Number 19H05660. Rui Wang
was partially supported by JSPS grant-in-aid for early-career
scientists (19K20354): “Unsupervised Neural Machine
Translation in Universal Scenarios” and NICT tenure-
track researcher startup fund “Toward Intelligent Machine
Translation”.

However, due to the variety of semantic graph
flavors, the framework-specific “balkanization”
of semantic parsing is worth noting. The
2019 Conference on Computational Language
Learning (CoNLL) hosts a shared task on
Cross-Framework Meaning Representation Pars-
ing (MRP 2019) (Oepen et al., 2019). From
the perspective of the formal representation of
semantic graphs, MRP 2019 uses the directed
graphs to unify the five different semantic
representation frameworks: DELPH-IN MRS Bi-
Lexical Dependencies (DM), Prague Semantic
Dependencies (PSD), Elementary Dependency
Structures (EDS), Universal Conceptual Cognitive
Annotation (UCCA), and Abstract Meaning
Representation (AMR). Wherein, the directed
graph is represented by a 〈T ,N , E〉 triplet, N
represents a set of nodes that constitutes the
semantic graph, E ⊆ N × N represents a
set of edges that express a specific semantic
relationship (N , E contains a specific attribute
corresponding to the semantic framework), and
T represents nodes with a degree of zero in N ,
usually corresponding to the most central semantic
entity.

Though the semantic graph parsing task is
uniformly modeled into a directed graph gener-
ation task, according to the relationship between
nodes in the directed graph and the surface lexical
units in the sentence, the five semantic graph
frameworks can be divided into three different
categories according to the alignment degree
between graph nodes and lexical semantics: (1)
graph nodes and surface lexical units anchor
correspondence strictly (i.e., DM, PSD, EDS),
(2) partial graph nodes and surface lexical units
anchor correspondence strictly (i.e., UCCA), and
(3) graph nodes and surface lexical units have
no anchor correspondence (i.e., AMR). As there
is a case of anchoring multiple nodes in the

1
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ShanghaiTech at MRP 2019: Sequence-to-Graph Transduction with
Second-Order Edge Inference for Cross-Framework Meaning

Representation Parsing

Xinyu Wang, Yixian Liu, Zixia Jia, Chengyue Jiang, Kewei Tu
School of Information Science and Technology,

ShanghaiTech University, Shanghai, China
{wangxy1,liuyx,jiazx,jiangchy,tukw}@shanghaitech.edu.cn

Abstract

This paper presents the system used in
our submission to the CoNLL 2019 shared
task: Cross-Framework Meaning Representa-
tion Parsing. Our system is a graph-based
parser which combines an extended pointer-
generator network that generates nodes and
a second-order mean field variational infer-
ence module that predicts edges. Our sys-
tem achieved 1st and 2nd place for the DM
and PSD frameworks respectively on the in-
framework ranks and achieved 3rd place for the
DM framework on the cross-framework ranks.

1 Introduction

The goal of the Cross-Framework Meaning Rep-
resentation Parsing (MRP 2019, Oepen et al.
(2019)) is learning to parse text to multiple for-
mats of meaning representation with a uniform
parsing system. The task combines five different
frameworks of graph-based meaning representa-
tion. DELPH-IN MRS Bi-Lexical Dependencies
(DM) (Ivanova et al., 2012) and Prague Seman-
tic Dependencies (PSD) (Hajič et al., 2012; Miyao
et al., 2014) first appeared in SemEval 2014 and
2015 shared task Semantic Dependency Parsing
(SDP) (Oepen et al., 2014, 2015). Elementary De-
pendency Structures (EDS) (Oepen and Lønning,
2006) is the origin of DM Bi-Lexical Dependen-
cies, which encodes English Resource Semantics
(Flickinger et al., 2016) in a variable-free semantic
dependency graph. Universal Conceptual Cogni-
tive Annotation (UCCA) (Abend and Rappoport,
2013) targets a level of semantic granularity that
abstracts away from syntactic paraphrases. Ab-
stract Meaning Representation (AMR) (Banarescu
et al., 2013) targets to abstract away from syn-
tactic representations, which means that sentences
have similar meaning should be assigned the same
AMR graph. One of the main differences be-

tween these frameworks is their level of abstrac-
tion from the sentence. SDP is a bi-lexical depen-
dency graph, where graph nodes correspond to to-
kens in the sentence. EDS and UCCA are general
forms of anchored semantic graphs, in which the
nodes are anchored to arbitrary spans of the sen-
tence and the spans can have overlaps. AMR is
an unanchored graph, which does not consider the
correspondence between nodes and the sentence
tokens. The shared task also provides a cross-
framework metric which evaluates the similarity
of graph components in all frameworks.

