
CoNLL 2020

The SIGNLL Conference on Computational Natural
Language Learning

Proceedings of the CoNLL 2020 Shared Task:
Cross-Framework Meaning Representation Parsing

November 19-20, 2020
Online

c©2020 The Association for Computational Linguistics

Order copies of this and other ACL proceedings from:

Association for Computational Linguistics (ACL)
209 N. Eighth Street
Stroudsburg, PA 18360
USA
Tel: +1-570-476-8006
Fax: +1-570-476-0860
acl@aclweb.org

ISBN 978-1-952148-64-4

ii

Preface

We are excited (and a little relieved) to present the proceedings from the 2020 Shared Task on Cross-
Framework and Cross-Lingual Meaning Representation Parsing (MRP 2020) at the Conference for
Computational Language Learning (CoNLL), colocated with EMNLP 2020. This is the second, extended
edition of the MRP Shared Task, following on from the earlier MRP task at CoNLL 2019, adding, among
other things, additional languages beyond English.

This volume provides linguistic, methodological, and technical background to the target representations,
mode of operation, and participating systems in a ‘system bake-off’ for data-driven parsing into graph-
structured representations of sentence meaning.

The task received submissions from seven teams and one ‘reference’ submission by one of the task
co-organzers. Two teams declined the invitation to submit a system description for publication in
the proceedings, such that the volume in total comprises an in-depth task overview, two additional
background pieces by task co-organizers, and five system descriptions by participanting teams. All
system descriptions (and the background papers) were reviewed by at least three experts, drawing
from among the task participants and an external pool of colleagues working in meaning representation
parsing.

We much look forward to the presentation of results and meeting with task participants, even if online, at
CoNLL in late November 2020. The conference will be completely virtual, with talks prerecorded and
with one live Q&A session for the shared task.

The MRP 2020 shared task has been an intensive experience for organizers and participants alike, with
data preparation, definition of evaluation metrics, system development, submission of parser outputs,
scoring and compilation of the task proceedings—running near-continuously between February and
October 2020. We are deeply grateful to all participants (including several who in the end did not make
a submission) for the time and effort they have invested in system development and documentation.
With no less than five distinct linguistic frameworks for graph-based meaning representation, in several
languages, combined for the first time in a uniform training and evaluation setting, this was not an easy
competition to enter. As co-organizers of the MRP 2019 and 2020 competitions, we will continue to work
on facilitating cross-framework meaning representation parsing and enabling participants to further build
on their work. All MRP 2019 and 2020 data has been submitted for release through the Linguistic Data
Consortium, and we are further preparing an open-source release of those parts of the data that are free
of copyright constraints.

Oslo, Jerusalem, Utrecht, Groningen, Prague,
Copenhagen, Nanjing, Boulder, and Waltham;

October 2020

Stephan Oepen, Omri Abend, Lasha Abzianidze, Johan Bos, Jan Hajič,
Daniel Hershcovich, Bin Li, Tim O’Gorman, Nianwen Xue and Daniel Zeman

iii

Organizers:

Stephan Oepen, University of Oslo
Omri Abend, The Hebrew University of Jerusalem
Lasha Abzianidze, Utrecht University
Johan Bos, University of Groningen
Jan Hajič, Charles University, Prague
Daniel Hershcovich, University of Copenhagen
Bin Li, Nanjing Normal University
Tim O’Gorman, University of Colorado Boulder
Nianwen Xue, Brandeis University, Waltham
Daniel Zeman, Charles University, Prague

Program Committee:

Lasha Abzianidze
Ofir Arviv
Wanxiang Che
Bo Chen
Jayeol Chun
Longxu Dou
Daniel Hershcovich
Matthias Lindemann
Gaku Morio
Stephan Oepen
Hiroaki Ozaki
David Samuel
Nathan Schneider

v

Table of Contents

MRP 2020: The Second Shared Task on Cross-Framework and Cross-Lingual Meaning Representation
Parsing

Stephan Oepen, Omri Abend, Lasha Abzianidze, Johan Bos, Jan Hajic, Daniel Hershcovich, Bin
Li, Tim O’Gorman, Nianwen Xue and Daniel Zeman. .1

DRS at MRP 2020: Dressing up Discourse Representation Structures as Graphs
Lasha Abzianidze, Johan Bos and Stephan Oepen . 23

FGD at MRP 2020: Prague Tectogrammatical Graphs
Daniel Zeman and Jan Hajic . 33

Hitachi at MRP 2020: Text-to-Graph-Notation Transducer
Hiroaki Ozaki, Gaku Morio, Yuta Koreeda, Terufumi Morishita and Toshinori Miyoshi 40

ÚFAL at MRP 2020: Permutation-invariant Semantic Parsing in PERIN
David Samuel and Milan Straka . 53

HIT-SCIR at MRP 2020: Transition-based Parser and Iterative Inference Parser
Longxu Dou, Yunlong Feng, Yuqiu Ji, Wanxiang Che and Ting Liu . 65

HUJI-KU at MRP 2020: Two Transition-based Neural Parsers
Ofir Arviv, Ruixiang Cui and Daniel Hershcovich . 73

JBNU at MRP 2020: AMR Parsing Using a Joint State Model for Graph-Sequence Iterative Inference
Seung-Hoon Na and Jinwoo Min . 83

vii

Conference Program

MRP 2020: The Second Shared Task on Cross-Framework and Cross-Lingual
Meaning Representation Parsing
Stephan Oepen, Omri Abend, Lasha Abzianidze, Johan Bos, Jan Hajic, Daniel Her-
shcovich, Bin Li, Tim O’Gorman, Nianwen Xue and Daniel Zeman

DRS at MRP 2020: Dressing up Discourse Representation Structures as Graphs
Lasha Abzianidze, Johan Bos and Stephan Oepen

FGD at MRP 2020: Prague Tectogrammatical Graphs
Daniel Zeman and Jan Hajic

Hitachi at MRP 2020: Text-to-Graph-Notation Transducer
Hiroaki Ozaki, Gaku Morio, Yuta Koreeda, Terufumi Morishita and Toshinori
Miyoshi

ÚFAL at MRP 2020: Permutation-invariant Semantic Parsing in PERIN
David Samuel and Milan Straka

HIT-SCIR at MRP 2020: Transition-based Parser and Iterative Inference Parser
Longxu Dou, Yunlong Feng, Yuqiu Ji, Wanxiang Che and Ting Liu

HUJI-KU at MRP 2020: Two Transition-based Neural Parsers
Ofir Arviv, Ruixiang Cui and Daniel Hershcovich

JBNU at MRP 2020: AMR Parsing Using a Joint State Model for Graph-Sequence
Iterative Inference
Seung-Hoon Na and Jinwoo Min

ix

Proceedings of the CoNLL 2020 Shared Task: Cross-Framework Meaning Representation Parsing, pages 1–22
Online, Nov. 19-20, 2020. c©2020 Association for Computational Linguistics

MRP 2020: The Second Shared Task on Cross-Framework and
Cross-Lingual Meaning Representation Parsing

Stephan Oepen♣, Omri Abend♠, Lasha Abzianidze♥, Johan Bos♦, Jan Hajič◦,
Daniel Hershcovich?, Bin Li•, Tim O’Gorman�, Nianwen Xue∗, and Daniel Zeman◦

♣ University of Oslo, Department of Informatics
♠ The Hebrew University of Jerusalem, School of Computer Science and Engineering

♥ Utrecht University, UiL OTS
♦ University of Groningen, Center for Language and Cognition

◦ Charles University, Prague, Faculty of Mathematics and Physics, Institute of Formal and Applied Linguistics
? University of Copenhagen, Department of Computer Science

• Nanjing Normal University, School of Chinese Language and Literature
� University of Massachusetts at Amherst, College of Information and Computer Sciences

∗ Brandeis University, Department of Computer Science

mrp-organizers@nlpl.eu

Abstract

The 2020 Shared Task at the Conference for
Computational Language Learning (CoNLL)
was devoted to Meaning Representation Pars-
ing (MRP) across frameworks and languages.
Extending a similar setup from the previous
year, five distinct approaches to the represen-
tation of sentence meaning in the form of di-
rected graphs were represented in the English
training and evaluation data for the task, pack-
aged in a uniform graph abstraction and serial-
ization; for four of these representation frame-
works, additional training and evaluation data
was provided for one additional language per
framework. The task received submissions
from eight teams, of which two do not par-
ticipate in the official ranking because they ar-
rived after the closing deadline or made use of
additional training data. All technical informa-
tion regarding the task, including system sub-
missions, official results, and links to support-
ing resources and software are available from
the task web site at:

http://mrp.nlpl.eu

1 Background and Motivation

The 2020 Conference on Computational Language
Learning (CoNLL) hosts a shared task (or ‘system
bake-off’) on Cross-Framework Meaning Repre-
sentation Parsing (MRP 2020), which is a revised
and extended re-run of a similar CoNLL shared task
in the preceding year. The goal of these tasks is to
advance data-driven parsing into graph-structured
representations of sentence meaning. For the first
time, the MRP task series combines formally and
linguistically different approaches to meaning rep-

resentation in graph form in a uniform training and
evaluation setup.

Key differences in the 2020 edition of the task
include the addition of a graph-based encoding
of Discourse Representation Structures (dubbed
DRG); a generalization of Prague Tectogrammati-
cal Graphs (to include more information from the
original annotations); and a separate cross-lingual
track, introducing one extra language (beyond En-
glish) for four of the frameworks involved.1

Participants were invited to develop parsing
systems that support five distinct semantic graph
frameworks in four languages (see §3 below)—
all encoding core predicate–argument structure,
among other things—in the same implementation.
Ideally, these parsers predict sentence-level mean-
ing representations in all frameworks in parallel.
Architectures utilizing complementary knowledge
sources (e.g. via parameter sharing) were encour-
aged, though not required. Learning from multiple
flavors of meaning representation in tandem has
hardly been explored (with notable exceptions, e.g.
the parsers of Peng et al., 2017; Hershcovich et al.,
2018; Stanovsky and Dagan, 2018; or Lindemann
et al., 2019).

The task design aims to reduce framework-
specific ‘balkanization’ in the field of meaning
representation parsing. Its contributions include

1To reduce the threshold to participation, two of the target
frameworks represented in MRP 2019 are not in focus this
year, viz. the purely bi-lexical DELPH-IN MRS Bi-Lexical De-
pendencies and Prague Semantic Dependencies (PSD). These
graphs largely overlap with the corresponding (but richer)
frameworks in 2020, EDS and PTG, respectively, and the
original bi-lexical semantic dependency graphs remain inde-
pendently available (Oepen et al., 2015).

1

(a) a unifying formal model over different seman-
tic graph banks (§2), (b) uniform representations
and scoring (§4 and §6), (c) contrastive evaluation
across frameworks (§5), and (d) increased cross-
fertilization of parsing approaches (§7).

2 Definitions: Graphs and Flavors

Reflecting different traditions and communities,
there is wide variation in how individual meaning
representation frameworks think (and talk) about
semantic graphs, down to the level of visual conven-
tions used in rendering graph structures. Increased
terminological uniformity and guidance in how to
navigate this rich and diverse landscape are among
the desirable side-effects of the MRP task series.
The following paragraphs provide semi-formal def-
initions of core graph-theoretic concepts that can
be meaningfully applied across the range of frame-
works represented in the shared task.

Basic Terminology Semantic graphs (across dif-
ferent frameworks) can be viewed as directed
graphs or digraphs. A semantic digraph is a
triple (T,N,E) where N is a set of nodes and
E ⊆ N × N is a set of edges. The in- and out-
degree of a node count the number of edges arriving
at or leaving from the node, respectively. In con-
trast to the unique root node in trees, graphs can
have multiple (structural) roots, which we define as
nodes with in-degree zero. The majority of seman-
tic graphs are structurally multi-rooted. Thus, we
distinguish one or several nodes in each graph as
top nodes, T ⊆ N ; the top(s) correspond(s) to the
most central semantic entities in the graph, usually
the main predication(s).

In a tree, every node except the root has in-
degree one. In semantic graphs, nodes can have
in-degree two or higher (indicating shared argu-
ments), which constitutes a reentrancy in the graph.
In contrast to trees, general digraphs may contain
cycles, i.e. a directed path leading from a node to
itself. Another central property of trees is that they
are connected, meaning that there exists an undi-
rected path between any pair of nodes. In contrast,
semantic graphs need not generally be connected.

Finally, in some semantic graph frameworks
there is a (total) linear order on the nodes, typi-
cally (though not necessarily) induced by the sur-
face order of corresponding tokens. Such graphs
are conventionally called bi-lexical dependencies
(probably deriving from a notion of lexicalization
articulated by Eisner, 1997) and formally consti-

tute ordered graphs. A natural way to visualize a
bi-lexical dependency graph is to draw its edges
as semicircles in the halfplane above the sentence.
An ordered graph is called noncrossing if in such a
drawing, the semicircles intersect only at their end-
points (this property is a natural generalization of
projectivity as it is known from dependency trees).

A natural generalization of the noncrossing prop-
erty, where one is allowed to also use the halfplane
below the sentence for drawing edges is a prop-
erty called pagenumber two. Kuhlmann and Oepen
(2016) provide additional definitions and a quanti-
tative summary of various formal graph properties
across frameworks.

Hierarchy of Formal Flavors In the context of
the MRP shared task series, we have previously de-
fined different flavors of semantic graphs based on
the nature of the relationship they assume between
the linguistic surface signal (typically a written
sentence, i.e. a string) and the nodes of the graph
(Oepen et al., 2019). We refer to this relation as
anchoring (of nodes onto sub-strings); other com-
monly used terms include alignment, correspon-
dence, or lexicalization.

Flavor (0) is characterized by the strongest form
of anchoring, obtained in bi-lexical dependency
graphs, where graph nodes injectively correspond
to surface lexical units (i.e. tokens or ‘words’). In
such graphs, each node is directly linked to one
specific token (conversely, there may be semanti-
cally empty tokens), and the nodes inherit the linear
order of their corresponding tokens.

Flavor (1) includes a more general form of an-
chored semantic graphs, characterized by relaxing
the correspondence between nodes and tokens, al-
lowing arbitrary parts of the sentence (e.g. sub-
token or multi-token sequences) as node anchors,
as well as unanchored nodes, or multiple nodes
anchored to overlapping sub-strings. These graphs
afford greater flexibility in the representation of
meaning contributed by, for example, (derivational)
affixes or phrasal constructions and facilitate lexi-
cal decomposition (e.g. of causatives or compara-
tives).

Finally, Flavor (2) semantic graphs do not con-
sider the correspondence between nodes and the
surface string as part of the representation of mean-
ing (thus backgrounding notions of derivation and
compositionality). Such semantic graphs are sim-
ply unanchored.

While different flavors refer to formally defined

2

_almost_a_1
〈23:29〉

_impossible_a_for
〈30:40〉

TENSE pres

ARG1

_a_q
〈0:1〉

_technique_n_1
〈10:19〉

NUM sg

BV

_similar_a_to
〈2:9〉

ARG1

comp
〈2:9〉

ARG1

_apply_v_to
〈44:49〉

ARG1

ARG2

_crop_n_1
〈59:65〉

NUM pl

ARG3

udef_q
〈53:100〉

BV

_other_a_1
〈53:58〉

ARG1

_such+as_p
〈66:73〉

ARG1

implicit_conj
〈82:100〉

NUM pl

ARG2

_cotton_n_1
〈74:81〉

L-INDEX

_and_c
〈91:94〉

NUM pl

R-INDEX

udef_q
〈74:100〉

BV

udef_q
〈74:81〉

BV

udef_q
〈82:100〉

BV

_soybean_n_unknown
〈82:90〉

NUM pl

L-INDEX

_rice_n_1
〈95:100〉

R-INDEX

udef_q
〈82:90〉

BV

udef_q
〈95:100〉

BV

Figure 1: Semantic dependency graphs for the running example A similar technique is almost impossible to apply
to other crops, such as cotton, soybeans and rice: Elementary Dependency Structures (EDS). Node properties are
indicated as two-column records below the node labels.

sub-classes of semantic graphs, we reserve the
term framework for specific linguistic approaches
to graph-based meaning representation (typically
encoded in a particular graph flavor, of course).
However, the coarse classification into three dis-
tinct flavors does not fully account for the variabil-
ity of anchoring relations observed across frame-
works. For example, graphs can be partially an-
chored, meaning that only a subset of nodes are
explicitly linked to the surface string; the anchor-
ing relations that are present, can in turn stand in
one-to-one correspondence to surface tokens, or
allow overlapping and sub-token or phrasal rela-
tionships. At the same time, a framework may
impose a total ordering of nodes independent (or
possibly only partly dependent) on anchoring. We
will interpret Flavors (0) and (2) strictly, as fully
lexically anchored and wholly unanchored, respec-
tively, leading to the categorization of mixed forms
of anchoring as Flavor (1), and allow for the pres-
ence of ordered graphs, in principle at least, at all
levels of the hierarchy.2

2Albeit in the realm of syntactic structure, the popular Uni-
versal Dependencies (UD; Nivre et al., 2020) initiative is cur-
rently exploring the introduction of ‘enhanced’ dependencies,

3 Meaning Representation Frameworks

The shared task combines five distinct frameworks
for graph-based meaning representation, each with
its specific formal and linguistic assumptions. This
section reviews the frameworks and presents En-
glish example graphs for sentence #20209013 from
the venerable Wall Street Journal (WSJ) Corpus
from the Penn Treebank (PTB; Marcus et al.,
1993):

(1) A similar technique is almost impossible to
apply to other crops, such as cotton, soybeans
and rice.

The example exhibits some interesting linguis-
tic complexity, including what is called a tough
adjective (impossible), a scopal adverb (almost), a
tripartite coordinate structure, and apposition. The
example graphs in Figures 1 through 4 are pre-

where unanchored nodes for unexpressed material beyond the
surface string can be postulated (Schuster and Manning, 2016).
Whether or not these nodes occupy a well-defined position in
the otherwise total order of basic UD nodes remains an open
question, but either way the presence of unanchored nodes
will take enhanced UD graphs beyond the bi-lexical Flavor (0)
graphs in our terminology.

3

sented in order of (arguably) increasing ‘abstrac-
tion’ from the surface string, i.e. ranging from fully
anchored Flavor (1) to unanchored Flavor (2).

Elementary Dependency Structures The EDS
graphs (Oepen and Lønning, 2006) originally
derive from the underspecified logical forms
computed by the English Resource Grammar
(Flickinger et al., 2017; Copestake et al., 2005).
These logical forms are not in and of themselves
semantic graphs (in the sense of §2 above) and
are often refered to as English Resource Semantics
(ERS; Bender et al., 2015).3 Elementary Depen-
dency Structures (EDS; Oepen and Lønning, 2006)
encode English Resource Semantics in a variable-
free semantic dependency graph—not limited to
bi-lexical dependencies—where graph nodes corre-
spond to logical predications and edges to labeled
argument positions. The EDS conversion from
underspecified logical forms to directed graphs dis-
cards partial information on semantic scope from
the full ERS, which makes these graphs abstractly—
if not linguistically—similar to Abstract Meaning
Representation (see below).

Nodes in EDS are in principle independent of
surface lexical units, but for each node there is an
explicit, many-to-many anchoring onto sub-strings
of the underlying sentence. Thus, EDS instanti-
ates Flavor (1) in our hierarchy of different formal
types of semantic graphs and, more specfically,
are fully anchored but unordered. Avoiding a one-
to-one correspondence between graph nodes and
surface lexical units enables EDS to adequately rep-
resent, among other things, lexical decomposition
(e.g. of comparatives), sub-lexical or construction
semantics (e.g. corresponding to morphological
derivation or syntactic compounding, respectively),
and covert (e.g. elided) meaning contributions. All
nodes in the example EDS in Figure 1 make explicit
their anchoring onto sub-strings of the underlying
input, for example span 〈2 : 9〉 for similar.

In the EDS analysis for the running ex-
ample, nodes representing covert quantifiers
(e.g. on bare nominals, labeled udef q4), the

3The underlying grammar is rooted in the general linguistic
theory of Head-Driven Phrase Structure Grammar (HPSG;
Pollard and Sag, 1994).

4In the EDS example in Figure 1, all nodes correspond-
ing to instances of bare ‘nominal’ meanings are bound by a
covert quantificational predicate, including the group-forming
implicit conj and and c nodes that represent the nested, binary-
branching coordinate structure. This practice of uniform quan-
tifier introduction in ERS is acknowledged as “particularly
exuberant” by Steedman (2011, p. 21).

two-place such+as p relation, as well as the
implicit conj(unction) relation (which reflects re-
cursive decomposition of the coordinate structure
into binary predications) do not correspond to indi-
vidual surface tokens (but are anchored on larger
spans, overlapping with anchors from other nodes).
Conversely, the two nodes associated with similar
indicate lexical decomposition as a comparative
predicate, where the second argument of the comp
relation (the ‘point of reference’) remains unex-
pressed in Example (1).

Prague Tectogrammatical Graphs These
graphs present a conversion from the multi-layered
(and somewhat richer) annotations in the tradition
of Prague Functional Generative Description
(FGD; Sgall et al., 1986), as adopted (among
others) in the Prague Czech–English Dependency
Treebank (PCEDT; Hajič et al., 2012) and Prague
Dependency Treebank (PDT; Böhmová et al.,
2003). For more details on how the graphs are
obtained from the original annotations, see Zeman
and Hajič (2020).

The PTG structures essentially recast core pred-
icate–argument structure in the form of mostly
anchored dependency graphs, albeit introducing
‘empty’ (or generated, in FGD terminology) nodes,
for which there is no corresponding surface token.
Thus, these partially anchored representations in-
stantiate Flavor (1) in our hierarchy of different
formal types of semantic graphs, where anchoring
relations can be discontinuous: For example, the
technique node in Figure 2 is anchored to both the
noun and its indefinite determiner a. PTG struc-
tures assume a total order of nodes, which provides
the foundation for an underlying theory of topic–
focus articulation, as proposed by Hajičová et al.
(1998).