Previous work mostly focused on developing
parsers that support only one or two frameworks
while few work has explored cross-framework se-
mantic parsing. Peng et al. (2017), Stanovsky
and Dagan (2018) and Kurita and Søgaard (2019)
proposed methods learning jointly on the three
frameworks of SDP and Peng et al. (2018) fur-
ther proposed to learn from different corpora. Her-
shcovich et al. (2018) converted UCCA, AMR,
DM and UD (Universal Dependencies) into a uni-
fied DAG format and proposed a transition-based
method for UCCA parsing.

In this paper, we present our system for MRP
2019. Our system is a graph-based method which
combines an extended pointer-generator network
introduced by Zhang et al. (2019) to generate
nodes for EDS, UCCA and AMR graphs and
a second-order mean field variational inference
module introduced by Wang et al. (2019) to pre-
dict edges for all the frameworks. According to
the official results, our system gets 94.88 F1 score
in the cross-framework metric for DM, which is
the 3rd place in the ranking. For in-framework
metrics, our system gets 92.98 and 81.61 labeled
F1 score for DM and PSD respectively, which are
ranked 1st and 2nd in the ranking.
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Compositional Parsing Across
All Graphbanks

*

Saarland at MRP 2019
L. Donatelli, M. Fowlie, J. Groschwitz, A. Koller, M. Lindemann, M. Mina, P. Weißenhorn

• Compositional neural parser with competitive results across all 
MRP shared task graphbanks (only compositional parser to do so!)
• 4th place overall
• 1st on PSD 
• 1st The Little Prince subset

• Parser previously held SOTA on MRP graphbanks apart from UCCA 
at ACL 2019 



Apply-Modify (AM) Algebra and graph decomposition
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HIT-SCIR at MRP 2019:
A Unified Pipeline for Meaning Representation Parsing 

via Efficient Training and Effective Encoding

Wanxiang Che, Longxu Dou, Yang Xu, Yuxuan Wang, Yijia Liu, Ting Liu
Research Center for Social Computing and Information Retrieval

Harbin Institute of Technology



Overview of Our Techniques

• Rank 1st  according to ALL-F1
• Baseline model: Transition-based Parser with Stack LSTM (Dyer et al., 2015)
• Our Extensions:

• Efficient Training of Stack LSTM via parallel training
• Effective Encoding via adopting BERT

System DM PSD EDS UCCA AMR ALL-F1

HIT-SCIR 95.08 90.55 90.75 81.67 72.94 86.2

SJTU-NICT 95.50 91.19 89.90 77.80 71.97 85.3

Suda-Alibaba 92.26 85.56 91.85 78.43 71.72 84.0

Saarland 94.69 91.28 89.10 67.55 66.72 81.9

Hitachi 91.02 91.21 83.74 70.36 43.86 76.0

Amazon 93.26 89.98 - - 73.38 -



Parallel Training Stack-LSTM 

• Aligning the similar operations in Stack-LSTM within a batch
• Computing them simultaneously

§ Conduct experiments with GloVe
§ 5.3x on DM
§ 2.7x on UCCA



BERT is Amazing!

• We fine-tune the BERT
• Layer-wise scalar weighed BERT is adopted

Feature DM PSD EDS UCCA AMR Avg
GloVe 87.1 74.1 88.2 87.5 65.3 80.4

BERT(base) 94.3 83.6 91.5 92.8 71.4 86.7

• Metric: ALL-F1 based on mtool
• Dataset: Splited training data on 8:1:1 proportion



Structure vs Representation
• Transition-based Parser achieves comparable results with Graph-based Parser
• Kulmizev et al. (2019) found similar conclusion in PTB

Model Feature DM PAS PSD
id ood id ood id ood

Wang et al word2vec 89.3 83.2 91.4 87.2 76.1 73.2

Dozat et al Glove+char 92.7 87.8 94.0 90.6 80.5 78.6

Transition GloVe+char 86.1 79.2 89.8 85.2 72.8 68.5

Graph GloVe+char 91.6 86.1 93.1 89.6 77.4 73.0

Transition BERT 92.9 89.2 94.4 92.4 81.6 81.0

Graph BERT 94.1 90.8 94.8 92.9 80.7 79.5

Wang et al: <A Neural Transition-Based Approach for Semantic Dependency Graph Parsing>
Dozat et al: <Simpler but More Accurate Semantic Dependency Parsing>
Kulmizev et al: <Deep Contextualized Word Embeddings in Transition-Based and  Graph-Based Dependency Parsing – A Tale of Two Parsers Revisited>



Model Ensemble

• In follow up experiment, we obtain further improvement on lpps dataset
• Ensemble model consists of 5 single model

Systems DM PSD EDS UCCA AMR Avg

Single 93.98 87.41 89.83 82.61 69.03 84.57

Ensemble 94.00 87.79 89.57 83.41 71.35 85.16



Conclusion

• Our Contribution:
• Efficient Training of Stack LSTM via parallel training
• Effective Encoding through adopting BERT

• The performance gap between Graph and Transition on SDP is almost 
eliminated under BERT

• Our code: https://github.com/HIT-SCIR/HIT-SCIR-CoNLL2019

https://github.com/HIT-SCIR/HIT-SCIR-CoNLL2019
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Abstract

This paper describes the system of our team
SJTU for our participation in the CoNLL 2019
Shared Task: Cross-Framework Meaning Rep-
resentation Parsing. The goal of the task
is to advance data-driven parsing into graph-
structured representations of sentence mean-
ing. This task includes five meaning represen-
tation frameworks: DM, PSD, EDS, UCCA,
and AMR. These frameworks have different
properties and structures. To tackle all the
frameworks in one model, it is needed to find
out the commonality of them. In our work, we
define a set of the transition actions to once-
for-all tackle all the frameworks and train a
transition-based model to parse the meaning
representation. The adopted multi-task model
also can allow learning for one framework to
benefit the others. In the final official evalu-
ation of the shared task, our system achieves
42% F1 unified MRP metric score.

1 Introduction

Semantic understanding of texts is very important
in Natural Language Processing (NLP), in which,
Meaning Representation Parsing (MRP) attracts
attentions of many researchers. This task is to en-
code a sentence into a semantic graph, which usu-
ally is directed. Compared with dependency pars-
ing (Ma and Zhao, 2012; Li et al., 2018a; Zhou
and Zhao, 2019) or semantic role labeling (Zhao
et al., 2009a,b; Li et al., 2018b; Guan et al., 2019),
this task is much harder since its representation is a
graph which may incorporate both syntactical and
semantic information. These general graphs are
more expressive and arguably more adequate tar-
get structures for sentence-level analysis beyond

∗Corresponding author. This paper was partially sup-
ported by National Key Research and Development Program
of China (No. 2017YFB0304100) and Key Projects of Na-
tional Natural Science Foundation of China (No. U1836222
and No. 61733011).

shallow syntax and in particular for representa-
tions of the semantic structure. Many works have
shown that these meaning representations are ben-
eficial to other tasks such as machine translation
and abstractive summarization. However, there
are several types of meaning representations with
different definitions, structures, and abstractions,
which hinder the applications.

The CoNLL 2019 Shared Task (Oepen et al.,
2019) combines formally and linguistically dif-
ferent meaning representation in graph form on
a uniform training and evaluation setup for the
first time. This task includes five MRP frame-
works: DM, PSD, EDS, UCCA, and AMR. These
frameworks have different anchoring types, i.e.,
the tightness of correspondence between graph
nodes and sentence tokens with different abstrac-
tions. The nodes in DM and PSD are all the sur-
face tokens in the sentences. In EDS and UCCA,
the anchoring is flexible so that arbitrary parts of
the sentence (e.g. sub-token or multi-token se-
quences) may be node anchors, as well as mul-
tiple nodes anchored to overlapping sub-strings.
Further, AMR has even no anchoring but with the
strongest expressive ability.