The PTG structure for our running example has
many of the same dependency edges as the EDS
graph (albeit using a different labeling scheme and
inverse directionality in a few cases), but it ana-
lyzes the predicative copula as semantically con-
tentful and does not treat almost as ‘scoping’ over
the entire graph. In the example graph, there are
two generated nodes to represent the unexpressed
BEN(efactive) of the impossible relation as well
as the unexpressed ACT(or) argument of the three-
place apply relation, respectively; these nodes are
related by an edge indicating grammatical coref-
erence. In this graph, the indefinite determiner,
infinitival to, and the vacuous preposition marking

4

be
〈20:22〉

sentmod enunc

sempos v

frame en-v#ev-w218f2

PRED

apply
〈41:43〉 〈44:49〉

sempos v

frame en-v#ev-w119f2

ACT

possible
〈30:40〉

sempos adj.denot

PAT

similar
〈2:9〉

sempos adj.denot

technique
〈0:1〉 〈10:19〉

sempos n.denot

RSTR

PAT

#Gen
sempos x

ACT

rice
〈95:99〉

sempos n.denot

ADDR
effective

crop
〈50:52〉 〈59:64〉

sempos n.denot

ADDR
effective

such_as
〈66:70〉 〈71:73〉

sempos x

APPS

soybean
〈82:90〉

sempos n.denot

ADDR
effective

cotton
〈74:80〉

sempos n.denot

ADDR
effective

almost
〈23:29〉

sempos adv.denot.grad.neg

EXT

#Benef
sempos x

BEN

coref.gram

other
〈53:58〉

sempos adj.denot

RSTR

ADDR
member

and
〈91:94〉

sempos x

CONJ
member

ADDR
member

ADDR
member

ADDR
member

Figure 2: Semantic dependency graphs for the running example A similar technique is almost impossible to apply
to other crops, such as cotton, soybeans and rice: Prague Tectogrammatical Graphs (PTG). In addition to node
properties, visualized similarly to the EDS in Figure 1, boolean edge attributes are abbreviated below edge labels,
for true values.

the deep object of apply can be argued to not have
a semantic contribution of their own.

The ADDR argument relation to the apply pred-
icate has been recursively propagated to both el-
ements of the apposition and to all members of
the coordinate structure. Accordingly, edge labels
in PTG are not always functional, in the sense of
allowing multiple outgoing edges from one node
with the same label.

In FGD, role labels (called functors) ACT(or),
PAT(ient), ADDR(essee), ORIG(in), and EFF(ect)
indicate ‘participant’ positions in an underlying va-
lency frame and, thus, correspond more closely to
the numbered argument positions in other frame-
works than their names might suggest.5 The PTG
annotations are grounded in a machine-readable
valency lexicon (Urešová et al., 2016), and the
frame values on verbal nodes in Figure 2 indi-
cate specific verbal senses in the lexicon.

5Accordingly, multiple instances of the same core partic-
ipant role—as ADDR:member in Figure 2—will only occur
with propagation of dependencies into paratactic construc-
tions.

Universal Conceptual Cognitive Annotation
Universal Cognitive Conceptual Annotation
(UCCA; Abend and Rappoport, 2013) is based
on cognitive linguistic and typological theo-
ries, primarily Basic Linguistic Theory (Dixon,
2010/2012). The shared task targets the UCCA
foundational layer, which focuses on argument
structure phenomena (where predicates may be
verbal, nominal, adjectival, or otherwise). This
coarse-grained level of semantics has been shown
to be preserved well across translations (Sulem
et al., 2015). It has also been successfully used
for improving text simplification (Sulem et al.,
2018c), as well as to the evaluation of a number
of text-to-text generation tasks (Birch et al., 2016;
Sulem et al., 2018a; Choshen and Abend, 2018).

The basic unit of annotation is the scene, denot-
ing a situation mentioned in the sentence, typically
involving a predicate, participants, and potentially
modifiers. Linguistically, UCCA adopts a notion of
semantic constituency that transcends pure depen-
dency graphs, in the sense of introducing separate,
unlabeled nodes, called units. One or more labels
are assigned to each edge. Formally, UCCA has a

5

A

similar

S

technique

A

F E

C

is

almost impossible

E C

to apply

to other crops ,

such as cotton , soybeans and rice

R C U C N C

R E C U E

A F D F P A

.

U

Figure 3: Universal Conceptual Cognitive Annotation (UCCA), foundational layer, for the running example A
similar technique is almost impossible to apply to other crops, such as cotton, soybeans and rice. The dashed edge
whose target is the node anchored to technique abbreviates a boolean remote edge attribute.

Type (1) flavor, where leaf (or terminal) nodes of
the graph are anchored to possibly discontinuous
sequences of surface sub-strings, while interior (or
‘phrasal’) graph nodes are formally unanchored.

The UCCA graph for the running example (see
Figure 3) includes a single scene, whose main re-
lation is the Process (P) evoked by apply. It also
contains a secondary relation labeled Adverbial
(D), almost impossible, which is broken down into
its Center (C) and Elaborator (E); as well as two
complex arguments, labeled as Participants (A). Un-
like the other frameworks in the task, the UCCA
foundational layer integrates all surface tokens into
the graph, possibly as the targets of semantically
bleached Function (F) and Punctuation (U) edges.
UCCA graphs need not be rooted trees: Argument
sharing across units will give rise to reentrant nodes
much like in the other frameworks. For example,
technique in Figure 3 is both a Participant in the
scene evoked by similar and a Center in the parent
unit. UCCA in principle also supports implicit (un-
expressed) units which do not correspond to any
tokens, but these are currently excluded from pars-
ing evaluation and, thus, suppressed in the UCCA
graphs distributed in the context of the shared task.

Abstract Meaning Representation The shared
task includes Abstract Meaning Representation
(AMR; Banarescu et al., 2013), which in the MRP
hierarchy of different formal types of semantic
graphs (see §2 above) is simply unanchored, i.e.
represents Flavor (2). The AMR framework is inde-
pendent of particular approaches to derivation and
compositionality and, accordingly, does not make
explicit how elements of the graph correspond to
the surface utterance. Although most AMR pars-
ing research presupposes a pre-processing step that

‘aligns’ graph nodes with (possibly discontinuous)
sets of tokens in the underlying input, this anchor-
ing is not part of the meaning representation proper.

At the same time, AMR frequently invokes lexi-
cal decomposition and normalization towards ver-
bal senses, such that AMR graphs often appear to
‘abstract’ furthest from the surface signal. Since
the first general release of an AMR graph bank in
2014, the framework has provided a popular tar-
get for data-driven meaning representation parsing
and has been the subject of two consecutive tasks
at SemEval 2016 and 2017 (May, 2016; May and
Priyadarshi, 2017).

The AMR example graph in Figure 4 has a topo-

possible-01
polarity -

apply-02

ARG1

almost

mod (domain)

technique

ARG1

crop

ARG2

resemble-01

(ARG1)-of

other

mod (domain)

exemplify-01

(ARG1)-of

and

ARG0

cotton

op1

soybean

op2

rice

op3

et-cetera

op4

Figure 4: Abstract Meaning Representation (AMR) for
the running example A similar technique is almost im-
possible to apply to other crops, such as cotton, soy-
beans and rice. Edge labels in parentheses indicate nor-
malized (i.e. un-inverted) roles.

6

impossible.a.01

in

time.n.08

in

similar.a.01

in

almost.r.01

in

proposition.n.01

in technique.n.01

in

ATTRIBUTION

"now"

Theme TimeTopic Degree EQUAttribute

soybean.n.03

in

entity.n.01

in

apply.v.01

in

rice.n.01

in

cotton.n.01

in

crop.n.01

in

SubSub SubTheme Goal NEQInstance

crop.n.01

PRESUPPOSITION

in

Figure 5: Discourse Representation Graph (DRG) for the running example A similar technique is almost impossible
to apply to other crops, such as cotton, soybeans and rice. Different node shapes are not formally part of the graph
but serve as a visual aid to distinguish different types of the underlying DRS elements.

logy broadly comparable to EDS, with some no-
table differences. Similar to the UCCA example
graph (and unlike EDS), the AMR representation
of the coordinate structure is flat. Although most
lemmas are linked to derivationally related forms
in the sense lexicon, this is not universal, as seen
by the nodes corresponding to similar and such as,
which are labeled as resemble-01 and exemplify-01,
respectively. These sense distinctions (primarily
for verbal predicates) are grounded in the inventory
of predicates from the PropBank lexicon (Kings-
bury and Palmer, 2002; Hovy et al., 2006).

Role labels in AMR encode semantic argument
positions, with the particular roles defined accord-
ing to each PropBank sense, though the counting in
AMR is zero-based such that the ARG1 and ARG2
roles in Figure 4 often correspond to ARG2 and
ARG3, respectively, in the EDS of Figure 1. Prop-
Bank distinguishes such numbered arguments from
non-core roles labeled from a general semantic in-
ventory, such as frequency, duration, or domain.

Figure 4 also shows the use of inverted edges
in AMR, for example ARG1-of and mod. These
serve to allow annotators (and in principle also pars-
ing systems) to view the graph as a tree-like struc-
ture (with occasional reentrancies) but are formally
merely considered notational variants. Therefore,
the MRP rendering of the AMR example graph
also provides an unambiguous indication of the
underlying, normalized graph: Edges with a label
component shown in parentheses are to be reversed
in normalization, e.g. representing an actual ARG0
edge from resemble-01 to technique or a domain
edge from other to crop.

Given the non-compositionality of AMR anno-
tation, AMR allows the introduction of semantic
concepts which have no explicit lexicalization in
the text, for example the et-cetera element in the

coordinate structure in Figure 4. Conversely, like
in the other frameworks (except UCCA), some sur-
face tokens are analyzed as semantically vacuous.
For example, parallel to the PTG graph in Figure 2,
there is no meaning contribution annotated for the
determiner a (let alone for covert determiners in
bare nominals, as made explicit in EDS).

Discourse Representation Graphs Finally, Dis-
course Representation Graphs (DRG) provide a
graph encoding of Discourse Representation Struc-
ture (DRS), the meaning representations at the core
of Discourse Representation Theory (DRT; Kamp
and Reyle, 1993; Van der Sandt, 1992; Asher,
1993). DRSs can model many challenging se-
mantic phenomena including quantifiers, negation,
scope, pronoun resolution, presupposition accom-
modation, and discourse structure. Moreover, they
are directly translatable into first-order logic for-
mulas to account for logical inference.

DRG used in the shared task represents a type
of graph encoding of DRS that makes the graphs
structurally as close as possible to the structures
found in other frameworks; Abzianidze et al. (2020)
provide more details on the design choices in the
DRG encoding. The source DRS annotations are
taken from data release 3.0.0 of the Parallel Mean-
ing Bank (PMB; Abzianidze et al., 2017; Bos et al.,
2017).6 Although the annotations in the PMB are
compositionally derived from lexical semantics,
anchoring information is not explicit in its DRSs;
thus, (like AMR) the DRG framework formally
instantiates Flavor (2) of meaning representations.

The DRG of the running example is given in Fig-
ure 5. The concepts (vissualized as oval shapes) are
represented by WordNet 3.0 senses and semantic
roles (in diamond shapes) by the adapted version

6https://pmb.let.rug.nl/data.php

7

EDS PTG UCCA AMR DRG

Flavor 1 1 1 2 2

T
R

A
IN

Text Type newspaper newspaper mixed mixed mixed
Sentences 37,192 42,024 6,872 57,885 6,606

Tokens 861,831 1,026,033 171,838 1,049,083 44,692

VA
L

ID
A

T
E Text Type mixed mixed mixed mixed mixed

Sentences 3,302 1,664 1,585 3,560 885
Tokens 65,564 40,770 25,982 61,722 5,541

T
E

ST

Text Type mixed newspaper mixed mixed mixed
Sentences 4,040 2,507 600 2,457 898

Tokens 68,280 59,191 18,633 49,760 5,991

Table 1: Quantitative summary of English gold-standard training, validation, and evaluation data for the five frame-
works in the cross-framework track; token counts reflect the morpho-syntactic companion parses, see §4.

of VerbNet roles. Nodes with quoted labels rep-
resent entities which semantically behave as con-
stants. Such a node is used for the indexical “now”,
modelling the time of speech, which is part of the
semantics of the present-tense copula is.

Explicit encoding of the scope is one of the main
differences between DRG and the other frame-
works. Scopes can be triggered by discourse seg-
ments, negation, universal quantification, clause
embedding (e.g. to apply . . .), and presuppositions
(e.g. other crops). The scopes are represented as
unlabeled (square-shaped) nodes in DRG (UCCA
also has unlabeled nodes, albeit for a different rea-
son). The node for the first discourse segment is
treated as a root, which is connected to the scope
of the embedded clause by the ATTRIBUTION dis-
course relation. The latter scope presupposes the
scope containing a crop which is different (with
NEQ inequality) from the group of crops consist-
ing of (with the Sub semantic role) rice, soybeans,
and cotton. Each concept, represented by a Word-
Net synset, has explicitly assigned its scope via in
edges.7

Compared to the other frameworks, DRG struc-
tures are larger in size due to the number of se-
mantic relations, explicit nodes for scope, scope
membership edges, role reification, and informa-
tion about the time (which usually introduces at
least four additional nodes).

7Since in principle the scope of a semantic role cannot be
uniquely determined by the scopes of its arguments, semantic
roles are reified as nodes and can have ingoing in edges. But
whenever the scopes of a role and its arguments coincide,
the scope membership edge for the role is omitted and hence
recoverable. This decision decreases the number of edges in
DRG.

4 Task Setup

The following paragraphs summarize the ‘logistics’
of the MRP 2020 shared task. Except for the addi-
tion of the new cross-lingual track, the overall task
setup mirrored that of the 2019 predecessor; please
see Oepen et al. (2019) for additional background.

Cross-Framework Track The English training,
validation, and evaluation data are summarized in
Table 1. For EDS, PTG, UCCA, and AMR the
provenance of these gold-standard annotations is
the same as in the MRP 2019 setup (Oepen et al.,
2019).8 The DRG target structures have been con-
verted using the procedure sketched in §3 above.
Unlike in the 2019 edition of the task, designated
validation segments have been provided for all five
frameworks in the cross-framework track; this data
could be used during system development, e.g. for
parameter tuning, but not for training the final sys-
tem submission. For EDS, UCCA, and AMR, the
2020 validation data corresponds to the 2019 evalu-
ation segments, thus allowing some comparability
across the two editions of the MRP shared task.

As a common point of reference, the training
data includes a sample of 89 WSJ sentences an-
notated in all five frameworks (twenty for DRG);
for all frameworks but DRG, the evaluation data
further includes parallel annotations over the same
random selection of 100 sentences from the novel
The Little Prince (by Antoine de Saint-Exupéry) as
used in MRP 2019, dubbed LPPS. These parallel
subsets of the gold-standard data are available for
public download from the task site (see §9 below).

8There are slightly more EDS and PTG (compared to PSD
in 2019) graphs this year, because the two underlying re-
sources are no longer intersected; for UCCA, the 2020 release
includes additional, recent gold-standard annotations.

8

EDS PTG UCCA AMR−1 DRG

(02) Average Tokens per Graph 22.17 24.42 25.01 18.12 6.77
(03) Average Nodes per Token 1.26 0.74 1.33 0.64 2.09
(04) Distinct Edge Labels 10 72 15 101 16

P
R

O
P

O
R

T
IO

N
S (05) Percentage of top nodes 0.99 1.27 1.66 3.77 3.40

(06) Percentage of node labels 29.02 21.61 – 43.91 39.81
(07) Percentage of node properties 12.54 26.22 – 7.63 –
(08) Percentage of node anchors 29.02 19.63 38.80 – –
(09) Percentage of (labeled) edges 28.43 26.10 56.88 44.69 56.79
(10) Percentage of edge attributes – 5.17 2.66 – –

T
R

E
E

N
E

SS

(11) %g Rooted Trees 0.09 22.63 28.19 22.05 0.35
(12) %g Treewidth One 68.60 22.67 34.17 49.91 0.35
(13) Average Treewidth 1.317 2.067 1.691 1.561 2.131
(14) Maximal Treewidth 3 7 4 5 5
(15) Average Edge Density 1.015 1.177 1.055 1.092 1.265
(16) %n Reentrant 32.77 16.23 4.90 19.89 25.92
(17) %g Cyclic 0.27 33.97 0.00 0.38 0.27
(18) %g Not Connected 1.90 0.00 0.00 0.00 0.00
(19) %g Multi-Rooted 99.93 0.00 0.00 71.64 32.32

Table 2: Contrastive graph statistics for the MRP 2020 English training data using a subset of the properties defined
by Kuhlmann and Oepen (2016). Here, %g and %n indicate percentages of all graphs and nodes, respectively, in
each framework; AMR−1 refers to the normalized form of the graphs, with inverted edges reversed, as discussed
in §3. The second block of statistics indicates the proportional distribution of different formal types of information
in the graphs, according to the categorization used in the MRP cross-framework evaluation metric (see §5).

Table 2 provides a quantitative side-by-side com-
parison of the training data, using some of the
graph-theoretic properties discussed by Kuhlmann
and Oepen (2016); see §2 for semi-formal def-
initions. The table indicates clear differences
among the frameworks. The underlying input
strings for AMR (where text selection is more var-
ied), for example, are shorter, and much shorter
in turn for DRG. EDS, UCCA, and DRG have
many more nodes per token, on average, than the
other frameworks—reflecting lexical decomposi-
tion, ‘phrasal’ grouping, and role reification, re-
spectively, as evident in Figures 1, 3, and 5. In
some respects, the PTG and UCCA graphs are
more tree-like than graphs in the other frameworks,
for example in their proportions of actual rooted
trees, the frequencies of reentrant nodes, and the
lack of multi-rooted structures. At the same time,
PTG exhibits comparatively high average and max-
imal treewidth and is the only framework with a
non-trivial percentage of cyclic graphs.

Cross-Lingual Track For four of the frame-
works (excluding EDS), gold-standard training and
evaluation data has been compiled in other lan-
guages than English: Mandarin Chinese for AMR,
Czech for PTG, and German for UCCA and DRG.
For UCCA and in particular DRG, however, avail-
able data is comparatively limited, as summarized
in Table 3. These target representations constitute a

separate cross-lingual track, which transcends the
MRP 2019 task setup.

Additional Resources For reasons of compara-
bility and fairness, the shared task constrained
which additional data or pre-trained models (e.g.
corpora, word embeddings, language models, lex-
ica, or other annotations) can be legitimately
used besides the resources distributed by the task
organizers—such that all participants should in
principle have access to the same range of data.
However, to keep such constraints to the minimum
required, a ‘white-list’ of legitimate resources was
compiled from nominations by participants (with a
cut-off date eight weeks before the end of the eval-

PTG UCCA AMR DRG

Language Czech German Chinese German
Flavor 1 1 1 2

T
R

A
IN

Text Type newspaper mixed mixed mixed
Sentences 43,955 4,125 18,365 1,575

Tokens 740,466 95,634 428,054 9,088

T
E

ST

Text Type newspaper mixed mixed mixed
Sentences 5,476 444 1,713 403

Tokens 92,643 10,585 39,228 2,384

Table 3: Quantitative summary of gold-standard data
for the four frameworks in the cross-lingual track.

9

uation period).9 Thus, the task design reflects what
is at times called a closed track, where participants
are constrained in which additional data and pre-
trained models can be used in system development.

Companion Syntactic Parses At a technical
level, training (and evaluation) data were dis-
tributed in two formats, (a) as sequences of ‘raw’
sentence strings and (b) in pre-tokenized, part-
of-speech–tagged, lemmatized, and syntactically
parsed form. For the latter, premium-quality
morpho-syntactic dependency analyses were pro-
vided to participants, called the MRP 2020 compan-
ion parses. These parses were obtained using a pre-
release of the ‘future’ UDPipe architecture (Straka,
2018; Straka and Straková, 2020), trained on avail-
able gold-standard UD 2.x treebanks, for English
augmented with conversions from PTB-style anno-
tations in the WSJ and OntoNotes corpora (Hovy
et al., 2006), using the UD-style CoreNLP 4.0 to-
kenizer (Manning et al., 2014) and jack-knifing
where appropriate (to avoid overlap with the texts
underlying the MRP semantic graphs).

Rules of Participation While the various mean-
ing representation frameworks and graph banks
represented in the shared task inevitably present
considerable linguistic variation, all MRP 2020
data was repackaged in a uniform and normalized
abstract representation with a common serializa-
tion, the same JSON Lines format as used in the
previous year (Oepen et al., 2019). Because some
of the semantic graph banks involved in the shared
task had originally been released by the Linguis-
tic Data Consortium (LDC), the training data was
made available to task participants by the LDC
under no-cost evaluation licenses. All task data (in-
cluding system submissions and evaluation results)
is being prepared for general release through the
LDC, while subsets that are copyright-free will also
become available for direct, open-source download.

The shared task was first announced in March
2020, the initial release of the cross-framework
training data became available in late April, and
the evaluation period ran between July 27 and Au-
gust 10, 2020; during this period, teams obtained
the unannotated input strings for the evaluation
data and had available a little more than two weeks
to prepare and submit parser outputs. Submission
of semantic graphs for evaluation was through the

9See http://svn.nlpl.eu/mrp/2020/public/
resources.txt for the list of legitimate extra resources.

EDS PTG UCCA AMR DRG

Top Nodes 3 3 3 3 3

Node Labels 3 3 7 3 3

Node Properties 3 3 7 3 7

Node Anchors 3 3 3 7 7

Labeled Edges 3 3 3 3 3

Edge Attributes 7 3 3 7 7

Table 4: Different tuple types per framework.

on-line CodaLab infrastructure. Teams were al-
lowed to make repeated submissions, but only the
most recent successful upload to CodaLab within
the evaluation period was considered for the offi-
cial, primary ranking of submissions. Task partici-
pants were encouraged to process all inputs using
the same general parsing system, but—owing to
inevitable fuzziness about what constitutes ‘one’
parser—this constraint was not formally enforced.

5 Evaluation

Following the previous edition of the shared task,
the official MRP metric for the task is the micro-
average F1 score across frameworks over all tuple
types that encode ‘atoms’ of information in MRP
graphs. The cross-framework metric uniformly
evaluates graphs of different flavors, regardless of
a specific framework exhibiting (a) labeled or un-
labeled nodes or edges, (b) nodes with or without
anchors, and (c) nodes and edges with optional
properties and attributes, respectively (see Table 4).

The MRP metric generalizes earlier framework-
specific metrics (Dridan and Oepen, 2011; Cai
and Knight, 2013; Hershcovich et al., 2019a) in
terms of decomposing each graph into sets of
typed tuples, as indicated in Figure 6. To quantify
graph similarity in terms of tuple overlap, a corre-
spondence relation between the nodes of the gold-
standard and system graphs must be determined.
Adapting a search procedure for the NP-hard max-
imum common edge subgraph (MCES) isomor-
phism problem, the MRP scorer will search for the
node-to-node correspondence that maximizes the
intersection of tuples between two graphs, where
node identifiers (m and n in Figure 6) act like vari-
ables that can be equated across the gold-standard
and system graphs.10 This means that during eval-
uation all information in the MRP graphs is con-

10Conceptually, the search expands both graphs into larger
structures with ‘lightly labeled’ nodes and edges, e.g. treat-
ing node properties much like ‘pseudo-edges’ with globally
unique constant-valued target nodes.

10

Cross-Framework Cross-Lingual

Teams AMR DRG EDS PTG UCCA AMR DRG PTG UCCA Reference

Hitachi 3 3 3 3 3 3 3 3 3 Ozaki et al. (2020)
ÚFAL 3 3 3 3 3 3 3 3 3 Samuel and Straka (2020)
HIT-SCIR 3 3 3 3 3 3 3 3 3 Dou et al. (2020)
HUJI-KU 3 3 3 3 3 3 3 3 3 Arviv et al. (2020)
ISCAS 3 3 3 3 3 7 7 7 7
TJU-BLCU 3 3 3 3 3 3 3 3 7

JBNU 3 7 7 7 7 7 7 7 7 Na and Min (2020)
ÚFAL 3 3 3 3 3 3 3 3 3 Samuel and Straka (2020)

ERG 7 7 3 7 7 7 7 7 7 Oepen and Flickinger (2019)

Table 5: Overview of participating teams and the tracks they participated in. Columns correspond to tracks and
frameworks, and rows correspond to teams. The top block represents ‘official’ submissions, which participated
in the competition. The middle block represents ‘unofficial’ submissions, which were submitted after the closing
deadline. The bottom row represents the ERG baseline.

sidered with equal weight, i.e. tops, node and edge
labels, properties and attributes, and anchors.

MRP scoring is carried out using the open-
source mtool software—the Swiss Army Knife
of Meaning Representation11—which implements
a refinement of the MCES algorithm by McGre-
gor (1982). Based on pre-computed per-node re-
wards and upper bounds on adjacent edge corre-
spondences, candidate node-to-node mappings are
initialized and scheduled in decreasing order of
expected similarity. For increased efficiency (in
principle tractability, in fact), mtool will return
the best available solution when it exhausts its pre-
set search space limits. This anytime behavior of
the scores provides a distinction between exact
vs. approximate solutions (which contrasts with

11https://github.com/cfmrp/mtool

ln
p vp

le
a va

〈i:j〉

tops:
〈m〉

labels:
〈m, ln〉

properties:
〈m, p, vp〉

edges:
〈m,n, le〉
attributes:

〈m,n, le, a, va〉
anchors:

〈n, i, . . . , j〉

Figure 6: Representing an abstractMRP graph as a set
of typed tuples, with m and n as node identifiers for the
top and bottom node, respectively.

the greedy hill-climbing search of e.g. Smatch;
Cai and Knight, 2013). MRP scoring is robust
with respect to equivalent variations of values, e.g.
case and string vs. number type distinctions for
all literals. Comparison of anchor values ignores
whitespace character positions, internal segmen-
tation of adjacent anchors, and basic punctuation
marks in the left or right periphery of a normalized
anchor. Assuming the string Oh no! as a hypotheti-
cal parser input, the following anchorings will all
be considered equivalent: {〈0:6〉}, {〈0:2〉, 〈3:6〉},
{〈0:1〉, 〈1:6〉}, and {〈0:5〉}.

6 Submissions and Results

Six teams submitted parser outputs to the shared
task within the official evaluation period. In addi-
tion, we received two submissions after the sub-
mission deadline, which we mark as ‘unofficial’.
We further include results from an additional ‘ref-
erence’ system by one of the task co-organizers,
namely EDS outputs from the grammar-based ERG
parser (Oepen and Flickinger, 2019).

Table 5 presents an overview of the participating
systems and the tracks and frameworks they sub-
mitted results for. All official systems submitted
results for the cross-framework track (across all
frameworks), and additionally five of them submit-
ted results to the cross-lingual track as well (where
TJU-BLCU did not submit UCCA parser outputs
in the cross-lingual track). We note that the shared
task explicitly allowed partial submissions, in order
to lower the bar for participation (which is no doubt
substantial). Two of the teams—ISCAS and TJU-
BLCU—declined the invitation to submit a system
description paper to the shared task proceedings.

11

Team Cross-Framework Cross-Lingual

All EDS PTG UCCA AMR DRG All PTG UCCA AMR DRG

Hitachi 1 1 2 1 1 – – – – – –
1 1 1 2 1 2 1 2 3 1 1

ÚFAL
1 2 1 1 2 – – – – – –
1 2 2 1 1 1 1 1 1 2 2

HIT-SCIR 3 3 3 3 3 – – – – – –
3 3 3 2 3 3 3 3 2 3 3

HUJI-KU 4 5 4 4 5 – – – – – –
4 5 4 4 5 5 4 4 4 4 4

ISCAS 5 4 6 6 4 – – – – – –
5 4 6 6 4 4 – – – – –

TJU-BLCU 6 6 5 5 6 – – – – – –
6 6 5 5 6 6 5 5 – 5 5

Team Tops Labels Properties Anchors Edges Attributes All

P R F P R F P R F P R F P R F P R F P R F

Hitachi .93 .93 .93 .65 .68 .66 .63 .62 .62 .71 .70 .70 .82 .80 .81 .39 .32 .34 .85 .85 .85
.95 .95 .95 .72 .72 .72 .54 .54 .54 .57 .55 .56 .83 .80 .82 .24 .23 .24 .88 .85 .86

ÚFAL
.93 .93 .93 .68 .68 .68 .61 .60 .60 .69 .71 .70 .80 .79 .80 .42 .33 .36 .85 .85 .85
.94 .94 .94 .74 .73 .74 .55 .54 .54 .56 .57 .56 .80 .80 .80 .23 .24 .24 .87 .86 .86

HIT-SCIR .94 .94 .94 .63 .64 .64 .45 .41 .43 .71 .71 .71 .77 .76 .77 .37 .30 .33 .80 .80 .80
.94 .94 .94 .70 .69 .69 .44 .37 .40 .57 .56 .57 .77 .75 .76 .22 .22 .22 .82 .80 .81

HUJI-KU .87 .84 .85 .36 .36 .36 .29 .18 .20 .66 .67 .67 .67 .62 .64 .15 .07 .10 .73 .63 .67
.88 .83 .85 .29 .29 .29 .40 .24 .28 .51 .51 .51 .65 .62 .64 .07 .08 .07 .73 .58 .64

ISCAS .70 .70 .70 .50 .49 .48 .22 .26 .24 .35 .41 .37 .52 .35 .39 – – – .53 .43 .43
.75 .74 .74 .56 .55 .55 .22 .22 .21 .29 .31 .29 .57 .40 .44 – – – .58 .46 .48

TJU-BLCU .83 .82 .83 .41 .29 .34 – – – .45 .30 .35 .53 .30 .37 – – – .57 .30 .39
.75 .74 .75 .54 .29 .38 – – – .33 .14 .19 .44 .18 .24 – – – .55 .22 .30

ÚFAL
.93 .93 .93 .68 .68 .68 .61 .60 .60 .71 .71 .71 .80 .80 .80 .43 .34 .37 .85 .85 .85
.94 .94 .94 .74 .73 .74 .55 .54 .54 .57 .57 .57 .80 .80 .80 .23 .24 .24 .87 .86 .87

Team Tops Labels Properties Anchors Edges Attributes All

P R F P R F P R F P R F P R F P R F P R F

Hitachi .96 .96 .96 .65 .65 .65 .44 .42 .43 .7 .68 .69 .8 .77 .78 .27 .27 .26 .86 .84 .85
ÚFAL .95 .95 .95 .66 .66 .66 .43 .43 .43 .65 .72 .68 .78 .79 .79 .3 .33 .31 .84 .86 .85
HIT-SCIR .95 .95 .95 .53 .52 .53 .21 .18 .20 .47 .47 .47 .66 .65 .66 .23 .24 .23 .72 .67 .69
HUJI-KU .9 .84 .87 .15 .15 .15 .31 .32 .32 .42 .42 .42 .59 .58 .59 .08 .08 .08 .69 .54 .60
TJU-BLCU .56 .55 .56 .41 .21 .27 – – – .23 .12 .15 .28 .13 .18 – – – .35 .15 .20

ÚFAL .95 .95 .95 .66 .66 .66 .43 .43 .43 .71 .72 .72 .79 .79 .79 .3 .33 .31 .86 .86 .86

Table 6: Official rankings (top) for both tracks, and MRP scores for the cross-framework (middle) and cross-lingual
(bottom) tracks. Each cross-framework submission is evaluated in two settings, where the top scores present results
for the LPPS sub-corpus, and the bottom ones for the full English evaluation set. The rankings are presented both
for the overall average scores (All), and separately per framework. Evaluation results are broken down by ‘atomic’
component pieces. For each component we report precision (P), recall (R), and F1 score (F). Entries in the two
MRP tables are split into the same blocks as in Table 5: official (top) vs. unofficial (bottom) submissions, omitting
the two highly partial unofficial submissions by JBNU and ERG.

12

EDS PTG UCCA AMR DRG

P R F P R F P R F P R F P R F

Hitachi 0.97 0.97 0.97 0.80 0.84 0.82 0.86 0.80 0.83 0.78 0.79 0.79 – – –
0.94 0.93 0.94 0.89 0.89 0.89 0.78 0.72 0.75 0.83 0.80 0.82 0.94 0.92 0.93

ÚFAL
0.96 0.95 0.95 0.81 0.84 0.83 0.84 0.82 0.83 0.77 0.79 0.78 – – –
0.93 0.92 0.93 0.88 0.89 0.88 0.75 0.78 0.76 0.81 0.79 0.80 0.95 0.93 0.94

HIT-SCIR 0.90 0.89 0.89 0.78 0.78 0.78 0.84 0.80 0.82 0.68 0.71 0.70 – – –
0.87 0.88 0.87 0.85 0.84 0.84 0.75 0.74 0.75 0.74 0.66 0.70 0.90 0.89 0.89

HUJI-KU 0.83 0.76 0.79 0.71 0.49 0.58 0.80 0.76 0.78 0.56 0.5 0.53 – – –
0.83 0.76 0.80 0.69 0.44 0.54 0.73 0.73 0.73 0.57 0.49 0.52 0.84 0.5 0.63

ISCAS 0.86 0.90 0.88 0.12 0.25 0.16 0.45 0.08 0.13 0.68 0.47 0.56 – – –
0.85 0.87 0.86 0.14 0.26 0.18 0.42 0.03 0.06 0.74 0.53 0.61 0.78 0.63 0.69

TJU-BLCU 0.83 0.51 0.64 0.41 0.24 0.30 0.52 0.13 0.21 0.50 0.34 0.4 – – –
0.84 0.35 0.49 0.38 0.15 0.21 0.50 0.06 0.10 0.54 0.21 0.30 0.49 0.34 0.40

JBNU – – – – – – – – – 0.74 0.73 0.74 – – –
– – – – – – – – – 0.71 0.62 0.66 – – –

ÚFAL
0.96 0.95 0.95 0.83 0.84 0.84 0.84 0.81 0.83 0.77 0.79 0.78 – – –
0.93 0.92 0.93 0.89 0.89 0.89 0.75 0.78 0.76 0.81 0.79 0.80 0.95 0.93 0.94

ERG 0.95 0.96 0.96 – – – – – – – – – – – –
0.94 0.91 0.93 – – – – – – – – – – – –

Table 7: Per-framework results for the cross-framework track, using the same groupings as in Table 6.

Table 6 presents the official rankings for the offi-
cial submissions (top), including an overall score
for each track and per-framework rankings. Rank-
ings are given over the LPPS dataset, a sample
from the Little Prince annotated by all frameworks
save for DRG, and over the entire test set. Results
are consequently more readily comparable for the
LPPS sub-corpus, but should be more robust on the
entire test corpus, due to its larger size (see §4).
That said, LPPS and overall test results are very
similar, both in terms of ranking and in terms of
bottom line scores.

The main task results are summarized in Ta-
ble 6 for both the cross-framwork (middle) and
cross-lingual (bottom) tracks. Results are broken
down into component pieces. Edge attributes are
only present in PTG and UCCA. While they are
still predicted with fairly low results, this consti-
tutes a notable improvement over the findings of
MRP 2019 (the best score on the official track on
UCCA edge attributes was 0.12 F1 then, as op-
posed to 0.36 now). Anchors are predicted with
substantially lower scores compared to MRP 2019,
probably since we did not include in MRP 2020
the bi-lexical Flavor (0) frameworks. Edges and
tops are slightly more accurate, while labels and
properties slightly less, but these are not directly
comparable since the frameworks and data are dif-
ferent. See §8 for an overall discussion of the state
of the art, considering MRP 2019 and MRP 2020.

Results show that the Hitachi and ÚFAL sub-

missions share the first place for both tracks, and
together rank first or second for almost all the in-
dividual frameworks (save for UCCA parsing in
the cross-lingual track, where Hitachi ranks third).
HIT-SCIR further ranks second for UCCA parsing
in both tracks. Interestingly, rankings in the per-
framework track are similar across frameworks,
which may indicate some similarity in the parsing
problem exhibited by different linguistic schemes,
despite differences in structure and content.

Per-framework scores using the official MRP
metric are given in Table 7 for the cross-framework
track and Table 8 for the cross-lingual track. Exam-
ining these results, we note that cross-framework
and cross-lingual scores are quite similar, an en-
couraging sign of cross-linguistic applicability. An-
other trend to note is that precision and recall are
surprisingly close to each other for many systems,
often identical.

7 Overview of Approaches

Compared with systems from MRP 2019, there has
been a fairly clear shift in approaches for partic-
ipating systems this year, resulting in significant
improvements in performance. The improvements
for some of the frameworks are fairly substantial.
For example, the Hitachi system, one of the two
winning systems, achieves a score of 0.82 F1 in
AMR parsing, in comparison to 0.73 F1 achieved
by the top AMR parser in MRP 2019. This reflects
an improvement of over eight points, reflecting a

13

PTG UCCA AMR DRG

P R F P R F P R F P R F

Hitachi .89 .86 .87 .79 .79 .79 .82 .79 .8 .93 .94 .93
ÚFAL .91 .91 .91 .79 .83 .81 .75 .81 .78 .90 .89 .90
HIT-SCIR .82 .75 .78 .78 .82 .80 .60 .42 .49 .68 .69 .68
HUJI-KU .65 .53 .58 .74 .76 .75 .55 .38 .45 .82 .50 .62
TJU-BLCU .51 .14 .22 – – – .46 .17 .25 .42 .28 .34

ÚFAL .93 .92 .92 .79 .83 .81 .81 .8 .81 .9 .89 .9

Table 8: Per-framework results for the cross-lingual track.

number of innovations from the participants this
year, as well as contemporaneous developments
outside the shared task (see §8).

Broadly speaking, top performers at MRP 2020
have all adopted a system architecture that is based
on an encoder–decoder framework in which the
input sentence is encoded into contextualized token
embeddings that are used as input to the decoder.
The system vary in the decoding strategies.

The Hitachi system adopts a transformer-based
encoder–decoder architecture. The system uses
the standard transformer encoder in which self-
attention and position embeddings are used to com-
pute the contextualized token embeddings. In its
decoder, this system has a number of innovations,
however. First of all, the system rewrites the mean-
ing representation graphs into a reversible Plain
Graph Notation (PGN), and enhances PGN with a
number of pseudo-nodes that indicate the end of
node prediction, the end of label prediction, etc.
These correspond well with parsing actions com-
monly found in transition-based systems. In this
sense, the systems combines the strengths of graph-
based parsing on the encoder side resulting from
self attention with efficiency of transition-based
parsing on the decoder side. Another innovation
is the use of a ‘hierarchical’ decoding process in
which the model first predicts a mode, and then pre-
dicts the next action conditioned on the mode. For
example, if the mode is G(raph), the decoder pre-
dicts a meta node, and if the mode is S(urface), the
decoder predicts the node label of a specific con-
cept. This allows a fair competition among actions
that are similar in nature.

The PERIN system computes contextualized to-
ken embeddings with XLM-R (Conneau et al.,
2019) on the encoder side, and then on the de-
coder side, uses separate attention heads to predict
the node labels, identify anchors for nodes, and
predict edges between nodes, as well as edge la-
bels. Because the label set for nodes is typically

very large, rather than predicting the node labels di-
rectly, the PERIN system reduces the search space
by predicting ‘relative rules’ that can be used to
map surface token strings to node labels in meaning
representation graphs, an idea that is similar to the
use of Factored Concept Labels in Wang and Xue
(2017). Another innovation of the PERIN system
is that it is trained with a permutation-invariant loss
function that returns the same value independently
of how the nodes in the graph are ordered. This
captures the unordered nature of nodes in (most of
the MRP 2020) meaning representation graphs and
prevents situations in which the model is penalized
for generating the correct nodes in an order that is
different from that in the training data.

The HIT-SCIR and JBNU systems adopt the it-
erative inference framework first proposed by Cai
and Lam (2020) for Flavor (2) meaning represen-
tation graphs that do not enforce strict correspon-
dences between tokens in the input sentence and
the concepts in meaning representation graphs. The
iterative inference framework is also based on an
encoder–decoder architecture. The encoder takes
the sentence as input and computes contextualized
token embeddings that are used as text memory
by a decoder that iteratively predicts the next node
given the text memory and a predicted parent node
in the partially constructed graph memory at the
previous time step, and then identifies the parent
node for the newly predicted node from the par-
tially constructed graph. While the HIT-SCIR sys-
tem essentially uses the Cai and Lam (2020) archi-
tecture with little modification, the JBNU system
attempts to extend the work of Cai and Lam (2020)
by using a shared state to make both predictions
but did not observe substantial improvements.

Transition-based systems, which had achieved
strong performance in the 2019 shared task, are
also represented in the competition this year. The
HIT-SCIR team uses a transition-based system to
parse Flavor (1) meaning representations where

14

there is a stricter correspondence between tokens in
the input sentence and concepts in the meaning rep-
resentation graph. The HIT-SCIR transition-based
system is essentially the overall top performing sys-
tem they developed for MRP 2019. It uses Stack
LSTM to compute transition states in the parsing
process, and the parsing actions are tailored to spe-
cific meaning representation frameworks. In the
training process, the system fine-tunes BERT con-
textualized encodings.

The HUJI-KU system also extends an entry in
the 2019 MRP shared task (originally called TUPA)
to parse additional frameworks and handle mean-
ing representation parsing in a multilingual set-
ting. TUPA is a transition-based system that sup-
ports general DAG parsing. TUPA applies separate
constraints tailored to each meaning representa-
tion framework. When parsing cross-framework
meaning representations for English, the system
is trained with a BERT-large-cased pretrained en-
coder, and when parsing cross-lingual meaning rep-
resentations, it is trained with multilingual BERT.

8 On the State of the Art

MRP 2019 (Oepen et al., 2019) yielded parsers
for five frameworks in a uniform format, of
which EDS, UCCA, and AMR are represented in
MRP 2020 again. Submissions included transition-,
factorization-, and composition-based systems, and
gold-standard target structures in 2019 were solely
for English. Comparability is limited by the fact
that two of the 2020 frameworks (PTG and DRG)
are new, training and (in particular) evaluation sets
for the others have been updated since MRP 2019,
and additional validation sets was introduced. How-
ever, the LPPS evaluation sub-corpus (Le Petite

EDS UCCA AMR

P R F P R F P R F

2019 .92 .93 .93 .84 .82 .83 .74 .72 .73
2020 .97 .97 .97 .86 .80 .83 .78 .79 .79

Table 9: Per-framework cross-task comparison of top
MRP metric scores on LPPS between the 2019 and
2020 editions of the MRP task, on the three frameworks
represented in both year, for English. The top systems
in MRP 2019 for EDS, UCCA, and AMR were Peking
(Chen et al., 2019), HIT-SCIR (Che et al., 2019), and
Saarland (Donatelli et al., 2019), respectively; in MRP
2020 the Hitachi system (Ozaki et al., 2020) was at the
top for all three frameworks, sharing the UCCA first
rank with ÚFAL (Samuel and Straka, 2020).

Prince) is identical between the two years for EDS,
UCCA, and AMR. This allows a comparison on
nearly equal grounds: as Table 9 shows, in terms
of LPPS F1, the state-of-the-art has substantially
improved for EDS and AMR parsing, but stayed
the same for UCCA. However, as mentioned in §6,
remote edge detection for UCCA improved sub-
stantially, though it carries only a small weight in
terms of overall scores due to the scarcity of remote
edges.