For each of these frameworks, the common
methods for their parsing are transition-based
method and graph-based method. The former
parses sentences by making a sequence of transi-
tion actions according to the present state which
usually consists of a stack, a buffer, and a pro-
cessed edge set, while the latter gets nodes first
and predicts the edges between these nodes.

In our system, we use the transition-based
model to do the cross-framework meaning rep-
resentation parsing, since we can define a set of
transition actions and incorporate all the frame-
works into our system, and the shared part of
the model can learn from all the data from dif-
ferent frameworks. Our model is modified from
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Introduction

• Our issue: Multi-task learning for DM/PSD/UCCA

– To enable multi-task learning, we explicitly make 
shared common components in a neural network 
architecture across different frameworks

• Models

– Biaffine attention: we propose a unified neural model 
for the DM/PSD/UCCA frameworks based on the 
biaffine attention [Dozat and Manning, 2017, 2018; 
Zhang et al., 2019]

– Multi-level biaffine attention:

• Motivated by the multi-level architecture of FusionNet in the 
machine reading comprehension task [Huang et al., 2018]



DM PSD UCCA
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Encoder: BERT-BiLSTM  shared across frameworks

Decoder: Biaffine attention  framework specific



Encoder: BERT-BiLSTM (shared across frameworks)
• Word representation layer using BERT

so  ##y ##be ##ans and       rice

and        rice

BERT 

[CLS]

Wordpiece tokenzier

soybeans 

BiLSTM BiLSTM BiLSTM

𝒘1
𝑏𝑒𝑟𝑡 𝒘2

𝑏𝑒𝑟𝑡 𝒘3
𝑏𝑒𝑟𝑡

BERT word-level embedding

BiLSTM sentence encoding

Given a sentence, the BERT encoder is applied to its wordpieces and the 
encoded wordpiece-level represenations are composed to the word-level 
embeddings based on BiLSTM



Decoder: Biaffine attention (framework specific)
• Biaffine attention is performed on the role-dependent 

representations to predict the existence of an edge and its labels.

𝒉𝑗
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𝒉𝑗
(𝑑𝑒𝑝)𝒉𝑖

(ℎ𝑒𝑎𝑑)𝒉𝑖
(𝑑𝑒𝑝)

𝒓𝑖 𝒓𝑗

BERT-BiLSTM sentence encoder layer

⋯

Biaffine attention



Multi-level Biaffine attention
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The hidden representations at three levels are composed to the final 
hidden representation 𝒛𝑖

𝑑𝑒𝑝 , 𝒛𝑖
ℎ𝑒𝑎𝑑 using a semantic fusion unit

sfu sfu sfu sfu



Preliminary Experiment

• BERT+Biaffine performs better than Biaffine, in particular, 
obtaining the increases of about 5% for UF and LF on the 
UCCA framework

• BERT+Multi-level Biaffine does not achieve any further 
improvements with respect to BERT-Biaffine model

• BERT+Biaffine+MTL only achieves small improvements on 
UCCA framework whereas no improvements on DM and 
PSD frameworks can be observed
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CUHK at MRP2019: Transition-Based Parser 
with Cross-Framework Variable-Arity Resolve Action



Abstract

Our system:
- transition-based parser
- directed acyclic graph (DAG) to tree preprocessor
- cross-framework variable-arity RESOLVE action

that generalizes over five different representations.
- Although we ranked low in the competition, we have

shown the current limitations and potentials of including
variable-arity action in MRP and concluded with
directions for improvements in the future.



Abstract

Our system:
- transition-based parser
- directed acyclic graph (DAG) to tree preprocessor
- cross-framework variable-arity RESOLVE action

that generalizes over five different representations.
- Although we ranked low in the competition, we have

shown the current limitations and potentials of including
variable-arity action in MRP and concluded with
directions for improvements in the future.

Arity: is the number 
of arguments or operands (No. of nodes)
that the function takes (Wikipedia)

Standard shift reduce: 2,  This paper: n



MRP F Actions Author
PSD 0 LEFT-REDUCE(L), RIGHT-SHIFT(L), NO-SHIFT,NO-REDUCE, LEFT-PASS(L), 

RIGHT-PASS(L), NO-PASS
(Wang et al., 

2018)
UCCA 1 SHIFT, REDUCE, NODE(X), LEFT-EDGE(X), RIGHT-EDGE(X), LEFT-

REMOTE(X), RIGHT-REMOTE(X), SWAP, FINISH
(Hershcovich
et al., 2017)

AMR 2 SHIFT, REDUCE, RIGHT-LABEL(R), LEFT-LABEL(R), SWAP, MERGE, 
PRED(N), ENTITY(L), GEN(N)

(Guo and Lu, 
2018)

* * SHIFT, IGNORE, RESOLVE This paper

We introduce the cross-framework variable-arity RESOLVE action as:
1. there is no need to include additional binarization of the dependencies and

reduce the number of transitions
2. It is also more natural to consider the dependency of multiple nodes

jointly as meaning representations like semantic frames usually involve multiple
arguments

3. Learn cross-framework features to generalize our model 4

Motivation
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1. there is no need to include additional binarization of the dependencies and

reduce the number of transitions
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Approach

Top-node 
oriented tree

Top-nodeDM

A node can be RESOLVED
when all its child is RESOLVED

RESOLVE: 
- Predict node labels (framework specific)
- Build edges (framework specific)
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Approach

Top-node 
oriented tree

Top-nodeDM

A node can be RESOLVED
when all its child is RESOLVED

RESOLVE: 
- Predict node labels (framework specific)
- Build edges (framework specific)



Result
Submission\F1 tops labels properties anchors edges attributes all

TUPA(multi) 0.616 0.457 0.327 0.626 0.347 0.037 0.453

RESOLVER 0.502 0.365 0.317 0.568 0.095 0.00 0.378

• Cross-framework variable-arity actions are hard to learn
• Information loss happens when converting graphs to 

tree structures.
• Model design can still be improved.
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Hitachi at MRP 2019: Unified Encoder-to-Biaffine Network for Cross-
Framework Meaning Representation Parsing

Yuta Koreeda*, Gaku Morio*, Terufumi Morishita*, Hiroaki Ozaki*, Kohsuke Yanai (*equal contribution)

Our Approach

• Unify graph predictions 

with a single encoder-

to-biaffine network

• Multi-task variant of the 

unified system (in post 

evaluation)

1. Extract task-independent 

contextualized token 
representations with shared 
encoder

2. Complement missing nodes

3. Predict edges and their 

labels with biaffine networks 
[Dozat+18]



2© Hitachi, Ltd. 2019. All rights reserv ed.

Hitachi at MRP 2019: Unified Encoder-to-Biaffine Network for Cross-
Framework Meaning Representation Parsing

Results

Frame Specific Approaches

Framework Biaffine Like Net. Rule Linear model Generator

DM and PSD Edge + Frame Properties - -

EDS Node anchor Node & Edge gen. Node & Edge gen. -

UCCA Edge - - Non-terminal node: 

pointer network

AMR Edge Preprocess + serialize - Node: pointer-generator 
network
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Representation Parsing Shared Task

Milan Straka, Jana Straková
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MRPipe Design

MRPipe Design
start completely from scratch
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MRPipe Design

MRPipe Design
start completely from scratch

uniform architecture for simple directed graph parsing
i.e., we consider at most one edge for all pairs of nodes in both directions
therefore, we can model trees, DAGs, even cycles
we could model hypergraphs (i.e., parallel edges) easily, but we did not
yet evaluated it (~0.4% parallel edges in AMR, ~1.25% in UCCA)
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therefore, we can model trees, DAGs, even cycles
we could model hypergraphs (i.e., parallel edges) easily, but we did not
yet evaluated it (~0.4% parallel edges in AMR, ~1.25% in UCCA)

no linguistic information, structural constraints, dicts, ...
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MRPipe Design