For EDS, the strongest results were obtained
in the MRP 2019 official competition by SUDA–
Alibaba (Zhang et al., 2019c). However, in the
post-evaluation stage, they were outperformed by
the Peking system (Chen et al., 2019). Both used
factorization-based parsing with pre-trained contex-
tualized language model embeddings (which has
consistently proved to be very effective for other
frameworks too). These parsers even approached
the performance of the carefully designed grammar-
based ERG parser (Oepen and Flickinger, 2019).

English PTG has not been comprehensively ad-
dressed by parsers prior to MRP 2020, but a bi-
lexical framework called PSD is a subset of PTG.
It was included in the SDP shared tasks (Oepen
et al., 2014, 2015) as well as in MRP 2019, and has
been addressed by numerous parsers since (Kurita
and Søgaard, 2019; Kurtz et al., 2019; Jia et al.,
2020, among others). Wang et al. (2019) estab-
lished the state of the art in supervised PSD us-
ing a second-order factorization-based parser, and
Fernández-González and Gómez-Rodrı́guez (2020)
matched it using a stack-pointer parser.

Czech PTG, in its original form as published
in the Prague Dependency Treebank (Hajič et al.,
2018), has been used in several version of the
TectoMT machine translation system (Rosa et al.,
2016); however, parsing results have not been pub-
lished separately. A (lossy) conversion has been
included in the CoNLL 2009 Shared Task on Se-
mantic Role Labeling (Hajič et al., 2009), but the
differences in task design are and conversion make
empirical comparison impossible.

UCCA parsing has been dominated by transition-
based methods (Hershcovich et al., 2017, 2018;
Che et al., 2019). However, both English and Ger-
man UCCA parsing featured in a SemEval shared
task (Hershcovich et al., 2019b), where the best
system, a composition-based parser (Jiang et al.,
2019), treated the task as constituency tree parsing
with the recovery of remote edges as a postprocess-

15

ing task.

Prior to MRP 2019, Lyu and Titov (2018) parsed
AMR using a joint probabilistic model with la-
tent alignments, avoiding cascading errors due to
alignment inaccuracies and outperforming previ-
ous approaches. Lyu et al. (2020) recently im-
proved the latent alignment parser using stochas-
tic softmax. Lindemann et al. (2019) trained a
composition-based parser on five frameworks in-
cluding AMR and EDS, using the Apply–Modify
algebra, on which the third-ranked Saarland sub-
mission to MRP 2019 was based (Donatelli et al.,
2019). They employed multi-task training with
all tackled semantic frameworks and UD, estab-
lishing the state of the art on all graph banks but
AMR 2017. Since then, a new state-of-the-art has
been established for English AMR, using sequence-
to-sequence transduction (Zhang et al., 2019a,b)
and iterative inference with graph encoding (Cai
and Lam, 2019, 2020). Xu et al. (2020a) improved
sequence-to-sequence parsing for AMR by using
pre-trained encoders, reaching similar performance
to Cai and Lam (2020). Astudillo et al. (2020) in-
troduced a stack-transformer to enhance transition-
based AMR parsing (Ballesteros and Al-Onaizan,
2017), and Lee et al. (2020) improved it further,
using a trained parser for mining oracle actions
and combining it with AMR-to-text generation to
outperform the state of the-art.

Wang et al. (2018) parsed Chinese AMR with
a transition-based system. For cross-lingual AMR
parsing, Blloshmi et al. (2020) trained an AMR
parser similar to the approach of Zhang et al.
(2019b), using cross-lingual transfer learning, out-
performing the transition-based cross-lingual AMR
parser of Damonte and Cohen (2018) on German,
Spanish, Italian, and Chinese.

DRG is a novel graph representation format for
DRS that was specially designed for MRP 2020 to
make it structurally as close as possible to other
frameworks (Abzianidze et al., 2020). However,
several semantic parsers exist for DRS, which em-
ploy different encodings. Liu et al. (2018) used
a DRG format that dominantly labels edges com-
pared to nodes. van Noord et al. (2018) process
DRSs in a clausal form, sets of triples and quadru-
ples. The latter format is more common among
DRS parsers, as it was officially used by the shared
task on DRS parsing (Abzianidze et al., 2019).
The shared task gave rise to several DRS parsers:
Evang (2019); Liu et al. (2019); van Noord (2019);

Fancellu et al. (2019), among which the best re-
sults (F1 = 0.85) were achieved by the word-level
sequence-to-sequence model with Tranformer (Liu
et al., 2019). Note that the DRS shared task used F1

calculated based on the DRS clausal forms, which
is not comparable to MRP F1 over DRGs.

Similarly to English DRG, German DRG has not
been used for semantic parsing prior to the shared
task due to the new DRG format. Moreover, seman-
tic parsing with German DRG is novel in the sense
that its DRS counterpart is also new. In German
DRG, concepts are grounded in English WordNet
3.0 (Fellbaum, 2012) senses assuming that synsets
are language-neutral. The mismatch between Ger-
man tokens and English lemmas of senses must be
expected to add additional complexity to German
DRG parsing.

Direct comparison to non-MRP results is impos-
sible: we are using a new version of AMRbank.
Gold-standard tokenization is not provided for any
of the frameworks. We use the MRP scorer. How-
ever, general trends appear consistent with recent
developments. Pretrained embeddings and cross-
lingual transfer help; but multi-task learning less so.
There is yet progress to be made in sharing infor-
mation between parsers for different frameworks
and making better use of their overlap.

9 Reflections and Outlook

The MRP series of shared tasks has contributed to
general availability of accurate data-driven parsers
for a broad range of different frameworks, with
performance levels ranging between 0.76 MRP F1

(English UCCA) and 0.94 F1 (English EDS). Pars-
ing accuracies in the cross-lingual track present
comparable levels of performance, despite limited
training data in the case of UCCA and DRG. Fur-
thermore, the evaluation sets for most of the frame-
works comprise different text types and subject
matters—offering some hope of robustness to do-
main variation. We expect that these parsers will en-
able follow-up experimentation on the utility of ex-
plicit meaning representation in downstream tasks
like, for example, relation extraction, argumenta-
tion mining, summarization, or text generation.

Maybe equally importantly, the MRP task design
capitalizes on uniformity of representations and
evaluation, enabling resource creators and parser
developers to more closely (inter)relate representa-
tions and parsing approaches across a diverse range
of semantic graph frameworks. This facilitates

16

both quantitative contrastive studies (e.g. the ‘post-
mortem’ analysis by Buljan et al. (2020), which
observes that top-performing MRP 2019 parsers
have complementary strengths and weaknesses)
but also more linguistic, qualitative comparison.
General availability of parallel gold-standard anno-
tations over the same text samples—drawing from
the WSJ and LPPS corpora—enables side-by-side
comparison of linguistic design choices in the dif-
ferent frameworks. This is an area of investigation
that we hope will see increased interest in the af-
termath of the MRP task series, to go well beyond
the impressionistic observations from §3 and ide-
ally lead to contrastive refinement across linguistic
schools and traditions.

Despite uniformity in packaging and evaluation,
cumulative overall complexity and inherent diver-
sity of the frameworks deemed participation in the
shared task a formidable challenge. Of the six-
teen teams who participated in MRP 2019, only
four teams (predominantly strong performers from
before) decided to submit parser outputs in 2020.
The two ‘newcomer’ teams, by comparison, only
made partial submissions in the cross-lingual track
and ended up not competing for top ranks over-
all. Similar trends of ‘competitive self-selection’
and declining participant groups for consecutive
instances have been observed with earlier CoNLL
shared task and similar benchmarking series. On
the upside, with the possible exception of English
AMR (where there has been much contemporane-
ous progress recently), the MRP 2020 empirical
results present a strong state-of-the-art benchmark
for meaning representation parsing.

On the more foundational question of the rele-
vance of explicit, discrete representations of sen-
tence meaning, the past several years of break-
through neural advances have been comparatively
insensitive to syntactico-semantic structure. In our
view, these developments have at least in part been
reflective of the stark lack of general techniques for
the encoding of hierarchical structure in end-to-end
neural architectures. Increased adoption of Graph
Convolutional Networks (Kipf and Welling, 2017)
and other hierarchical modeling techniques sug-
gest new opportunities for the exploration of both
structurally informed end-to-end archictures or e.g.
multi-task learning setups. Beyond such ultimately
performance-driven research, explicit encoding of
syntactico-semantic structure in our view further
bears promise in terms of model interpretability and

safe-guarding against ‘neural meltdown’ (e.g. dis-
carding something as foundational as negation or
inadvertently altering a date expression in summa-
rization or translation). In a similar vain, meaning
representations are being successfully applied in
evaluation, e.g. to quantify system output vs. gold
standard similarity beyond surface n-grams (Sulem
et al., 2018b; Xu et al., 2020b, inter alios).

All technical information regarding the
MRP 2019 shared task, including system sub-
missions, detailed official results, and links to
supporting resources and software are available
from the task web site at:

http://mrp.nlpl.eu

Acknowledgments

Several colleagues have assisted in designing
the task and preparing its data and software re-
sources. We thank Dotan Dvir (Hebrew University
of Jerusalem) for leading the annotation efforts on
UCCA. Dan Flickinger (Stanford University) cre-
ated fresh gold-standard annotations of some 1,000
WSJ strings, which form part of the EDS evalua-
tion graphs in 2020. Sebastian Schuster (Stanford
University) advised on how to convert the gold-
standard syntactic annotations from the venerable
PTB and OntoNotes treebanks to Universal Depen-
dencies, version 2.x, using ‘modern’ tokenization.
Anna Nedoluzhko and Jiřı́ Mı́rovský (Charles Uni-
versity in Prague) enhanced the PTG annotation
of LPPS data with previously missing items, most
notably coreference. Milan Straka (Charles Uni-
versity in Prague) made available an enhanced ver-
sion of his UDPipe parser and assisted in training
Czech, English, and German morpho-syntacic pars-
ing models (for the MRP companion trees). Jayeol
Chun (Brandeis University) provided invaluable as-
sistance in conversion of the Chinese AMR annota-
tions, preparation of the Chinese morpho-syntactic
companion trees, and provisioning of companion
alignments for the English AMR graphs.

We are grateful to the Nordic Language Process-
ing Laboratory (NLPL) and Uninett Sigma2, which
provided technical infrastructure for the MRP 2020
task. Also, we warmly acknowledge the assistance
of the Linguistic Data Consortium (LDC) in dis-
tributing the training data for the task to partici-
pants at no cost to anyone.

The work on UCCA and the HUJI-KU sub-
mission was partially supported by the Israel Sci-
ence Foundation (grant No. 929/17). The work

17

on PTG has been partially supported by the Min-
istry of Education, Youth and Sports of the Czech
Republic (project LINDAT/CLARIAH-CZ, grant
No. LM2018101) and partially by the Grant
Agency of the Czech Republic (project LUSyD,
grant No. GX20-16819X). The work on DRG was
supported by the NWO-VICI grant (288-89-003)
and the European Union Horizon 2020 research
and innovation programme (under grant agreement
No. 742204). The work on Chinese AMR data is
partially supported by project 18BYY127 under
the National Social Science Foundation of China
and project 61772278 under the National Science
Foundation of China.

References
Omri Abend and Ari Rappoport. 2013. UCCA. A

semantics-based grammatical annotation scheme. In
Proceedings of the 10th International Conference
on Computational Semantics, pages 1 – 12, Potsdam,
Germany.

Lasha Abzianidze, Johannes Bjerva, Kilian Evang,
Hessel Haagsma, Rik van Noord, Pierre Ludmann,
Duc-Duy Nguyen, and Johan Bos. 2017. The Par-
allel Meaning Bank: Towards a multilingual corpus
of translations annotated with compositional mean-
ing representations. In Proceedings of the 15th Con-
ference of the European Chapter of the Association
for Computational Linguistics: Volume 2, Short Pa-
pers, pages 242–247, Valencia, Spain. Association
for Computational Linguistics.

Lasha Abzianidze, Johan Bos, and Stephan Oepen.
2020. DRS at MRP 2020: Dressing up Discourse
Representation Structures as graphs. In Proceedings
of the CoNLL 2020 Shared Task: Cross-Framework
Meaning Representation Parsing, pages 23 – 32, On-
line.

Lasha Abzianidze, Rik van Noord, Hessel Haagsma,
and Johan Bos. 2019. The first shared task on dis-
course representation structure parsing. In Proceed-
ings of the IWCS Shared Task on Semantic Pars-
ing, Gothenburg, Sweden. Association for Compu-
tational Linguistics.

Ofir Arviv, Ruixiang Cui, and Daniel Hershcovich.
2020. HUJI-KU at MRP 2020: Two transition-
based neural parsers. In Proceedings of the CoNLL
2020 Shared Task: Cross-Framework Meaning Rep-
resentation Parsing, pages 73 – 82, Online.

Nicholas Asher. 1993. Reference to Abstract Objects
in Discourse. Kluwer Academic Publishers.

Ramon Fernandez Astudillo, Miguel Ballesteros,
Tahira Naseem, Austin Blodgett, and Radu Flo-
rian. 2020. Transition-based parsing with stack-
transformers. In Findings of EMNLP.

Miguel Ballesteros and Yaser Al-Onaizan. 2017. AMR
parsing using stack-LSTMs. In Proceedings of the
2017 Conference on Empirical Methods in Natu-
ral Language Processing, pages 1269–1275, Copen-
hagen, Denmark. Association for Computational
Linguistics.

Laura Banarescu, Claire Bonial, Shu Cai, Madalina
Georgescu, Kira Griffitt, Ulf Hermjakob, Kevin
Knight, Philipp Koehn, Martha Palmer, and Nathan
Schneider. 2013. Abstract Meaning Representation
for sembanking. In Proceedings of the 7th Linguis-
tic Annotation Workshop and Interoperability with
Discourse, pages 178 – 186, Sofia, Bulgaria.

Emily M. Bender, Dan Flickinger, Stephan Oepen,
Woodley Packard, and Ann Copestake. 2015. Lay-
ers of interpretation. On grammar and composition-
ality. In Proceedings of the 11th International Con-
ference on Computational Semantics, pages 239 –
249, London, UK.

Alexandra Birch, Omri Abend, Ondřej Bojar, and
Barry Haddow. 2016. HUME. Human UCCA-based
evaluation of machine translation. In Proceedings
of the 2016 Conference on Empirical Methods in
Natural Language Processing, pages 1264 – 1274,
Austin, TX, USA.

Rexhina Blloshmi, Rocco Tripodi, and Roberto Navigli.
2020. XL-AMR: Enabling cross-lingual AMR pars-
ing with transfer learning techniques. In Proceed-
ings of the 2020 Conference on Empirical Methods
in Natural Language Processing.

Alena Böhmová, Jan Hajič, Eva Hajičová, and Barbora
Hladká. 2003. The Prague Dependency Treebank:
A three-level annotation scenario. In Anne Abeillé,
editor, Treebanks. Building and Using Parsed Cor-
pora, pages 103 – 127. Kluwer Academic Publishers,
Dordrecht, The Netherlands.

Johan Bos, Valerio Basile, Kilian Evang, Noortje Ven-
huizen, and Johannes Bjerva. 2017. The Gronin-
gen Meaning Bank. In Nancy Ide and James Puste-
jovsky, editors, Handbook of Linguistic Annotation.
Springer Netherlands.

Maja Buljan, Joakim Nivre, Stephan Oepen, and Lilja
Øvrelid. 2020. A tale of three parsers: Towards di-
agnostic evaluation for meaning representation pars-
ing. In Proceedings of the 12th Language Resources
and Evaluation Conference, pages 1902–1909, Mar-
seille, France. European Language Resources Asso-
ciation.

Deng Cai and Wai Lam. 2019. Core semantic first: A
top-down approach for AMR parsing. In Proceed-
ings of the 2019 Conference on Empirical Methods
in Natural Language Processing and the 9th Inter-
national Joint Conference on Natural Language Pro-
cessing (EMNLP-IJCNLP), pages 3799–3809, Hong
Kong, China. Association for Computational Lin-
guistics.

Deng Cai and Wai Lam. 2020. AMR parsing via graph-
sequence iterative inference. In Proceedings of the

18

58th Annual Meeting of the Association for Compu-
tational Linguistics, pages 1290–1301, Online. As-
sociation for Computational Linguistics.

Shu Cai and Kevin Knight. 2013. Smatch. An evalua-
tion metric for semantic feature structures. In Pro-
ceedings of the 51th Meeting of the Association for
Computational Linguistics, pages 748 – 752, Sofia,
Bulgaria.

Wanxiang Che, Longxu Dou, Yang Xu, Yuxuan Wang,
Yijia Liu, and Ting Liu. 2019. HIT-SCIR at
MRP 2019: A unified pipeline for meaning rep-
resentation parsing via efficient training and effec-
tive encoding. In Proceedings of the Shared Task
on Cross-Framework Meaning Representation Pars-
ing at the 2019 Conference on Computational Natu-
ral Language Learning, pages 76 – 85, Hong Kong,
China.

Yufei Chen, Yajie Ye, and Weiwei Sun. 2019. Peking
at MRP 2019: Factorization- and composition-
based parsing for Elementary Dependency Struc-
tures. In Proceedings of the Shared Task on
Cross-Framework Meaning Representation Parsing
at the 2019 Conference on Computational Natural
Language Learning, pages 166 – 176, Hong Kong,
China.

Leshem Choshen and Omri Abend. 2018. Reference-
less measure of faithfulness for grammatical error
correction. In Proceedings of the 2015 Conference
of the North American Chapter of the Association
for Computational Linguistics, New Orleans, LA,
USA.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzmán, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2019. Unsupervised
cross-lingual representation learning at scale. arXiv
preprint arXiv:1911.02116.

Ann Copestake, Dan Flickinger, Carl Pollard, and
Ivan A. Sag. 2005. Minimal Recursion Semantics.
An introduction. Research on Language and Com-
putation, 3(4):281 – 332.

Marco Damonte and Shay B. Cohen. 2018. Cross-
lingual Abstract Meaning Representation parsing.
In Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 1 (Long Papers), pages 1146–1155, New
Orleans, Louisiana. Association for Computational
Linguistics.

Robert M. W. Dixon. 2010/2012. Basic Linguistic The-
ory. Oxford University Press.

Lucia Donatelli, Meaghan Fowlie, Jonas Groschwitz,
Alexander Koller, Matthias Lindemann, Mario
Mina, and Pia Weißenhorn. 2019. Saarland at
MRP 2019: Compositional parsing across all graph-
banks. In Proceedings of the Shared Task on Cross-
Framework Meaning Representation Parsing at the
2019 Conference on Computational Natural Lan-
guage Learning, pages 66 – 75, Hong Kong, China.

Longxu Dou, Yunlong Feng, Yuqiu Ji, Wanxi-
ang Che, and Ting Liu. 2020. HIT-SCIR at
MRP 2020: Transition-based parser and iterative in-
ference parser. In Proceedings of the CoNLL 2020
Shared Task: Cross-Framework Meaning Represen-
tation Parsing, pages 65 – 72, Online.

Rebecca Dridan and Stephan Oepen. 2011. Parser eval-
uation using elementary dependency matching. In
Proceedings of the 12th International Conference on
Parsing Technologies, pages 225 – 230, Dublin, Ire-
land.

Jason Eisner. 1997. Bilexical grammars and a cubic-
time probabilistic parser. In Proceedings of the Fifth
International Workshop on Parsing Technologies,
pages 54–65, Boston/Cambridge, Massachusetts,
USA. Association for Computational Linguistics.

Kilian Evang. 2019. Transition-based DRS parsing
using stack-LSTMs. In Proceedings of the IWCS
Shared Task on Semantic Parsing, Gothenburg, Swe-
den. Association for Computational Linguistics.

Federico Fancellu, Sorcha Gilroy, Adam Lopez, and
Mirella Lapata. 2019. Semantic graph parsing
with recurrent neural network DAG grammars. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 2769–
2778, Hong Kong, China. Association for Computa-
tional Linguistics.

Christiane Fellbaum. 2012. Wordnet. The Encyclope-
dia of Applied Linguistics.

Daniel Fernández-González and Carlos Gómez-
Rodrı́guez. 2020. Transition-based semantic
dependency parsing with pointer networks. In
Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics, pages
7035–7046, Online. Association for Computational
Linguistics.

Dan Flickinger, Stephan Oepen, and Emily M. Bender.
2017. Sustainable development and refinement of
complex linguistic annotations at scale. In Nacy Ide
and James Pustejovsky, editors, Handbook of Lin-
guistic Annotation, pages 353 – 377. Springer, Dor-
drecht, The Netherlands.

Jan Hajič, Eduard Bejček, Alevtina Bémová, Eva
Buráňová, Eva Hajičová, Jiřı́ Havelka, Petr
Homola, Jiřı́ Kárnı́k, Václava Kettnerová, Na-
talia Klyueva, Veronika Kolářová, Lucie Kučová,
Markéta Lopatková, Marie Mikulová, Jiřı́ Mı́rovský,
Anna Nedoluzhko, Petr Pajas, Jarmila Panevová, Lu-
cie Poláková, Magdaléna Rysová, Petr Sgall, Jo-
hanka Spoustová, Pavel Straňák, Pavlı́na Synková,
Magda Ševčı́ková, Jan Štěpánek, Zdeňka Urešová,
Barbora Vidová Hladká, Daniel Zeman, Šárka
Zikánová, and Zdeněk Žabokrtský. 2018. Prague
dependency treebank 3.5. LINDAT/CLARIAH-CZ
digital library at the Institute of Formal and Ap-
plied Linguistics (ÚFAL), Faculty of Mathematics
and Physics, Charles University.