MRPipe Design
start completely from scratch

uniform architecture for simple directed graph parsing
i.e., we consider at most one edge for all pairs of nodes in both directions
therefore, we can model trees, DAGs, even cycles
we could model hypergraphs (i.e., parallel edges) easily, but we did not
yet evaluated it (~0.4% parallel edges in AMR, ~1.25% in UCCA)

no linguistic information, structural constraints, dicts, ...

rich pretrained embeddings – frozen BERT embeddings

2/7ÚFAL MRPipe at MRP2019, Nov 3 2019 Design Parsing Algorithm Representations Example Results Future Work



MRPipe Parsing Algorithm

MRPipe Parsing Algorithm
consider tokens as nodes, anchors as edges to them
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MRPipe Parsing Algorithm
consider tokens as nodes, anchors as edges to them

construct the graph layerwise by interleaving following two operations:
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MRPipe Parsing Algorithm

MRPipe Parsing Algorithm
consider tokens as nodes, anchors as edges to them

construct the graph layerwise by interleaving following two operations:
AddNodes: for every node, independently consider creating its new child
or parent, with all its properties
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MRPipe Parsing Algorithm

MRPipe Parsing Algorithm
consider tokens as nodes, anchors as edges to them

construct the graph layerwise by interleaving following two operations:
AddNodes: for every node, independently consider creating its new child
or parent, with all its properties

AddEdges: for every created node, independently consider connecting it
to every other node (existing or new), generating all attributes if required

3/7ÚFAL MRPipe at MRP2019, Nov 3 2019 Design Parsing Algorithm Representations Example Results Future Work



MRPipe Node Representation

MRPipe Node Representation
each node is represented as

the underlying token which generated it (recursively)
embeddings of all node properties

embeddings of all adjacent edges attributes
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MRPipe Node Representation

MRPipe Node Representation
each node is represented as

the underlying token which generated it (recursively)
embeddings of all node properties

embeddings of all adjacent edges attributes

node properties can be encoded relatively
with respect to the anchored tokens
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MRPipe Node Representation

MRPipe Node Representation
each node is represented as

the underlying token which generated it (recursively)
embeddings of all node properties

embeddings of all adjacent edges attributes

node properties can be encoded relatively
with respect to the anchored tokens

automatically choosing absolute (e.g., POS, frames) or relative
encoding (e.g., labels, cargs, op[1-9], ARG[1-9])

4/7ÚFAL MRPipe at MRP2019, Nov 3 2019 Design Parsing Algorithm Representations Example Results Future Work



MRPipe Example

      

           

  









  

  


























 

          

  
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MRPipe Example
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  

 


 



 




 



 





 




 






 


              








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MRPipe Example

      

 

          

  

               

 
 

 
 








 




 



 




 








  



  












 



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MRPipe Example

              

      

 

          

  

 


 



 




 



 





 




 






 









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MRPipe Example

      

 

          

  

               

 
 

 
 








 




 



 




 








  



  












 



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MRPipe Results

MRPipe Results
we utilized incorrect companion test data for three treebanks (the ones
without anchors)

our fixed submission ranked on a shared 3rd place

best overall labels and properties scores, worse edges
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MRPipe Future Work

MRPipe Future Work
allow anchoring to sub-token by addint attributes with character indices

generate nodes one-by-one so that they are conditioned on already
generated ones (important for constituency structure)

better node representation

better architecture of edge generation (not an independent decision for
every edge)
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Amazon at MRP 2019: Parsing Meaning Representations with Lexical
and Phrasal Anchoring

Jie Cao†∗, Yi Zhang‡, Adel Youssef‡, Vivek Srikumar†
†School of Computing, University of Utah

‡AWS AI, Amazon
{jcao, svivek}@cs.utah.edu, {yizhngn, adel}@amazon.com

Abstract

This paper describes the system submission
of our team Amazon to the shared task on
Cross Framework Meaning Representation
Parsing (MRP) at the 2019 Conference for
Computational Language Learning (CoNLL).
Via extensive analysis of implicit alignments
in AMR, we recategorize five meaning rep-
resentations (MRs) into two classes: Lexical-
Anchoring and Phrasal-Anchoring. Then we
propose a unified graph-based parsing frame-
work for the lexical-anchoring MRs, and a
phrase-structure parsing for one of the phrasal-
anchoring MRs, UCCA. Our system submis-
sion ranked 1st in the AMR subtask, and
later improvements shows promising results
on other frameworks as well.