19

Jan Hajič, Massimiliano Ciaramita, Richard Johans-
son, Daisuke Kawahara, Maria Antònia Martı́, Lluı́s
Màrquez, Adam Meyers, Joakim Nivre, Sebastian
Padó, Jan Štěpánek, Pavel Straňák, Mihai Surdeanu,
Nianwen Xue, and Yi Zhang. 2009. The CoNLL-
2009 shared task: Syntactic and semantic depen-
dencies in multiple languages. In Proceedings of
the Thirteenth Conference on Computational Nat-
ural Language Learning (CoNLL 2009): Shared
Task, pages 1 – 18, Boulder, Colorado. Association
for Computational Linguistics.

Jan Hajič, Eva Hajičová, Jarmila Panevová, Petr Sgall,
Ondřej Bojar, Silvie Cinková, Eva Fučı́ková, Marie
Mikulová, Petr Pajas, Jan Popelka, Jiřı́ Semecký,
Jana Šindlerová, Jan Štěpánek, Josef Toman, Zdeňka
Urešová, and Zdeněk Žabokrtský. 2012. Announc-
ing Prague Czech-English Dependency Treebank
2.0. In Proceedings of the 8th International Confer-
ence on Language Resources and Evaluation, pages
3153 – 3160, Istanbul, Turkey.

Eva Hajičová, Barbara Partee, and Petr Sgall. 1998.
Topic–Focus Articulation, Tripartite Structures, and
Semantic Content. Kluwer, Dordrecht, The Nether-
lands.

Daniel Hershcovich, Omri Abend, and Ari Rappoport.
2017. A transition-based directed acyclic graph
parser for UCCA. In Proceedings of the 55th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1127–
1138, Vancouver, Canada. Association for Computa-
tional Linguistics.

Daniel Hershcovich, Omri Abend, and Ari Rappoport.
2018. Multitask parsing across semantic representa-
tions. In Proceedings of the 56th Meeting of the As-
sociation for Computational Linguistics, pages 373 –
385, Melbourne, Australia.

Daniel Hershcovich, Zohar Aizenbud, Leshem
Choshen, Elior Sulem, Ari Rappoport, and Omri
Abend. 2019a. SemEval-2019 task 1. Cross-lingual
semantic parsing with UCCA. In Proceedings
of the 13th International Workshop on Semantic
Evaluation, pages 1 – 10, Minneapolis, MN, USA.

Daniel Hershcovich, Zohar Aizenbud, Leshem
Choshen, Elior Sulem, Ari Rappoport, and Omri
Abend. 2019b. SemEval-2019 task 1: Cross-lingual
semantic parsing with UCCA. In Proceedings
of the 13th International Workshop on Semantic
Evaluation, pages 1–10, Minneapolis, Minnesota,
USA. Association for Computational Linguistics.

Eduard Hovy, Mitchell Marcus, Martha Palmer, Lance
Ramshaw, and Ralph Weischedel. 2006. OntoNotes.
The 90% solution. In Proceedings of Human Lan-
guage Technologies: The 2006 Annual Conference
of the North American Chapter of the Association
for Computational Linguistics, Companion Volume:
Short Papers, pages 57 – 60, New York City, USA.

Zixia Jia, Youmi Ma, Jiong Cai, and Kewei Tu. 2020.
Semi-supervised semantic dependency parsing us-
ing CRF autoencoders. In Proceedings of the 58th

Annual Meeting of the Association for Computa-
tional Linguistics, pages 6795–6805, Online. Asso-
ciation for Computational Linguistics.

Wei Jiang, Zhenghua Li, Yu Zhang, and Min Zhang.
2019. HLT@SUDA at SemEval-2019 task 1:
UCCA graph parsing as constituent tree parsing.
In Proceedings of the 13th International Workshop
on Semantic Evaluation, pages 11–15, Minneapo-
lis, Minnesota, USA. Association for Computational
Linguistics.

Hans Kamp and Uwe Reyle. 1993. From Discourse
to Logic; An Introduction to Modeltheoretic Seman-
tics of Natural Language, Formal Logic and DRT.
Kluwer, Dordrecht.

Paul Kingsbury and Martha Palmer. 2002. From Tree-
Bank to PropBank. In Proceedings of the 3rd In-
ternational Conference on Language Resources and
Evaluation, pages 1989 – 1993, Las Palmas, Spain.

Thomas N. Kipf and Max Welling. 2017. Semi-
supervised classification with graph convolutional
networks. In 5th International Conference on Learn-
ing Representations, Toulon, France.

Marco Kuhlmann and Stephan Oepen. 2016. Towards
a catalogue of linguistic graph banks. Computa-
tional Linguistics, 42(4):819 – 827.

Shuhei Kurita and Anders Søgaard. 2019. Multi-task
semantic dependency parsing with policy gradient
for learning easy-first strategies. In Proceedings of
the 57th Annual Meeting of the Association for Com-
putational Linguistics, pages 2420–2430, Florence,
Italy. Association for Computational Linguistics.

Robin Kurtz, Daniel Roxbo, and Marco Kuhlmann.
2019. Improving semantic dependency parsing with
syntactic features. In Proceedings of the First NLPL
Workshop on Deep Learning for Natural Language
Processing, pages 12–21, Turku, Finland. Linköping
University Electronic Press.

Young-Suk Lee, Ramon Fernandez Astudillo, Tahira
Naseem, Revanth Gangi Reddy, Radu Florian, and
Salim Roukos. 2020. Pushing the limits of AMR
parsing with self-learning. In Findings of EMNLP.

Matthias Lindemann, Jonas Groschwitz, and Alexan-
der Koller. 2019. Compositional semantic parsing
across graphbanks. In Proceedings of the 57th An-
nual Meeting of the Association for Computational
Linguistics, pages 4576–4585, Florence, Italy. Asso-
ciation for Computational Linguistics.

Jiangming Liu, Shay B. Cohen, and Mirella Lapata.
2018. Discourse representation structure parsing. In
Proceedings of the 56th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 429–439, Melbourne, Australia.
Association for Computational Linguistics.

Jiangming Liu, Shay B. Cohen, and Mirella Lapata.
2019. Discourse representation structure parsing
with recurrent neural networks and the transformer
model. In Proceedings of the IWCS Shared Task
on Semantic Parsing, Gothenburg, Sweden. Associ-
ation for Computational Linguistics.

20

Chunchuan Lyu, Shay B. Cohen, and Ivan Titov. 2020.
A differentiable relaxation of graph segmentation
and alignment for AMR parsing.

Chunchuan Lyu and Ivan Titov. 2018. AMR parsing as
graph prediction with latent alignment. In Proceed-
ings of the 56th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 397–407, Melbourne, Australia. Asso-
ciation for Computational Linguistics.

Christopher Manning, Mihai Surdeanu, John Bauer,
Jenny Finkel, Steven Bethard, and David McClosky.
2014. The Stanford CoreNLP natural language pro-
cessing toolkit. In Proceedings of 52nd Annual
Meeting of the Association for Computational Lin-
guistics: System Demonstrations, pages 55–60, Bal-
timore, Maryland. Association for Computational
Linguistics.

Mitchell Marcus, Beatrice Santorini, and Mary Ann
Marcinkiewicz. 1993. Building a large annotated
corpus of English. The Penn Treebank. Computa-
tional Linguistics, 19:313 – 330.

Jonathan May. 2016. SemEval-2016 Task 8. Mean-
ing representation parsing. In Proceedings of the
10th International Workshop on Semantic Evalua-
tion, pages 1063 – 1073, San Diego, CA, USA.

Jonathan May and Jay Priyadarshi. 2017. SemEval-
2017 Task 9. Abstract Meaning Representation pars-
ing and generation. In Proceedings of the 11th Inter-
national Workshop on Semantic Evaluation, pages
536 – 545.

James J. McGregor. 1982. Backtrack search algorithms
and the maximal common subgraph problem. Soft-
ware: Practice and Experience, 12(1):23 – 34.

Seung-Hoon Na and Jinwoo Min. 2020. JBNU at
MRP 2020: AMR parsing using a joint state model
for graph-sequence iterative inference. In Pro-
ceedings of the CoNLL 2020 Shared Task: Cross-
Framework Meaning Representation Parsing, pages
83 – 87, Online.

Joakim Nivre, Marie-Catherine de Marneffe, Filip Gin-
ter, Jan Hajič, Christopher D. Manning, Sampo
Pyysalo, Sebastian Schuster, Francis Tyers, and
Daniel Zeman. 2020. Universal Dependencies v2:
An evergrowing multilingual treebank collection.
In Proceedings of the 12th Language Resources
and Evaluation Conference, pages 4034–4043, Mar-
seille, France. European Language Resources Asso-
ciation.

Rik van Noord. 2019. Neural Boxer at the IWCS
shared task on DRS parsing. In Proceedings of the
IWCS Shared Task on Semantic Parsing, Gothen-
burg, Sweden. Association for Computational Lin-
guistics.

Rik van Noord, Lasha Abzianidze, Antonio Toral, and
Johan Bos. 2018. Exploring neural methods for
parsing discourse representation structures. Trans-
actions of the Association for Computational Lin-
guistics, 6:619–633.

Stephan Oepen, Omri Abend, Jan Hajič, Daniel Her-
shcovich, Marco Kuhlmann, Tim O’Gorman, Nian-
wen Xue, Jayeol Chun, Milan Straka, and Zdeňka
Urešová. 2019. MRP 2019: Cross-framework
Meaning Representation Parsing. In Proceedings of
the Shared Task on Cross-Framework Meaning Rep-
resentation Parsing at the 2019 Conference on Com-
putational Natural Language Learning, pages 1 – 27,
Hong Kong, China.

Stephan Oepen and Dan Flickinger. 2019. The ERG
at MRP 2019: Radically compositional semantic
dependencies. In Proceedings of the Shared Task
on Cross-Framework Meaning Representation Pars-
ing at the 2019 Conference on Computational Natu-
ral Language Learning, pages 40 – 44, Hong Kong,
China.

Stephan Oepen, Marco Kuhlmann, Yusuke Miyao,
Daniel Zeman, Silvie Cinková, Dan Flickinger, Jan
Hajič, and Zdeňka Urešová. 2015. SemEval 2015
Task 18. Broad-coverage semantic dependency pars-
ing. In Proceedings of the 9th International Work-
shop on Semantic Evaluation, pages 915 – 926, Den-
ver, CO, USA.

Stephan Oepen, Marco Kuhlmann, Yusuke Miyao,
Daniel Zeman, Dan Flickinger, Jan Hajič, Angelina
Ivanova, and Yi Zhang. 2014. SemEval 2014 Task
8. Broad-coverage semantic dependency parsing. In
Proceedings of the 8th International Workshop on
Semantic Evaluation, pages 63 – 72, Dublin, Ireland.

Stephan Oepen and Jan Tore Lønning. 2006.
Discriminant-based MRS banking. In Proceedings
of the 5th International Conference on Language
Resources and Evaluation, pages 1250 – 1255,
Genoa, Italy.

Hiroaki Ozaki, Gaku Morio, Yuta Koreeda, Terufumi
Morishita, and Toshinori Miyoshi. 2020. Hitachi at
MRP 2020: Text-to-graph-notation transducer. In
Proceedings of the CoNLL 2020 Shared Task: Cross-
Framework Meaning Representation Parsing, pages
40 – 52, Online.

Hao Peng, Sam Thomson, and Noah A. Smith. 2017.
Deep multitask learning for semantic dependency
parsing. In Proceedings of the 55th Meeting of the
Association for Computational Linguistics, pages
2037 – 2048, Vancouver, Canada.

Carl Pollard and Ivan A. Sag. 1994. Head-Driven
Phrase Structure Grammar. Studies in Contempo-
rary Linguistics. The University of Chicago Press,
Chicago, USA.

Rudolf Rosa, Martin Popel, Ondřej Bojar, David
Mareček, and Ondřej Dušek. 2016. Moses & treex
hybrid MT systems bestiary. In Proceedings of the
2nd Deep Machine Translation Workshop, pages 1 –
10, Lisbon, Portugal. ÚFAL MFF UK.

David Samuel and Milan Straka. 2020. ÚFAL at
MRP 2020: Permutation-invariant semantic pars-
ing in PERIN. In Proceedings of the CoNLL 2020
Shared Task: Cross-Framework Meaning Represen-
tation Parsing, pages 53 – 64, Online.

21

Rob A. Van der Sandt. 1992. Presupposition projec-
tion as anaphora resolution. Journal of Semantics,
9(4):333 – 377.

Sebastian Schuster and Christopher D. Manning. 2016.
Enhanced English Universal Dependencies: An im-
proved representation for natural language under-
standing tasks. In Proceedings of the Tenth Inter-
national Conference on Language Resources and
Evaluation (LREC’16), pages 2371–2378, Portorož,
Slovenia. European Language Resources Associa-
tion (ELRA).

Petr Sgall, Eva Hajičová, and Jarmila Panevová. 1986.
The Meaning of the Sentence and Its Semantic and
Pragmatic Aspects. D. Reidel Publishing Company,
Dordrecht, The Netherlands.

Gabriel Stanovsky and Ido Dagan. 2018. Semantics as
a foreign language. In Proceedings of the 2018 Con-
ference on Empirical Methods in Natural Language
Processing, pages 2412 – 2421, Brussels, Belgium.

Mark Steedman. 2011. Taking Scope. MIT Press, Cam-
bridge, MA, USA.

Milan Straka. 2018. UDPipe 2.0 prototype at CoNLL
2018 UD shared task. In Proceedings of the CoNLL
2018 Shared Task: Multilingual Parsing from Raw
Text to Universal Dependencies, pages 197 – 207.

Milan Straka and Jana Straková. 2020. UDPipe at
EvaLatin 2020: Contextualized embeddings and
treebank embeddings. In Proceedings of LT4HALA
2020 - 1st Workshop on Language Technologies for
Historical and Ancient Languages, pages 124–129,
Marseille, France. European Language Resources
Association (ELRA).

Elior Sulem, Omri Abend, and Ari Rappoport. 2015.
Conceptual annotations preserve structure across
translations. A French–English case study. In Pro-
ceedings of the 1st Workshop on Semantics-Driven
Statistical Machine Translation, pages 11 – 22.

Elior Sulem, Omri Abend, and Ari Rappoport. 2018a.
Semantic structural annotation for text simplifica-
tion. In Proceedings of the 2015 Conference of the
North American Chapter of the Association for Com-
putational Linguistics, New Orleans, LA, USA.

Elior Sulem, Omri Abend, and Ari Rappoport. 2018b.
Semantic structural evaluation for text simplifica-
tion. In Proceedings of the 2018 Conference of the
North American Chapter of the Association for Com-
putational Linguistics: Human Language Technolo-
gies, Volume 1 (Long Papers), pages 685–696, New
Orleans, Louisiana. Association for Computational
Linguistics.

Elior Sulem, Omri Abend, and Ari Rappoport. 2018c.
Simple and effective text simplification using seman-
tic and neural methods. In Proceedings of the 56th
Meeting of the Association for Computational Lin-
guistics, Melbourne, Australia.

Zdeňka Urešová, Eva Fučı́ková, and Jana Šindlerová.
2016. CzEngVallex. A bilingual Czech–English va-
lency lexicon. The Prague Bulletin of Mathematical
Linguistics, 105:17 – 50.

Chuan Wang, Bin Li, and Nianwen Xue. 2018.
Transition-based Chinese AMR parsing. In Proceed-
ings of the 2018 Conference of the North Ameri-
can Chapter of the Association for Computational
Linguistics: Human Language Technologies, Vol-
ume 2 (Short Papers), pages 247–252, New Orleans,
Louisiana. Association for Computational Linguis-
tics.

Chuan Wang and Nianwen Xue. 2017. Getting the
most out of AMR parsing. In Proceedings of the
2017 Conference on Empirical Methods in Natural
Language Processing, pages 1257 – 1268, Copen-
hagen, Denmark.

Xinyu Wang, Jingxian Huang, and Kewei Tu. 2019.
Second-order semantic dependency parsing with
end-to-end neural networks. In Proceedings of the
57th Annual Meeting of the Association for Com-
putational Linguistics, pages 4609–4618, Florence,
Italy. Association for Computational Linguistics.

Dongqin Xu, Junhui Li, Muhua Zhu, Min Zhang, and
Guodong Zhou. 2020a. Improving AMR parsing
with sequence-to-sequence pre-training. In Proceed-
ings of the 2020 Conference on Empirical Methods
in Natural Language Processing.

Jin Xu, Yinuo Guo, and Junfeng Hu. 2020b. Incor-
porate semantic structures into machine translation
evaluation via UCCA. In Proceedings of the Interna-
tional Conference on Machine Translation, Online.

Daniel Zeman and Jan Hajič. 2020. FGD at MRP 2020:
Prague Tectogrammatical Graphs. In Proceedings
of the CoNLL 2020 Shared Task: Cross-Framework
Meaning Representation Parsing, pages 33 – 39, On-
line.

Sheng Zhang, Xutai Ma, Kevin Duh, and Benjamin
Van Durme. 2019a. AMR parsing as sequence-to-
graph transduction. In Proceedings of the 57th An-
nual Meeting of the Association for Computational
Linguistics, pages 80–94, Florence, Italy. Associa-
tion for Computational Linguistics.

Sheng Zhang, Xutai Ma, Kevin Duh, and Benjamin
Van Durme. 2019b. Broad-coverage semantic pars-
ing as transduction. In Proceedings of the 2019 Con-
ference on Empirical Methods in Natural Language
Processing and the 9th International Joint Confer-
ence on Natural Language Processing (EMNLP-
IJCNLP), pages 3786–3798, Hong Kong, China. As-
sociation for Computational Linguistics.

Yue Zhang, Wei Jiang, Qingrong Xia, Junjie Cao,
Rui Wang, Zhenghua Li, and Min Zhang. 2019c.
SUDA–Alibaba at MRP 2019: Graph-based models
with BERT. In Proceedings of the Shared Task on
Cross-Framework Meaning Representation Parsing
at the 2019 Conference on Computational Natural
Language Learning, pages 149 – 157, Hong Kong,
China.

22

Proceedings of the CoNLL 2020 Shared Task: Cross-Framework Meaning Representation Parsing, pages 23–32
Online, Nov. 19-20, 2020. c©2020 Association for Computational Linguistics

DRS at MRP 2020:
Dressing up Discourse Representation Structures as Graphs

Lasha Abzianidze∗
UiL OTS

Utrecht University
l.abzianidze@uu.nl

Johan Bos
CLCG

University of Groningen
johan.bos@rug.nl

Stephan Oepen
Department of Informatics

University of Oslo
oe@ifi.uio.no

Abstract

Discourse Representation Theory (DRT) is a
formal account for representing the meaning
of natural language discourse. Meaning in
DRT is modeled via a Discourse Represen-
tation Structure (DRS), a meaning represen-
tation with a model-theoretic interpretation,
which is usually depicted as nested boxes. In
contrast, a directed labeled graph is a com-
mon data structure used to encode seman-
tics of natural language texts. The paper de-
scribes the procedure of dressing up DRSs as
directed labeled graphs to include DRT as a
new framework in the 2020 shared task on
Cross-Framework and Cross-Lingual Meaning
Representation Parsing. Since one of the goals
of the shared task is to encourage unified mod-
els for several semantic graph frameworks, the
conversion procedure was biased towards mak-
ing the DRT graph framework somewhat sim-
ilar to other graph-based meaning representa-
tion frameworks.

1 Introduction

Graphs are a common data structure for repre-
senting meaning of natural language sentences or
texts. Several shared tasks on semantic parsing
have been organized, and the target meaning repre-
sentations of the shared tasks were predominantly
encoded as directed labeled graphs:1 Semantic De-
pendency Graphs (Oepen et al., 2014, 2015), Ab-
stract Meaning Representation (May, 2016; May
and Priyadarshi, 2017), and Universal Conceptual
Cognitive Annotation (Hershcovich et al., 2019).
Some of these graphs are presented in Figure 1.
Recently, Oepen et al. (2019) packaged several
meaning representation graphs in a uniform graph

∗Part of the work was done while the author was at the
University of Groningen.

1Throughout the paper, we mean a directed labeled graph
when simply talking about graphs, unless stated otherwise.

abstraction and serialization for cross-framework
meaning representation parsing.

Parallel to these developments our point of de-
parture is Discourse Representation Theory (DRT,
Kamp and Reyle, 1993), a well-studied framework
for studying formal semantics beyond sentences.
Its meaning representation structures, Discourse
Representation Structure (DRS), are directly trans-
latable into formal logic. A sample DRS, in its
traditional box format, is illustrated in Figure 2.
We will discuss the DRS in more details in Sec-
tion 2.