1 Introduction

The design and implementation of broad-coverage
and linguistically motivated meaning representa-
tion frameworks for natural language is attracting
growing attention in recent years. With the ad-
vent of deep neural network-based machine learn-
ing techniques, we have made significant progress
to automatically parse sentences intro structured
meaning representation (Oepen et al., 2014, 2015;
May, 2016; Hershcovich et al., 2019). More-
over, the differences between various representa-
tion frameworks has a significant impact on the
design and performance of the parsing systems.

Due to the abstract nature of semantics, there
is a diverse set of meaning representation frame-
works in the literature (Abend and Rappoport,
2017). In some application scenario, tasks-specific
formal representations such as database queries
and arithmetic formula have also been proposed.
However, primarily the study in computational se-
mantics focuses on frameworks that are theoreti-
cally grounded on formal semantic theories, and

∗∗Work done when Jie Cao was an intern at AWS AI

sometimes also with assumptions on underlying
syntactic structures.

Anchoring is crucial in graph-based meaning
representation parsing. Training a statistical parser
typically starts with a conjectured alignment be-
tween tokens/spans and the semantic graph nodes
to help to factorize the supervision of graph struc-
ture into nodes and edges. In our paper, with
evidence from previous research on AMR align-
ments (Pourdamghani et al., 2014; Flanigan et al.,
2014; Wang and Xue, 2017; Chen and Palmer,
2017; Szubert et al., 2018; Lyu and Titov, 2018),
we propose a uniform handling of three meaning
representations from Flavor-0 (DM, PSD) and
Flavor-2 (AMR) into a new group referred to
as the lexical-anchoring MRs. It supports both
explicit and implicit anchoring of semantic con-
cepts to tokens. The other two meaning represen-
tations from Flavor-1 (EDS, UCCA) is referred
to the group of phrasal-anchoring MRs where the
semantic concepts are anchored to phrases as well.

To support the simplified taxonomy, we named
our parser as LAPA (Lexical-Anchoring and
Phrasal-Anchoring)1. We proposed a graph-based
parsing framework with a latent-alignment mech-
anism to support both explicit and implicit lexi-
con anchoring. According to official evaluation
results, our submission for this group ranked 1st
in the AMR subtask, 6th on PSD, and 7th on
DM respectively, among 16 participating teams.
For phrasal-anchoring, we proposed a CKY-based
constituent tree parsing algorithm to resolve the
anchor in UCCA, and our post-evaluation submis-
sion ranked 5th on UCCA subtask.

2 Anchoring in Meaning Representation

The 2019 Conference on Computational Lan-
guage Learning (CoNLL) hosted a shared task on

1The code is available online at https://github.com/
utahnlp/lapa-mrp

1
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Yue Zhang1, Wei Jiang2, Qingrong Xia2, 
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1 Alibaba Group, China
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EDS
� Node prediction: original node & append node

� Original nodes: take coarse POS tag and sense as joint label
� Append nodes: predict begin/end index (anchor) and type 

for each node
� Edge prediction: 

� Compute the score of each edge relation between two 
nodes by the biaffine scorer
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UCCA
� Convert UCCA to constituent tree (Jiang et al. 2019)

� Remove remote edges
� Handle discontinuous nodes

� Utilize minimal span-based parser (Stern et al. 2017)
� Remote recovery as a new task (multi-task learning)



Welcome to our poster for more
details about our work!

poste
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ÚFAL–Oslo at MRP 2019:
Garage Sale Semantic Parsing

Kira Droganova,† Andrey Kutuzov,‡
Nikita Mediankin† and Daniel Zeman†

†Charles University, Faculty of Mathematics and Physics, ÚFAL
‡University of Oslo, Faculty of Mathematics and Natural Sciences, Language

Technology Group
†{droganova|mediankin|zeman}@ufal.mff.cuni.cz

‡andreku@ifi.uio.no
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Garage Sale Semantic Parsing

Hao Peng, Sam Thomson, and Noah A. Smith. 2017. Deep multitask
learning for semantic dependency parsing. In Proceedings of the 55th
Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 2037–2048, Vancouver, Canada.
Association for Computational Linguistics.