Obviously, DRSs are meaning representation
structures, but they are different from the already
mentioned graph-based meaning representations
in two aspects. First, DRSs are not inherently
graphs. A DRS is more like a formula of predicate
logic which is further organized in sub-formulas
and governed with additional operations that ac-
count for co-reference and presupposition. That’s
why DRSs are usually not considered as graph-
based meaning representations. For example, DRT
was not among the frameworks of the shared task
on cross-framework meaning representation pars-
ing (MRP 2019, Oepen et al., 2019) since the
meaning representations at the shared task were
all uniformly formatted as graphs. Žabokrtský
et al. (2020) excluded DRSs when surveying sen-
tence meaning representations as they “limit [them-
selves] to meaning representations whose backbone
structure can be described as a graph over words
(possibly with added non-lexical nodes) [. . .]”. The
second main contrast between DRSs and several of
the graph-based meaning representations is that
DRSs are very different from syntactic struc-
tures. DRSs have roots in formal semantics, and
they are geared to account for negation, quantifica-
tion, and semantic scope rather than for syntactic

23

contrast-01

act-02
polarity -

ARG2

vote-01

ARG1

government-organization

ARG0

government-organization

ARG0

name
op1 House

name

name
op1 Senate

name

(a) AMR: Abstract Meaning Rep-
resentation (Banarescu et al., 2013)

_but_c
TENSE pres
PERF +

_vote_v_1
TENSE pres
PERF +

L-HNDL

neg

R-HNDL

_the_q

named_n
CARG House
NUM sg

BV ARG1

_act_v_1
TENSE pres

ARG1

_the_q

named_n
CARG Senate
NUM sg

BVARG1

(b) EDS: Elementary Depen-
dency Structures (Oepen and
Lønning, 2006)

vote
sempos v
frame en-v#ev-w3564f2

PRED
effective

act
sempos v
frame en-v#ev-w42f1

PRED
effective

but
sentmod enunc
sempos x

ADVS

house
sempos n.denot

ACT

senate
sempos n.denot

ACT

#Neg
sempos x

RHEM

PRED
member

PRED
member

(c) PTG: Prague Tectogrammatical Graphs
(Sgall et al., 1986; Hajič et al., 2012; Zeman
and Hajič, 2020)

but

L H H

The House

has voted

the Senate

does n't act

F C

F P A F D P A

F C

(d) UCCA: Universal Conceptual Cognitive Annotation
(Abend and Rappoport, 2013)

b1 REF x1 0:3 b3 REF x2 24:27
b1 PRESUPPOSITION b2 0:3 b3 PRESUPPOSITION b4 24:27
b1 Name x1 "house" 4:9 b3 Name x2 "Senate" 28:34
b1 house "n.05" x1 4:9 b3 senate "n.01" x2 28:34
b2 REF e1 14:19 b4 REF t2 35:39
b2 REF t1 10:13 b4 EQU t2 "now" 35:39
b2 TPR t1 "now" 10:13 b4 time "n.08" t2 35:39
b2 Time e1 t1 10:13 b5 Time e2 t2 35:39
b2 time "n.08" t1 10:13 b4 NEGATION b5 39:42
b2 Agent e1 x1 14:19 b5 REF e2 43:46
b2 vote "v.01" e1 14:19 b5 Agent e2 x2 43:46
b2 CONTRAST b4 20:23 b5 act "v.01" e2 43:46

(e) DRS: Discourse Representation Structure in a clausal form
(Kamp and Reyle, 1993; Bos et al., 2017; Abzianidze et al., 2017)

Figure 1: The meaning representation graphs (a-d) of the MRP 2020 frameworks for the sentence The House has
voted but the Senate doesn’t act. (e) is the DRS of Figure 2 in the clausal form, a suitable format for semantic
parsing. The goal is to convert (e) into a graph somewhat similar to (a-d).

structures.2

Given that graphs are mainstream when it comes
to representing meaning and semantically parsing
wide-coverage natural language texts, it is impor-
tant that DRSs are also convertible into graphs, and
we refer to these structures as Discourse Repre-
sentation Graphs (DRGs). This will make DRSs
accessible for researchers that primarily focus on
graph-based meaning representations and parsing:
(a) already existing graph-based semantic parsing
models can be re-used or tested on DRGs; and (b)
the specific structure of DRGs, reflecting formal se-
mantics of the meaning, will pose new challenges
for graph representation learning.

In a nutshell, to embrace DRSs in the second
edition of the shared task on cross-framework
(and cross-lingual) meaning representation pars-

2For instance, this fact is another reason for excluding
DRSs from the survey by Žabokrtský et al. (2020): “we do
not include primarily logical representations which are too dis-
tant from sentence structures; this leaves out some prominent
frameworks such as the Groningen Meaning Bank [. . .]”.

ing (MRP 2020; Oepen et al., 2020), we investigate
the conversion of DRSs from clausal form (the
form adapted to semantic parsing, see Figure 1e)
into graphs. While doing so, our goal is to (i) make
DRGs structurally as close as possible to the graphs
of other frameworks in MRP 2020 (see Figure 1),
and (ii) keeping redundant information in DRGs
to a minimum to prevent graphs of extensive size
and to avoid inflation of the evaluation score. Our
efforts contribute to unified parsing models and
evaluation tools across the frameworks. Hopefully,
it will also save the time of participants by pre-
venting them from developing a completely new
parsing model for DRGs.

The rest of the paper is organized as follows.
First, Section 2 briefly describes the building
blocks of DRSs, and then Section 3 outlines al-
ready existing approaches of converting DRSs into
graphs. In addition to the existing ones, Section 4
introduces several candidate graph-based encod-
ings of DRSs. In Section 5, we compare several

24

Class Type symbol SDRS signature Examples
E

nt
ity t

C constant now, house, senate

r discourse referent x1, x2, e1, e2, t1, t2

B box label b1, b2, b3, b4, b5

Pr
ed

ic
at

e

B
S semantic role Agent, Name, Time
M comparison relation ≺, =

C concept house.n.05, act.v.01

Discourse
connective

R discourse relation CONTRAST

O DRS operator NEGATION, PRESUPPOSITION

Table 1: Classification of the DRS signature. Each element of the signa-
ture has a type symbol (in a bold font). t is for terms, which might be
a constant or a discourse referent, while B stands for binary relations,
which are semantic roles and comparison relations.

x1 b1

house.n.05(x1)
Name(x1, house)

x2 b3

senate.n.01(x2)
Name(x2, senate)

t2 b4

time.n.08(t2)
t2 = now

e1 t1 b2

vote.v.01(e1)
Agent(e1, x1)
Time(e1, t1)
time.n.08(t1)
t1 ≺ now
e2 b5

act.v.01(e2)
Agent(e2, x2)
Time(e2, t2)

PRESUPPOSITION(b1,b2)
PRESUPPOSITION(b3,b4)
CONTRAST(b2,b4)
NEGATION(b4,b5)

Figure 2: A flat visualization of a
box-formatted DRS for the sentence
The House has voted but the Senate
doesn’t act.

DRG formats on the computational feasibility of
finding maximum common edge subgraph (MCES)
because the computational feasibility is crucial
for evaluating the meaning representation graphs
against the gold standard. In the end, based on the
findings of the MCES experiment and our desire
for similarity with other graph-based frameworks,
we select the specific DRG format that is included
in MRP 2020.

2 Discourse Representation Structures

DRT is a framework that dates back to the early
1980s (Kamp, 1981; Heim, 1982). Since then, the
framework has gone through several extensions
and modifications to account for certain semantic
or pragmatic phenomena. Throughout the paper
we use DRSs that are derived from the Parallel
Meaning Bank (PMB, Abzianidze et al., 2017).
One such DRS is presented in Figure 2. The DRS
signature is given in Table 1.

The PMB incorporates several extensions to
DRSs. On a micro level, the extensions aim to
make DRSs language-neutral by disambiguating
non-logical symbols with WordNet (Miller, 1995)
synsets and VerbNet (Bonial et al., 2011) roles,
where the VerbNet roles are used in combination
with neo-Davidsonian event semantics (Parsons,
1990). On a macro level, presuppositions are mod-
eled and explicitly represented following Van der
Sandt (1992) and Projective DRT (Venhuizen et al.,
2013) while discourse is analyzed following Seg-
mented DRT (Asher and Lascarides, 2003) and
flattened by treating discourse relations and DRS
operators in a unified way. Due to these extensions,

all boxes are labeled with identifiers.
Let’s decipher what the DRS in Figure 2 is ex-

pressing. It consists of two parts: a set of boxes
and a set of discourse connectives applied to box
labels (i.e., identifiers). Boxes can be seen as
sub-formulas whose separation is relevant for fine-
grained semantics. Each box includes a (possibly
empty) set of discourse referents stacked on a (pos-
sibly empty) set of conditions. The example sen-
tence contains two clauses, corresponding to boxes
b2 and b4, that are related with each other via the
CONTRAST discourse relation. Both b2 and b4 pre-
suppose the existence of entities x1 (for the House)
and x2 (for the Senate), which are further char-
acterized with concepts (using WordNet synsets)
and the naming semantic role. The presupposi-
tions are put in separate boxes labeled with b1
and b3. The presupposition relations are explicitly
stated with the binary PRESUPPOSITION DRS op-
erator. Since we use a flat visualization of DRSs,
b5, which is negated and nested in b4 (expressed by
NEGATION(b4, b5)), is depicted outside b4. In ad-
dition to modeling verb argument structure via neo-
Davidsonian event semantics and semantic roles,
the DRS also contains information about tense.3

3 Related Work

There have been several approaches to represent
DRSs as graphs. These representations are put
side-by-side in Figure 3.

3Note that t2 is in b4 because it has to be out of the scope
of negation: there is a time t2, and it is not the case that at t2
the Senate acts.

25

house

Name

PRE

CTR

senate

PRE

Agent

Agent

Name

content

house.n.05

vote.v.01

NEG

act.v.01

senate.n.01

b1

b2

b4
b5

Agent

Name

𝑥𝑥1

house

𝑒𝑒1

𝑒𝑒2

Agent a1

a1

a2

a2

a1

a1

a1

a1

ref

ref

ref

bin

bin

rol

con

con

con

PRE

CTR

b3
Name

𝑥𝑥2

senate
a1

a2

a1

ref

bin

con

PRE a2

NEG

house.n.05

vote.v.01

senate.n.01

act.v.01

b1

b2

b4 b5

𝑥𝑥1

house

𝑒𝑒1

𝑒𝑒2a1

a1

a2

a2

a1

a1

a1

a1

ref

ref

ref

house.n.05

vote.v.01

Name

Agent

NEG

CTR

PRE

Agent

act.v.01

b3

𝑥𝑥2

senate

a1

a2

a1

ref

senate.n.01

Name

PRE a2

c1

c2

c3

c4

c5

c6

c7

c8

(a) The augmented graph of
Power (1999) corresponding to
the simplified sample DRS. The
graph is a felicitous extension of
Power’s original proposal over
DRSs with presuppositions and
discourse relations.

house

Name

PRE

CTR

senate

PRE

Agent

Agent

Name

content

house.n.05

vote.v.01

NEG

act.v.01

senate.n.01

b1

b2

b4
b5

Agent

Name

𝑥𝑥1

house

𝑒𝑒1

𝑒𝑒2

Agent a1

a1

a2

a2

a1

a1

a1

a1

ref

ref

ref

bin

bin

rol

con

con

con

PRE

CTR

b3
Name

𝑥𝑥2

senate
a1

a2

a1

ref

bin

con

PRE a2

NEG

house.n.05

vote.v.01

senate.n.01

act.v.01

b1

b2

b4 b5

𝑥𝑥1

house

𝑒𝑒1

𝑒𝑒2a1

a1

a2

a2

a1

a1

a1

a1

ref

ref

ref

house.n.05

vote.v.01

Name

Agent

NEG

CTR

PRE

Agent

act.v.01

b3

𝑥𝑥2

senate

a1

a2

a1

ref

senate.n.01

Name

PRE a2

c1

c2

c3

c4

c5

c6

c7

c8

(b) The BB∗ encoding largely follows Basile
and Bos (2013) and incorporates several ad-
ditional simplifications. The encoding is
node-centric. B and C are encoded as la-
beled nodes while R, O and argument po-
sitions (A) as labeled edges. Only B and r
are unlabeled nodes.

house

Name

PRE

CTR

senate

PRE

Agent

Agent

Name

content

house.n.05

vote.v.01

NEG

act.v.01

senate.n.01

b1

b2

b4
b5

Agent

Name

𝑥𝑥1

house

𝑒𝑒1

𝑒𝑒2

Agent a1

a1

a2

a2

a1

a1

a1

a1

ref

ref

ref

bin

bin

rol

con

con

con

PRE

CTR

b3
Name

𝑥𝑥2

senate
a1

a2

a1

ref

bin

con

PRE a2

NEG

house.n.05

vote.v.01

senate.n.01

act.v.01

b1

b2

b4 b5

𝑥𝑥1

house

𝑒𝑒1

𝑒𝑒2a1

a1

a2

a2

a1

a1

a1

a1

ref

ref

ref

house.n.05

vote.v.01

Name

Agent

NEG

CTR

PRE

Agent

act.v.01

b3

𝑥𝑥2

senate

a1

a2

a1

ref

senate.n.01

Name

PRE a2

c1

c2

c3

c4

c5

c6

c7

c8

(c) L18 is the edge-centric encoding by Liu
et al. (2018). B and C are represented as
unlabeled nodes with B- and C-labeled
incoming edges. R, O and argument po-
sitions (A) are encoded as labeled edges.
Unlabeled nodes are introduced not only
by B and r but also by B and C.

Figure 3: Contrasting the existing graph representations of DRSs. The graphs encode the sample DRS from
Figure 2. For brevity, the tense information is omitted from the DRS. Unlabeled nodes have a gray background.
The shapes of nodes are not part of the graphs but simply help with reading to distinguish the types of symbols.

The work by Power (1999) doesn’t aim to con-
vert DRSs into graphs as such, but it proposes
to augment object-oriented knowledge represen-
tation (OOKR) graphs with additional scope in-
formation to establish correspondence with DRSs.
Although the correspondence is incomplete, e.g.,
some OOKR graphs might have no corresponding
DRS. The augmentation of Power (1999) doesn’t
cover DRSs with discourse relations, presupposi-
tions (e.g., b1 to b2 in Figure 2) or with an embed-
ded box that contains base and complex conditions
(like b4 in Figure 2). Nevertheless, for demon-
stration purposes, we still present Power (1999)’s
augmented graph for a felicitous, simplified DRS
of Figure 2.

Basile and Bos (2013) proposed converting
DRSs into graphs, calling them Discourse Repre-
sentation Graphs (DRGs). Their goal was to facili-
tate word-level alignment between surface forms
and the corresponding DRSs to generate texts from
DRSs. The graph encoding, with several simpli-
fications, is exemplified in Figure 3b.4 The sim-
plifications decrease the number of nodes and out-

4Originally Basile and Bos (2013) use more labels for
edges that expresses type-specific information of nodes. For
example, they use different edge labels to distinguish the first
argument position of B from the only argument position of C
while in the paper we use the same label for both. Basile and
Bos (2013) also encodes O as a reified node that introduces

of-signature labels in the graph. The encoding can
be seen as node-centric since the most frequent
signature symbols, namely the symbols of type B
and C, are modeled as labeled nodes. Argument
positions (A) of binary predicates are distinguished
via edge labels. We call this DRG format BB∗.

To evaluate the output of their DRS parser, Liu
et al. (2018) converted DRSs into graphs, demon-
strated in Figure 3c. This graph encoding, in con-
trast to BB∗, is edge-centric as the symbols of type
B and C are used as edge labels. Moreover, com-
pared to BB∗, the encoding contains more unla-
beled nodes since B and C are also modeled with
reified nodes. We call Liu et al. (2018)’s encoding
L18.

Interestingly, in contrast to the proposed graph
encodings of DRS, van Noord et al. (2018a)
refused to convert DRSs into graphs and in-
stead used so-called clausal form of DRSs (see
Figure 1e). The clauses in clausal form are
triples, e.g., 〈b4, NEGATION, b5〉, or quadruples,
e.g., 〈b2, Agent, e1, x1〉, where the quadruples
are hyper-edges and fall out of the scope of stan-
dard graph encodings. The official evaluation of
the shared task on DRS parsing (Abzianidze et al.,

two edges b4
unary−−−→ NEG

scope−−−→ b5. Instead, we simply model

O with a single edge b4
NEG−−−→ b5.

26

2019) was also based on clausal form of DRSs.

4 More Graph-based Encodings of DRS

As illustrated in the previous section, there is no
agreement on how DRSs should be converted into
graphs (or whether they should be converted at all).
The range of graph encodings in Figure 3 presents
anything but an exhaustive list. Some encoding can
even be further refined and compressed without
affecting the readability or expressivness. For in-
stance, as explained in footnote 4, BB∗ represents
a refined version of DRGs proposed by Basile and
Bos (2013). L18 can also be further compressed by
discarding reified concept nodes and their outgoing

a1 edges, e.g., replacing b5
act.v.01−−−−−−→c8 a1−−→ e2 with

b5
act.v.01−−−−−−→ e2. We will use L18∗ to refer to the

DRGs refined in such a way.
In general, the choices in which DRG formats

might differ are several. Here we will discuss some
of them, namely (see also Table 2):

(A) Expressing Argument positions of B via
forking and labeled edges (B 1

2 , like
BB∗) or solely via graph configuration
(B1 2 , without labeled edges), e.g., encod-
ing Agent(e1, x1) as e1 −→ Agent −→ x1;

(B) Representing Binary predicates as labeled
nodes (B , like BB∗) or unlabeled nodes with
B-labeled edges (B , like L18);

(C) Encoding Concepts as labeled nodes (C , like
BB∗), unlabeled nodes with incoming C-
labeled edges (C , like L18), labeled edges
(C , like L18∗), or as a label on an r node
(C , which will be discussed further);

(I) Expressing box membership explicitly (Exp)
or implicitly (Imp). Whether a node (corre-
sponding to B, C, or r) is In a particular
B, can be depicted via an explicit connecting
edge or implicitly via graph configuration.

Here we would like to elaborate more on (I). The
box membership in DRT directly accounts for a se-
mantic scope. Like discourse referents, conditions
are also members of boxes. So, we also need to
express the box membership of condition predi-
cates in the graphs. All the encodings in Figure 3
explicitly express box membership. For instance,
Agent(e1, x1) belonging to b2 is expressed via con-
necting b2 to the Agent node (see Figure 3b) or
via the outgoing Agent edge from b2 to c3. Ex-
plicating all box memberships via labeled edges

DRG encoding Args B C In-box

BB∗+typed edges B 1
2 B C Exp

A<aB
◦C◦ B 1

2 B C Exp
A<aC

(

B

(

(L18) B 1
2

B C Exp
A<aB

(

C

�

(L18∗) B 1
2

B C Exp

A<aB
◦C

�

B 1
2 B

C Exp
A —•B◦C

�

B1 2 B
C Exp

A<aB

(

C• B 1
2

B
C Exp

A<aB
◦C• B 1

2 B C Exp
A —•B◦C• B1 2 B C Exp

A —•B◦C• I B1 2 B C Im-a1
A —•aB◦C• I B1 2 B C Im-a1

Table 2: Several combinations of the choices in DRG
design. The choices concern representation of argu-
ment positions, B symbols, C symbols, and in-box re-
lations. The names of encodings visually follow the
combinations of the choices.

increases the graphs in size. To prevent this, one
can make box membership of certain predicates
or their arguments implicit but at the same time
easily and unambiguously recoverable from the
graphs. For example, if we assume that direction-
ality of arrows carries the in-box inheritance and
consider the case when argument positions are con-
figurationally encoded (B1 2), then there is no
need to explicate the in-box relation for Name in
x1 −→ Name −→ house whenever the Name condition
and x1 are in the same box.5 We dub such an im-
plication of box membership of B from the first
argument as ‘Im-a1’.

Table 2 lists several DRG formats based on com-
binations of how argument positions, binary pred-
icates, concepts, and in-box relations are repre-
sented in a graph. While modeling the argument
position, B1 2 is preferred over B 1

2 from a
theoretical point of view because a1 and a2 labels
are not part of the DRS signature; They are ad-
hoc ingredients only helping with distinguishing
argument positions. When it comes to modeling
concepts, as we already discussed, C leads to
more economic graphs than C .

In the PMB annotation, for almost any discourse
referent, there exists the most specific concept
among the concepts applied to it. For example,
a discourse referent might have only two con-

5Remember that a discourse referent is considered to be
in a box if it is introduced in the top row of the box.

27

b1

b2

b4

b5

Agent

Name

house

Agent

a2

a2

a1

a1

in

in

PRE

CTR

b3

Name

a1

in

PRE
a2

NEG

a1

in

in

in

a2

senate
in

in

house.n.05

vote.v.01

senate.n.01

act.v.01

Figure 4: A —•aB◦C• and A —•B◦C• I encodings. The r
nodes are labeled with Concepts and connected to the
boxes via in-edges. Dashed in-edges for Binary predi-
cates and the aN edge labels are recoverable. A —•B◦C• I
is obtained by ignoring dashed edges and gray edge la-
bels. Unlabeled nodes are colored in grey where their
labels merely serve to match graph components across
the different visualizations.

cepts, male.n.02 and person.n.01, applied to it,
but among these concepts there exists the most spe-
cific concept, namely male.n.02, as male.n.02 is
a hyponym of person.n.01 according to WordNet.
The C choice exploits this annotation property
of concepts in the PMB and labels the node of a
discourse referent with the corresponding most spe-
cific concept. This type of encoding of C is shown
in Figure 4.

Figure 4 also depicts A —•B◦C• I DRG encoding
with implicit box membership of B. Though all the
box membership edges of B are made implicit in
the encoding example, this is not the case in general.
For example, attributive and predicative adjectives
usually introduce 〈b1, Attribute, x1, s1〉 clause,
where x1 is the attributed entity which is not nec-
essarily introduced in the same b1 box as the at-
tributing state s1. Another example is a construc-
tion with a locative preposition and a definite noun
phrase, e.g., hid a parcel under the bed, whose
DRS contains the following fragment:

b2 REF e1 b2 Location e1 x3

b2 hide "v.01" e1 b2 SZP x2 x3

b2 REF x1 b3 REF x2

b2 parcel "n.01" x1 b3 bed "n.01" x2

b2 Patient e1 x1

where the binary relation SZP (spatial above) is in

DRS
parsers

B
B
∗

A
<

a
a
B

(C

(

A
<

a
a
B
◦ C

�

A
<

a
a
B
◦ C
•

A

—•B
◦ C
• I

DRS DRGs

chLSTM↓ 64.6 79.6 74.3 77.7 77.9 78.2

Boxer↓ 78.2 89.5 86.8 87.5 87.6 87.7

chLSTM↑ 84.3 92.3 88.4 90.9 90.9 91.1

Boxer↑ 87.2 94.2 92.3 92.9 92.9 93.0

Table 3: Macro F-scores of the models when their out-
put is treated as DRS or DRG. F-score for DRS is com-
puted with Counter while for DRG with mtool.

a different box than its first argument.
As we have shown, there are at least a dozen

ways to dress up DRSs as graphs. Some of the
DRG formats are verbose, some can employ default
rules to ignore certain redundancies, some require
out-of-signature symbols, and some prefer labeled
edges over labeled nodes. There isn’t enough space
to illustrate the graphs listed in Table 2, but each of
the mentioned encoding choices is demonstrated
by at least one of the graphs from Figure 3 and
Figure 4.

5 Matching & Evaluating DRGs

In graph-based semantic parsing, system outputs
are conventionally evaluated against the gold stan-
dard graphs by finding the maximum common edge
subgraph (MCES) for each pair of produced and
gold graphs, and then calculating macro-average
F-score (Oepen et al., 2019). In general, the MCES
problem is NP-complete, and finding the maxi-
mum subgraph shared between two relatively large
graphs is sometimes computationally infeasible. In
this section, we experiment on how computation-
ally expensive is the MCES problem for each DRG
design.

5.1 Data & Tools

We run the experiments on the output of existing
DRS parsers. Four distinct parsing models are
selected to achieve diversity in the system out-
put graphs. Two of the parsers are end-to-end
character-based LSTM models from van Noord
et al. (2018b): one is their best model (chLSTM↑)
while another one is trained on fewer data on pur-
pose to have mediocre performance (chLSTM↓).
Another two parsers are based on the semantic

28

B
B
∗

A
< a
B
◦ C
◦

A
< a
C

(B

(

A
< a
B

(C

�

A
< a
B
◦ C

�

A

—•B
◦ C

�

A

—•aB
◦ C

�

A
< a
B

(C•
A
< a
B
◦ C
•

A

—•B
◦ C
•

A

—•aB
◦ C
•

A

—•B
◦ C
• I

A

—•aB
◦ C
• I

DRS parser 8 C• "

chLSTM↓ 13 11

Boxer↓ 7 9

chLSTM↑ 4 3

Boxer↑ 7 3
BB

en
c

C
o-

Bo
-A

n

C
!-B

!-A
n

C
l-B

!-A
n

C
l-B

o-
An

C
l-B

o-
Ab

C
l-B

o-
Ab

n

C
or

-B
!-A

n

C
or

-B
o-

An

C
or

-B
o-

Ab

C
or

-B
o-

Ab
n

C
or

-B
o-

Ab
-Ia

1

C
or

-B
o-

Ab
n-

Ia
1

char_lstm_gold_only

amateur_boxer

tacl

pro_boxer

27.2 30.4 28.0 12.5 15.0 18.1 15.0 9.3 10.3 12.8 10.3 8.1 7.0

9.2 10.3 9.7 3.6 4.8 6.7 4.8 2.0 2.2 3.5 2.2 1.0 0.1

8.3 9.8 13.1 4.3 5.2 6.6 5.2 3.0 3.2 4.4 3.2 2.2 1.6

4.4 5.1 4.8 1.3 2.7 3.3 2.7 1.0 1.0 1.8 1.0 0.9 0.3

NonExact_matches

10

20

30

Table 4: The percentage of approximate (i.e., non-exact) matches w.r.t. the total non-null DRGs. Lower numbers
are better as more graph matches corresponding to MCES are found. The total number of DRSs is 885. While
converting DRSs into DRGs, 8-number of DRGs become null due to ill-formed DRSs and are excluded during
calculating the percentages. Encoding with C• additionally renders C• "-number of DRSs untranslatable.

parser Boxer (Bos, 2008), which is used in the
PMB to pack all annotations layers into DRS boxes.
Boxer↓ is Boxer based on the NLP tools of the
PMB pipeline6, on the other hand, Boxer↑ is Boxer
employing annotation layers output by MaChAmp
(van der Goot et al., 2020). As the names suggest,
Boxer↑ is a better model than Boxer↓. The output
DRSs are obtained by parsing the development set
(885 documents) of the PMB v3.0.0.7 Evaluation
of the models based on the DRSs of the dev set is
given in Table 3. DRSs are scored with Counter
(van Noord et al., 2018a), the clause matching tool
for DRSs in clausal form.8

For MCES-based matching of DRGs, we use
mtool9, the Swiss Army Knife for Graph-Based
Meaning Representation. Based on the graph con-
figurations, mtool schedules potential node-to-
node mappings between two graphs. This infor-
mation is used to initialize promising node-to-node
mappings that might lead to finding the MCES
early. mtool is the official scorer in both the
MRP 2019 and MRP 2020 shared tasks.

All types of graph encodings employed in the ex-
periments are obtained with the DRS2Graph tool.10

This new converter from clause-based DRSs to la-
beled directed graphs is one of the contributions of
the paper.

5.2 Results & Analysis

The results of finding MCES between the sys-
tem generated and converted DRGs and reference

6https://pmb.let.rug.nl/software.php
7https://pmb.let.rug.nl/data.php
8https://github.com/RikVN/DRS_parsing
9https://github.com/cfmrp/mtool

10https://github.com/kovvalsky/DRS2Graph

DRGs are provided in Table 4. The reference DRGs
were obtained by converting the gold standard DRS
of the PMB 3.0.0 development set. We run experi-
ments with 13 DRG formats. All 885 DRSs were
converted in each DRG format without problems.
In principle, the encodings with the C• choice are
lossy, however, they were successfully applied to
the gold DRSs. Several parser-produced DRSs
were not converted according to the C• choice since
the parsers assert the inconsistent concepts for dis-
course referents. For example, Boxer↑ produced
a DRS with measure.n.02 and book.n.01 applied
to the same discourse referent. Since these senses
are not in hyponymy/hypernymy relation, the DRS
didn’t meet the requirement from C• and was one of
the three DRSs of Boxer↑ that couldn’t be dressed
up as C• -based graphs.11

Table 4 shows the computational (in)feasibility
of the MCES problem across the combinations of
parsing models and graph encodings (using the
mtool implementation with default limits on its
search space). Given that models are sorted accord-
ing to their performance in ascending order from
top to bottom, the table shows that for relatively
distinct graphs it can be difficult to guarantee the
MCES solution.12 But things are not so straightfor-
ward as chLSTM↑ outperforms Boxer↓ but finding
MCES for Boxer↓ is easier for 10 encodings out
of 13. This can be explained by the fact that gold
DRSs are obtained from Boxer↓ while taking into
account added human annotations. Given this, it is

11From 6620 gold DRSs of the PMB 3.0.0 training part,
only 16 (0.24%) DRSs didn’t satisfy the constraint of C• .

12When exhausting its search space limits, mtool falls back
to an anytime strategy, returning the best overall match found
up to that point. This match will often correspond to the
MCES, but there is no correctness guarantee in this mode.

29

expected that gold and Boxer↓’s DRSs have in com-
mon substantial chunks of boxes, and this sharing
is transferred on the DRGs too.

Interestingly, the encodings BB∗ (Basile and Bos,
2013) and A<a

a B

(

C

(

(Liu et al., 2018) are one of
the most inefficient encodings across all the mod-
els. For instance, non-exact (i.e., approximate)
MCES was found for 237 DRG pairs out of 872 for
chLSTM↓ and BB∗ encoding. For other encodings
the ratio of approximate matches halves.

Among the encodings with the C

�

choice,
A<a

a B

(

C

�

appears to provide most computationally
friendly graphs. Every encoding with C

�

becomes
even better when C

�

is replaced with C• . This is
because C• brings at least a 16% reduction in the
number of edges and increases the number of la-
beled nodes. The latter apparently helps mtool to
get better initializations for node mappings.

A<a
a B

(

C• is the best among C• -featured encod-
ings with explicit box membership. It doesn’t im-
prove further when changing its encoding choices,
including switching to A —•. The results show that
A<a

a is consistently better than A —•. Even when they
are combined, A —• adds no value to A<a

a . However,
the advantage of A —• over A<a

a is that it configura-
tionally distinguishes argument positions and there
is no need for out-of-signature labels. Moreover,
A —• invites the intuitive inheritance property about
in-box relation (see (I) discussed in Section 4).
When incorporating the implicit in-box relation
with A —•, the combination A —•B◦C• I yields a sub-
stantial decrease in the number of approximate
matches. This is explained by the fact that the num-
ber of edges decreases by at least 23%. Adding the
out-of-signature edge labels for marking argument
positions further improves the encoding.

Differences between F-scores calculated over
DRS (with Counter) and DRGs (with mtool)
are significant (see Table 3). The gap between
low- and high-performing model is greater than
10% and 5%, respectively. The DRS-based
score is more strict than the DRG-based one be-
cause DRSs are evaluated in the clausal form,
where some DRSs conditions (e.g., built with
B) are modeled via quadruples, i.e., hyper-edges.
In DRGs, the hyper-edges are represented by
multiple triples (〈nodeID, edgeLabel, nodeID〉 or
〈nodeID, label, labelValue〉), and this addition-
ally rewards the models when they get parts of
hyper-edges correctly.

6 Conclusion

There have been several approaches that encoded
DRSs as graphs (surveyed in Section 3), but their
objectives were to transform DRSs in a suitable for-
mat for particular applications rather than exploring
and comparing different types of DRG encodings.
This paper fills this gap. We have systematically
characterized a dozen of DRG encodings and con-
trasted them with each other, and compared them
to the DRS clausal form from an evaluation per-
spective.

We opt for the A —•B◦C• I DRG encoding (see
Figure 4) to represent DRSs at the MRP 2020
shared task. Despite the encoding being lossy, it
represents an excellent trade-off due to the advan-
tages it brings: (a) the encoding has at least 23%
fewer edges than other encodings, which makes
the DRGs more compact and easier to read; (b)
given that scope information inflates DRSs, learn-
ing relatively compact DRGs seems a good starting
point for the shared task; (c) only less than 0.25%
DRSs are lost when applying the encoding; (d) it
doesn’t employ the out-of-signature labels a1 and
a2; (e) for the DRGs obtained from the average-
performing DRS parsers, the evaluation tool can
find exact maximal matches for at least 98.4% of
DRG pairs.

When abstracting from the reification of the roles
as nodes, the chosen DRG encoding and the graphs
of other frameworks in MRP 2020 have abstractly
parallel graph topologies for linguistically parallel
predicate-argument structures.

Acknowledgments

We thank Rik van Noord for providing us with out-
puts of the DRS parsers. We acknowledge access
to the Peregrine HPC cluster provided by the CIT
of the University of Groningen, and to the NLPL
infrastructure provided by Sigma2 in Norway. The
first two authors were supported by the NWO-VICI
grant (288-89-003). The first author was addition-
ally supported by the European Research Council
(ERC) under the European Unions Horizon 2020
research and innovation programme (grant agree-
ment No. 742204).

30

References
Omri Abend and Ari Rappoport. 2013. UCCA: A

semantics-based grammatical annotation scheme. In
Proceedings of the 10th International Conference on
Computational Semantics (IWCS 2013) – Long Pa-
pers, pages 1–12, Potsdam, Germany. Association
for Computational Linguistics.

Lasha Abzianidze, Johannes Bjerva, Kilian Evang,
Hessel Haagsma, Rik van Noord, Pierre Ludmann,
Duc-Duy Nguyen, and Johan Bos. 2017. The Par-
allel Meaning Bank: Towards a multilingual corpus
of translations annotated with compositional mean-
ing representations. In Proceedings of the 15th Con-
ference of the European Chapter of the Association
for Computational Linguistics: Volume 2, Short Pa-
pers, pages 242–247, Valencia, Spain. Association
for Computational Linguistics.

Lasha Abzianidze, Rik van Noord, Hessel Haagsma,
and Johan Bos. 2019. The first shared task on dis-
course representation structure parsing. In Proceed-
ings of the IWCS Shared Task on Semantic Pars-
ing, Gothenburg, Sweden. Association for Compu-
tational Linguistics.

N. Asher and A. Lascarides. 2003. Logics of conversa-
tion. Studies in natural language processing. Cam-
bridge University Press.

Laura Banarescu, Claire Bonial, Shu Cai, Madalina
Georgescu, Kira Griffitt, Ulf Hermjakob, Kevin
Knight, Philipp Koehn, Martha Palmer, and Nathan
Schneider. 2013. Abstract Meaning Representation
for sembanking. In Proceedings of the 7th Linguis-
tic Annotation Workshop and Interoperability with
Discourse, pages 178–186, Sofia, Bulgaria. Associa-
tion for Computational Linguistics.

Valerio Basile and Johan Bos. 2013. Aligning for-
mal meaning representations with surface strings for
wide-coverage text generation. In Proceedings of
the 14th European Workshop on Natural Language
Generation, pages 1–9, Sofia, Bulgaria. Association
for Computational Linguistics.

Claire Bonial, William J. Corvey, Martha Palmer,
Volha Petukhova, and Harry Bunt. 2011. A hierar-
chical unification of LIRICS and VerbNet semantic
roles. In Proceedings of the 5th IEEE International
Conference on Semantic Computing (ICSC 2011),
pages 483–489.

Johan Bos. 2008. Wide-Coverage Semantic Analysis
with Boxer. In Johan Bos and Rodolfo Delmonte,
editors, Semantics in Text Processing. STEP 2008
Conference Proceedings, volume 1 of Research in
Computational Semantics, pages 277–286. College
Publications.

Johan Bos, Valerio Basile, Kilian Evang, Noortje Ven-
huizen, and Johannes Bjerva. 2017. The Gronin-
gen Meaning Bank. In Nancy Ide and James Puste-
jovsky, editors, Handbook of Linguistic Annotation.
Springer Netherlands.

Rob van der Goot, Ahmet Üstün, Alan Ramponi, and
Barbara Plank. 2020. Massive choice, ample tasks
(machamp): A toolkit for multi-task learning in nlp.

Jan Hajič, Eva Hajičová, Jarmila Panevová, Petr Sgall,
Ondřej Bojar, Silvie Cinková, Eva Fučı́ková, Marie
Mikulová, Petr Pajas, Jan Popelka, Jiřı́ Semecký,
Jana Šindlerová, Jan Štěpánek, Josef Toman, Zdeňka
Urešová, and Zdeněk Žabokrtský. 2012. Announc-
ing Prague Czech-English Dependency Treebank
2.0. In Proceedings of the Eighth International
Conference on Language Resources and Evaluation
(LREC’12), pages 3153–3160, Istanbul, Turkey. Eu-
ropean Language Resources Association (ELRA).

Irene Heim. 1982. The Semantics of Definite and In-
definite Noun Phrases. Ph.D. thesis, University of
Massachusetts, Amherst.

Daniel Hershcovich, Zohar Aizenbud, Leshem
Choshen, Elior Sulem, Ari Rappoport, and Omri
Abend. 2019. SemEval-2019 task 1: Cross-lingual
semantic parsing with UCCA. In Proceedings
of the 13th International Workshop on Semantic
Evaluation, pages 1–10, Minneapolis, Minnesota,
USA. Association for Computational Linguistics.

Hans Kamp. 1981. A theory of truth and semantic
representation. In J. A. G. Groenendijk, T. M. V.
Janssen, and M. B. J. Stokhof, editors, Formal Meth-
ods in the Study of Language, volume 1, pages 277–
322. Mathematisch Centrum, Amsterdam.

Hans Kamp and Uwe Reyle. 1993. From Discourse
to Logic; An Introduction to Modeltheoretic Seman-
tics of Natural Language, Formal Logic and DRT.
Kluwer, Dordrecht.

Jiangming Liu, Shay B. Cohen, and Mirella Lapata.
2018. Discourse representation structure parsing. In
Proceedings of the 56th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 429–439, Melbourne, Australia.
Association for Computational Linguistics.

Jonathan May. 2016. SemEval-2016 task 8: Mean-
ing representation parsing. In Proceedings of the
10th International Workshop on Semantic Evalua-
tion (SemEval-2016), pages 1063–1073, San Diego,
California. Association for Computational Linguis-
tics.

Jonathan May and Jay Priyadarshi. 2017. SemEval-
2017 task 9: Abstract Meaning Representation
parsing and generation. In Proceedings of the
11th International Workshop on Semantic Evalua-
tion (SemEval-2017), pages 536–545, Vancouver,
Canada. Association for Computational Linguistics.

George A Miller. 1995. Wordnet: a lexical database for
english. Communications of the ACM, 38(11):39–
41.

Rik van Noord, Lasha Abzianidze, Hessel Haagsma,
and Johan Bos. 2018a. Evaluating scoped mean-
ing representations. In Proceedings of the Eleventh

31

International Conference on Language Resources
and Evaluation (LREC-2018), Miyazaki, Japan. Eu-
ropean Languages Resources Association (ELRA).

Rik van Noord, Lasha Abzianidze, Antonio Toral, and
Johan Bos. 2018b. Exploring neural methods for
parsing discourse representation structures. Trans-
actions of the Association for Computational Lin-
guistics, 6:619–633.

Stephan Oepen, Omri Abend, Lasha Abzianidze, Jo-
han Bos, Jan Hajič, Daniel Hershcovich, Bin Li,
Tim O’Gorman, Nianwen Xue, and Daniel Zeman.
2020. MRP 2020: The Second Shared Task on
Cross-framework and Cross-Lingual Meaning Rep-
resentation Parsing. In Proceedings of the CoNLL
2020 Shared Task: Cross-Framework Meaning Rep-
resentation Parsing, pages 1 – 22, Online.

Stephan Oepen, Omri Abend, Jan Hajič, Daniel Her-
shcovich, Marco Kuhlmann, Tim O’Gorman, Nian-
wen Xue, Jayeol Chun, Milan Straka, and Zdeňka
Urešová. 2019. MRP 2019: Cross-framework
Meaning Representation Parsing. In Proceedings of
the Shared Task on Cross-Framework Meaning Rep-
resentation Parsing at the 2019 Conference on Com-
putational Natural Language Learning, pages 1 – 27,
Hong Kong, China.

Stephan Oepen, Marco Kuhlmann, Yusuke Miyao,
Daniel Zeman, Silvie Cinková, Dan Flickinger, Jan
Hajič, and Zdeňka Urešová. 2015. SemEval 2015
task 18: Broad-coverage semantic dependency pars-
ing. In Proceedings of the 9th International Work-
shop on Semantic Evaluation (SemEval 2015), pages
915–926, Denver, Colorado. Association for Compu-
tational Linguistics.

Stephan Oepen, Marco Kuhlmann, Yusuke Miyao,
Daniel Zeman, Dan Flickinger, Jan Hajič, Angelina
Ivanova, and Yi Zhang. 2014. SemEval 2014 task
8: Broad-coverage semantic dependency parsing. In
Proceedings of the 8th International Workshop on
Semantic Evaluation (SemEval 2014), pages 63–72,
Dublin, Ireland. Association for Computational Lin-
guistics.

Stephan Oepen and Jan Tore Lønning. 2006.
Discriminant-based MRS banking. In Proceed-
ings of the Fifth International Conference on
Language Resources and Evaluation (LREC’06),
Genoa, Italy. European Language Resources
Association (ELRA).

Terence Parsons. 1990. Events in the Semantics of En-
glish: A Study in Subatomic Semantics. MIT Press.

Richard Power. 1999. Controlling logical scope in
text generation. In Proceedings of the 7th. Euro-
pean Workshop on Natural Language Generation
(EWNLG’99), pages 1–9, Toulouse.

Rob A. Van der Sandt. 1992. Presupposition projec-
tion as anaphora resolution. Journal of Semantics,
9(4):333–377.

Petr Sgall, Eva Hajičová, and Jarmila Panevová. 1986.
The Meaning of the Sentence and Its Semantic
and Pragmatic Aspects. Academia/Reidel Publish-
ing Company, Prague, Czech Republic/Dordrecht,
Netherlands.

Noortje J. Venhuizen, Johan Bos, and Harm Brouwer.
2013. Parsimonious semantic representations with
projection pointers. In Proceedings of the 10th Inter-
national Conference on Computational Semantics
(IWCS 2013) – Long Papers, pages 252–263, Pots-
dam, Germany. Association for Computational Lin-
guistics.

Daniel Zeman and Jan Hajič. 2020. FGD at MRP 2020:
Prague Tectogrammatical Graphs. In Proceedings
of the CoNLL 2020 Shared Task: Cross-Framework
Meaning Representation Parsing, pages 33 – 39, On-
line.

Zdeněk Žabokrtský, Daniel Zeman, and Magda
Ševčı́ková. 2020. Sentence meaning representations
across languages: What can we learn from existing
frameworks? Computational Linguistics, 0(0):605–
665.

32

Proceedings of the CoNLL 2020 Shared Task: Cross-Framework Meaning Representation Parsing, pages 33–39
Online, Nov. 19-20, 2020. c©2020 Association for Computational Linguistics

FGD at MRP 2020: Prague Tectogrammatical Graphs

Daniel Zeman and Jan Hajič
Charles University in Prague

Faculty of Mathematics and Physics
Institute of Formal and Applied Linguistics (ÚFAL)
{zeman|hajic}@ufal.mff.cuni.cz

Abstract

Prague Tectogrammatical Graphs (PTG) is a
meaning representation framework that orig-
inates in the tectogrammatical layer of the
Prague Dependency Treebank (PDT) and is
theoretically founded in Functional Generative
Description of language (FGD). PTG in its
present form has been prepared for the CoNLL
2020 shared task on Cross-Framework Mean-
ing Representation Parsing (MRP). It is gener-
ated automatically from the Prague treebanks
and stored in the JSON-based MRP graph in-
terchange format. The conversion is partially
lossy; in this paper we describe what part of
annotation was included and how it is repre-
sented in PTG.

1 Introduction

The Functional Generative Description (FGD)
(Sgall, 1967; Sgall et al., 1986), as instantiated
in the Prague family of dependency treebanks, de-
fines four layers of description: 1. the word layer; 2.
the morphological layer; 3. the analytical (surface-
syntactic) layer; 4. the tectogrammatical (deep-
syntactic) layer. The meaning representation used
in the CoNLL 2020 shared task (Oepen et al., 2020)
is based mostly on the tectogrammatical layer; how-
ever, references have to be followed all the way
down to the word layer in order to provide anchor-
ing of graph nodes in the underlying text.