Jeffrey Flanigan, Dyer Chris, Noah A. Smith, and Jaime Carbonell.
CMU at SemEval-2016 task 8: Graph-based AMR parsing with infinite
ramp loss. In Proceedings of the 10th International Workshop on
Semantic Evaluation (SemEval-2016), pp. 1202-1206. 2016.

Hong Kong , 03.11.2019 2 / 4
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Garage Sale Semantic Parsing

create forward conversion scripts;

create training/development splits;

create/download all accompanying files;

convert the data and train a model;

create backwards conversion scripts.

Hong Kong , 03.11.2019 3 / 4
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Garage Sale Semantic Parsing
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Peking at MRP 2019: Composition- and
Factorization-Based Parsing for Elementary

Dependency Structures

Yufei Chen, Yajie Ye and Weiwei Sun

Wangxuan Institute of Computer Technology
Peking University

November 3, 2019



English Resource Semantics

(1) a. Every dog chases some white cats.

b. some(y, white(y) ∧ cat(y), every(x, dog(x), chase(e, x, y)))

c. every(x, dog(x), some(y, white(y) ∧ cat(y), chase(e, x, y)))

A compact graph-based representation of the two readings

every q

dog n 1

chase v 1

cat n 1

some q

white a 1

RSTR/H ARG1/NEQ ARG2/NEQ

ARG1/EQ

RSTR/H

Variables (e, x and y) are implicitly patched to the predicates that
treat them as intrinsic variables (chase, dog and cat)

Elementary Dependency Structures Removing H, EQ, NEQ, etc.



String-to-graph parsing approaches

I Factorization-based approach

I Composition-based approach

I Transition-based approach

I Translation-based approach



String-to-graph parsing approaches

I Factorization-based approach

I Composition-based approach

I Transition-based approach

I Translation-based approach



Factorization-based approach

Tom wants to go.

Input

Tom / wants / to / go / .

proper q

named * v 1 ∅ * v 1 ∅
Tom wants to go .

named

want v 1
go v 1

proper q

ARG1
ARG1BV

ARG2

named("Tom")〈0:3〉

want v 1〈4:9〉

go v 1〈13:15〉

proper q〈0:3〉
Top

ARG1
ARG1BV

ARG2

Output

Tokenization

Concept
Identification

Relation
Detection

Property
Prediction



Neural models

He wants to go

encoder encoder encoder encoder
r1 r4

2:pronoun q

1:pron 3:* v 1 φ 4:* v 1

argmax

c1 c4
Biaffine

ScoreEdge(pron← go v 1)



Composition-based approach

X

Y
Z

boy n 1some q

want v 1

go v 1

ARG1ARG1

BV

ARG2
S

Y

Z

want v 1

go v 1

ARG2

VP

want to go

X

boy n 1

some q

BV

NP

boy n 1N

boys

some qD

Some

⇐=

X

Y
Z

NP

ARG1ARG1

VP

S

⇐=

BV
D N

NP



Thanks for your attention!



Meaning Representation 
Parsing Shared Task

Discussion



Discussion about the MRP task 20192020
• Some possible discussion points 

• Evaluation metric(s) – what to avoid? Improvements?
• One main metric (even if approximate)? Several “equal” metrics (~ several “winners”)

• Extending the task
• More languages (within the same frameworks)?
• Additional frameworks?
• Same text across frameworks ([mostly] evaluation only)?

• Time schedule
• How much time needed for “ingesting” whitelisted resources? 

• Or limit them to basics, like embeddings? Or not allow them at all?
• Any tools to whitelist/blacklist?

• Any general remarks?

The MRP Shared Task – towards the 2nd ed. (2020)