The shared task featured PTG data in two lan-
guages: English and Czech. The English data
was taken from the same sources as in the pre-
vious shared task (CoNLL MRP 2019, Oepen et al.
2019); however, a different conversion procedure
had been used in the previous task, leading to dif-
ferent (and simpler) target graphs, known as Prague
Semantic Dependencies (PSD, Miyao et al. 2014).
The source text originates in the Wall Street Jour-
nal portion of the Penn TreeBank and the source

annotation stems from the Prague Czech-English
Dependency Treebank 2.0 (PCEDT, Hajič et al.
2012). As there are other frameworks in which
the same data is annotated in the shared task, the
training-development-test split was synchronized
across frameworks,1 and a handful of sentences
were omitted because they did not align with the
original WSJ text. In addition, the test set in-
cludes 100 out-of-domain sentences from The Lit-
tle Prince short novel by Antoine de Saint-Exupéry.
The Czech data was taken from the Prague Depen-
dency Treebank 3.5 (PDT, Hajič et al. 2017) and
its standard training-development-evaluation split
was used.

The meaning representation in P(CE)DT is
called tectogrammatical tree or t-tree. The struc-
ture meets the tree constraints only because

• paratactic structures such as coordination are
encoded using technical dependencies, special
edge labels and attributes;

• coreference links are encoded as node at-
tributes instead of being treated as edges.

As the representations in the shared task are not
restricted to trees, additional edges were added
to more directly encode paratactic structures and
coreference. The resulting structures are called
Prague Tectogrammatical Graphs (PTG).

2 Graph Properties and Anchoring

The typical node in a tectogrammatical graph corre-
sponds to a content word, which is its anchoring in
the surface sentence. Pronouns are treated as con-
tent words in this respect. Function words normally

1Sections 00–20 of WSJ served as training data; section
21 was used for development/validation and section 23 for
evaluation.

33

DENOM independent nominal
PAR parenthetic clause
PARTL independent interjection
PRED independent verbal clause
VOCAT independent vocative

Table 1: Five PTG functors for “independent” nodes.
Except for PAR, these functors typically occur at edges
going out of the artificial root node.

ACT argument: actor
ADDR argument: addressee
EFF argument: effect
ORIG argument: origo
PAT argument: patient

Table 2: Five argument functors in PTG.

do not have nodes of their own.2 They are treated
as attributes of the content word they “belong to”.
This association is projected to anchoring and one
node can thus be anchored to multiple surface sub-
strings, even discontinuous. Punctuation symbols
are even less prominent than function words and
are not included in node anchoring.

On the other hand, there are generated (empty)
nodes that represent reconstructed material, deleted
on the surface. These nodes are usually unanchored.
Unanchored is also the artificial root node. Despite
not being trees, the graphs are rooted and every
node is reachable from the single root node3 via at
least one directed path. Some nodes are reachable
via multiple paths and the graph may also contain
cycles.

In the classification of the MRP shared task,
Prague Tectogrammatical Graphs represent a Fla-
vor 1 framework.

3 Edge Types

Most edges in PTG are understood as dependencies.
In each clause, the backbone of the representation
is formed by edges going from a verbal predicate

2Coordinating conjunctions (or even coordinating punctu-
ation) are an exception. Despite being function words, they
may be used as technical means to capture coordination, in
which case they will have their own node.

3One could argue that the root node could be removed in
the MRP environment and its children marked as top nodes
instead. However, we stick to this representation because 1.
the root is considered a node in the Prague tectogrammatical
trees; 2. there may be multiple outgoing edges from the root,
and 3. the labels and attributes of the edges are not necessarily
identical. Root nodes are not labeled in the data, but in the
diagrams in this paper, we use ‘#Root’ to represent them.

ACMP adjunct: accompaniment
AIM adjunct: purpose
BEN adjunct: benefactor
CAUS adjunct: cause
CNCS adjunct: concession
COMPL adjunct: predicative complement
COND adjunct: condition
CONTRD adjunct: confrontation
CPR adjunct: comparison
CRIT adjunct: criterion
DIFF adjunct: difference
DIR1 adjunct: where from
DIR2 adjunct: which way
DIR3 adjunct: where to
EXT adjunct: extent
HER adjunct: inheritance
INTT adjunct: intention
LOC adjunct: where
MANN adjunct: manner
MEANS adjunct: means
REG adjunct: with regard to
RESL adjunct: result
RESTR adjunct: exception, restriction
SUBS adjunct: substitution
TFHL adjunct: for how long
TFRWH adjunct: from when
THL adjunct: (after) how long
THO adjunct: how often
TOWH adjunct: to when
TPAR adjunct: in parallel with what
TSIN adjunct: since when
TTILL adjunct: until when
TWHEN adjunct: when

Table 3: Thirty-three adjunct functors in PTG.

APP adnominal adjunct: appurtenance
AUTH adnominal adjunct: author
DESCR adnominal description (only PCEDT)
ID adnominal specification of identity
MAT adnominal argument: content
RSTR adnominal adjunct: modification

Table 4: Six adnominal functors in PTG.

to its arguments and adjuncts (both of which can
be clauses themselves, represented by their predi-
cates). Copular clauses are headed by the copula
(meaning that the copula is not treated as a func-
tion word) and the non-verbal component of the
predicate is analyzed as an argument of the cop-

34

ATT speaker’s attitude
CM conjunction modifier
CPHR nominal part of complex predicate
DPHR dependent part of idiom
FPHR part of foreign expression
INTF expletive subject
MOD some modal expressions
NE part of named entity (only PCEDT)
PREC preceding context
RHEM rhematizer

Table 5: Ten PTG functors for miscellaneous depen-
dents.

ADVS parataxis: adversative
APPS parataxis: apposition
CONFR parataxis: confrontation
CONJ parataxis: conjunction
CONTRA parataxis: conflict
CSQ parataxis: consequence
DISJ parataxis: disjunction
GRAD parataxis: gradation
OPER parataxis: math operation
REAS parataxis: cause

Table 6: PTG functors for 10 types of paratactic rela-
tions.

ula. There is no direct edge between the non-verbal
or secondary predicate and the subject argument
(Figure 1).

Unlike in some other meaning representation
frameworks, attributes of nominals (and adjuncts
of clauses) are not treated as predicates and the
edge goes from the nominal to its attribute, not the
other way around.

Overall the tectogrammatical layer defines4 67
relation types, called functors; a few extra functors
are defined in PCEDT. Relations between the ar-
tificial root node and the most independent word
of the sentence are listed in Table 1. Tables 2, 3
and 4 list the functors for arguments, adjuncts and
adnominal modifiers, respectively. Miscellaneous
other dependencies are covered by Table 5.

Optionally, some functors may be further sub-
classified using subfunctors. In the PTG data for
the shared task, we merge the functor with its
subfunctor into a single label, using the period

4See https://ufal.mff.cuni.cz/pdt2.0/
doc/manuals/en/t-layer/html/ch07.html for
detailed documentation.

#Root mr. vinken be chairman n.v. Elsevier
Mr. Vinken is chairman of N.V. Elsevier

PRED

RSTR ACT PAT APP NE

Figure 1: PTG of a simple clause with a copula. The
sentence is Mr. Vinken is chairman of Elsevier N.V. The
preposition of does not have a node of its own but it is
considered an attribute of the head node of the named
entity. The text anchoring of that node (shown in the
second line) is thus of N.V. The linear ordering of nodes
in our diagrams is not significant.

chairman group dutch #Comma Elsevier n.v.
chairman of the group Dutch , Elsevier N.V.

APPS

APP:m

RSTR

APP:m

NE

APP:e

APP:e

Figure 2: PTG of a paratactic structure (apposition).
The phrase is chairman of Elsevier N.V., the Dutch
group. Note that APPS means ‘apposition’ while APP
stands for ‘appurtenance’. The suffix :m in the edge la-
bels is not a subfunctor. It is a shortcut for the member
attribute, indicating that this node is a member of the
paratactic structure, rather than its shared dependent.
The edges below the nodes were added during the con-
version from t-trees to PTG and connect the members
of the apposition with their effective parent. The suffix
:e is a shortcut for the effective attribute of the edge.

as a delimiter. For example, the locative adjunct
LOC may be further specified as LOC.above,
LOC.around etc.

Paratactic structures such as coordination and
apposition call for special treatment within this
prevailingly dependency-based framework. They
are always headed by a technical node which is
typically anchored in a coordinating conjunction
or punctuation. The functor of the incoming edge
only classifies the type of the paratactic relation
(see Table 6 for available functors). Edges outgo-
ing from the technical node lead to members of
the paratactic relation and their functors reflect the
actual relation between the parent of the structure
and the member.

The technical node and the edges described so
far are present also in the source t-trees in the
Prague treebanks. During conversion to PTG, we

35

#Root spokeswoman say asbestos use 1950s and replace 1956
The spokeswoman said asbestos was used in the 1950s and was replaced in 1956

PRED

ACT

CONJ

PAT

EFF:m

TWHEN EFF:m TWHEN

EFF:e

PAT:e

EFF:e

PAT:e

Figure 3: Propagation of effective dependencies to a shared argument of coordinate verbs. The sentence is The
spokeswoman said asbestos was used in the 1950s and replaced in 1956. Note that the auxiliary was occurs only
once but is included in anchoring of two nodes.

deterministically add extra edges that propagate
dependencies across the paratactic structure and
connect children with their effective parents. An
example is given in Figure 2. A larger example
in Figure 3 shows dependency propagation to a
dependent shared by the conjuncts.

The last category of edges, also added during
conversion to PTG, is related to coreference and
will be described in §5.

4 Generated Nodes

Material may be missing (elided, deleted) from the
surface sentence if it is unimportant or understand-
able from context. The tectogrammatical repre-
sentation uses generated nodes to account for the
missing material. If there is no surface word repre-
senting an obligatory valency-licensed argument of
a verb, a generated node will be added and attached
to the predicate with an appropriate functor. In fact,
the graph in Figure 3 should include two generated
nodes which we omitted for simplicity: the ADDR
argument of say and the ACT argument of use and
replace.

The labels of the generated nodes further distin-
guish their type and purpose. #PersPron is used
for personal pronouns, regardless whether they are
overt or generated. #Cor is a grammatically con-
trolled coreferential argument (see §5), and #Gen
is a general actor, not identifiable with a concrete
entity (as in Czech Tohle se tak prostě dělá. “One
simply does it this way.”5

While most generated nodes are unanchored,

5The Czech sentence does not contain a word directly
corresponding to the English pronoun one, so a #Gen node
must be generated instead.

sometimes a generated node is a copy of a regular
node and inherits its anchoring (and label). Such
copied nodes may be observed in coordination, as
in Figure 4.

5 Coreference

Coreference is a relation between two nodes that
have the same referent in the scene described by
the text. While most participants in coreference
are nouns or pronouns, sometimes a referent may
also be described by a clause. T-trees capture coref-
erence as a node attribute which refers to another
node by its unique identifier. In PTG these links
are converted to edges, as in Figure 4, where a gen-
erated node is coreferential with an overt pronoun.

While coreference is naturally a symmetric rela-
tion, only one-way direction is explicitly captured
by the edge in PTG. The rules that govern the di-
rection (inherited from the t-trees) are complex.
For example, if the edge connects an overt pro-
noun with an overt noun, it always points from the
pronoun to the noun. There may be chains of coref-
erence edges that connect more than two coreferen-
tial nodes, and coreference edges may also cause
the graph to contain cycles (Figure 5). Coreference
in the Prague treebanks may even cross sentence
boundaries; however, only intra-sentence relations
are preserved in PTG.

There are two types of coreference edges. Gram-
matical coreference (coref.gram) follows deter-
ministically from grammatical rules (e.g., the sub-
ject of an infinitive must be coreferential with one
of the arguments of the matrix verb). The instances
that do not fall under grammatical coreference are
called textual coreference (coref.text); the

36

#Root #PersPron believe #PersPron either or #PersPron #Neg believe #PersPron
You believe it either or you n’t do believe

DISJ

PRED:m

ACT PAT

PRED:m

ACT

RHEM PAT

PRED:e

PRED:e coref.text

Figure 4: Ellipsis and generated nodes. The sentence is You either believe it or you don’t. There are two nodes
anchored to the surface word believe: the first one is a regular node, the second one is generated (in addition,
the anchoring of the second node includes the auxiliary do). Another generated node represents the hypothetical
patient of the second believe. The coref.text edge indicates that the patients of the two verbs are coreferential.

company be able #Cor report profit rather report #PersPron $ #PersPron post #Cor
the company would have been able to report a profit rather than report the $ it posted

ACT PAT

PAT

ACT

MANN

PAT CPR

PAT

ACT

RSTR

ACT PAT

coref.text

coref.textcoref.gram coref.gram

Figure 5: Coreference. The full sentence is Without the Cray-3 research and development expenses, the company
would have been able to report a profit of $19.3 million for the first half of 1989 rather than the $5.9 million it
posted. We have omitted some nodes for simplicity.

prototypical case is a pronoun linked to a noun.
Finally, the graphs may also contain edges that

represent bridging relations. Bridging is simi-
lar to coreference but different in that the par-
ticipants are not fully identical. Instead, one
may be a subset of the other (then the edge la-
bel is bridging.SUB SET). Bridging relations
are currently available in the Czech data but not in
English.

6 Node Properties

The main label that represents a node is its tec-
togrammatical lemma or t lemma.6 Besides it, a
t-tree node has a number of attributes and ‘gram-
matemes’, both of which translate as node proper-
ties in the file format used in the shared task. Not
all properties are available in both Czech and En-
glish, and not all properties are preserved during
the conversion to PTG. The Prague treebanks, es-
pecially the Czech PDT, contain a number of gram-
matemes that were assigned semi-automatically
without much human intervention. Such properties
were omitted and only the manually assigned (or
checked) ones were carried over to PTG.

6In the diagrams throughout this paper, the first line of
each node shows its t lemma and the second line shows the
surface strings it is anchored to, if any.

The following node properties appear in the
data:7

• sempos – semantic part-of-speech category.
Older data, such as the English part of PCEDT,
do not have sempos but they have a ‘formeme’,
first part of which corresponds to sempos
(while the second part corresponds to what
newer data captures in subfunctors). The first
part of a formeme is thus converted to sempos
in PTG.

• sentmod – sentence modality, 5 values:
enunc (declarative), excl (exclamative),
desid (desiderative), imper (imperative),
inter (interrogative). Occurs at the main
predicate node, both in Czech and English.

• factmod – factual modality: is the event
presented as given, or hypothetical? Four
values: asserted, potential, irreal,
appeal. Occurs at predicate nodes, in Czech
data only.

• diatgram – diathesis, 7 values: act (ac-
tive), pas (passive), res1 and res2 (resul-

7See https://ufal.mff.cuni.cz/pdt3.0/
documentation for detailed documentation.

37

similar technique be almost possible #Benef apply #Gen other crop such as cotton soybean and rice
similar A technique is almost impossible to apply other to crops such as cotton soybeans and rice

RSTR

PAT

ACT

PAT

EXT BEN

APPS

ACT ADDR:mRSTR

CONJ:m

ADDR:m

ADDR:m ADDR:m

PRED

ADDR:e

ADDR:e

ADDR:e

ADDR:e

coref.gram

Figure 6: PTG representation of the sentence A similar technique is almost impossible to apply to other crops,
such as cotton, soybeans and rice. (Sentence 13 of file 0209 from the Wall Street Journal / Prague Czech-English
Dependency Treebank.) We have omitted the artificial #Root node in order to fit the graph on the page.

tative), recip (reciprocal), disp (disposi-
tional), and deagent (deagentive). Occurs
with finite verbs, in Czech data only.

• typgroup – does the noun in plural signify
a pair/tuple? Seven possible values, e.g.,
sg.group or pl.single. Occurs with
nouns, in Czech data only.

• frame – frame identifier (can be used as an
index to the valency dictionary Vallex). In
English, frames are available only for verbs.
In Czech they are available also for some ad-
jectives and nouns.

• tfa – topic-focus articulation, 3 values: t
(topic), f (focus), c (contrast). Only in Czech
data, available for most nodes (also generated
ones), except the artificial root and the techni-
cal heads of paratactic structures.

Related to topic-focus articulation, the tec-
togrammatical layer also defines a deep ordering
of nodes. It is reflected in the numerical node ids in
Czech PTG, hence it could be considered as another
node property. Note however that the diagrams in
this paper do not reflect the deep order.

7 Other Crops

Instead of a summary, we provide in Figure 6 the
PTG representation of sentence 13 of file 0209
from the Wall Street Journal, which has become a
standard running example throughout many papers
on semantic representations and parsing. See also
Oepen et al. (2020) for an alternative but equivalent
visualization of the graph.

Acknowledgments

This work was supported by the the Grant No.
GX20-16819X of the Czech Science Founda-
tion (LUSyD) and by the LINDAT/CLARIAH-
CZ project of the Ministry of Education, Youth
and Sports of the Czech Republic (project
LM2018101).

References
Jan Hajič, Eva Hajičová, Jarmila Panevová, Petr Sgall,

Ondřej Bojar, Silvie Cinková, Eva Fučı́ková, Marie
Mikulová, Petr Pajas, Jan Popelka, Jiřı́ Semecký,
Jana Šindlerová, Jan Štěpánek, Josef Toman, Zdeňka
Urešová, and Zdeněk Žabokrtský. 2012. Announc-
ing Prague Czech-English Dependency Treebank
2.0. In Proceedings of the 8th International Confer-
ence on Language Resources and Evaluation (LREC
2012), pages 3153–3160, İstanbul, Turkey. ELRA,
European Language Resources Association.

Jan Hajič, Eva Hajičová, Marie Mikulová, and Jiřı́
Mı́rovský. 2017. Prague Dependency Treebank. In
Handbook of Linguistic Annotation, pages 555–594.
Springer.

Yusuke Miyao, Stephan Oepen, and Daniel Zeman.
2014. In-house: An ensemble of pre-existing off-
the-shelf parsers. In Proceedings of the Eighth
International Workshop on Semantic Evaluation
(SemEval 2014), pages 335–340, Dublin, Ireland.
Dublin City University.

Stephan Oepen, Omri Abend, Lasha Abzianidze, Jo-
han Bos, Jan Hajič, Daniel Hershcovich, Bin Li,
Tim O’Gorman, Nianwen Xue, and Daniel Zeman.
2020. MRP 2020: The Second Shared Task on
Cross-framework and Cross-Lingual Meaning Rep-
resentation Parsing. In Proceedings of the CoNLL
2020 Shared Task: Cross-Framework Meaning Rep-
resentation Parsing, pages 1 – 22, Online.

38

Stephan Oepen, Omri Abend, Jan Hajič, Daniel Her-
shcovich, Marco Kuhlmann, Tim O’Gorman, Nian-
wen Xue, Jayeol Chun, Milan Straka, and Zdeňka
Urešová. 2019. MRP 2019: Cross-framework
Meaning Representation Parsing. In Proceedings of
the Shared Task on Cross-Framework Meaning Rep-
resentation Parsing at the 2019 Conference on Com-
putational Natural Language Learning, pages 1 – 27,
Hong Kong, China.

Petr Sgall. 1967. Functional sentence perspective in a
generative description. Prague Studies in Mathemat-
ical Linguistics, 2:203–225.

Petr Sgall, Eva Hajičová, and Jarmila Panevová. 1986.
The Meaning of the Sentence in its Semantic and
Pragmatic Aspects. Springer Science & Business
Media.

39

Proceedings of the CoNLL 2020 Shared Task: Cross-Framework Meaning Representation Parsing, pages 40–52
Online, Nov. 19-20, 2020. c©2020 Association for Computational Linguistics

Hitachi at MRP 2020: Text-to-Graph-Notation Transducer

Hiroaki Ozaki∗, Gaku Morio*, †Yuta Koreeda, Terufumi Morishita and Toshinori Miyoshi
Research and Development Group, Hitachi, Ltd., Japan

†Research and Development Group, Hitachi America, Ltd., USA
{hiroaki.ozaki.yu, gaku.morio.vn, terufumi.morishita.wp,

toshinori.miyoshi.pd}@hitachi.com, †yuta.koreeda@hal.hitachi.com

Abstract

This paper presents our proposed parser for the
shared task on Meaning Representation Pars-
ing (MRP 2020) at CoNLL, where participant
systems were required to parse five types of
graphs in different languages. We propose to
unify these tasks as a text-to-graph-notation
transduction in which we convert an input text
into a graph notation. To this end, we de-
signed a novel Plain Graph Notation (PGN)
that handles various graphs universally. Then,
our parser predicts a PGN-based sequence
by leveraging Transformers and biaffine atten-
tions. Notably, our parser can handle any
PGN-formatted graphs with fewer framework-
specific modifications. As a result, ensemble
versions of the parser tied for 1st place in both
cross-framework and cross-lingual tracks.

1 Introduction

This paper introduces the proposed parser of
the Hitachi team for the CoNLL 2020 Cross-
Framework Meaning Representation Parsing (MRP
2020) shared task (Oepen et al., 2020). Different
from the previous MRP 2019 shared task (Oepen
et al., 2019), there are two tracks. The first is a
cross-framework track that aims at parsing English
sentences to five different meaning representation
graphs, i.e., EDS (Oepen and Lønning, 2006), PTG
(Hajič et al., 2012), UCCA (Abend and Rappoport,
2013; Hershcovich et al., 2017), AMR (Banarescu
et al., 2013), and DRG (Van Der Sandt, 1992; Bos
et al., 2017). The other is a cross-lingual track
that targets four different frameworks and three lan-
guages, i.e., German UCCA and DRG, Chinese
AMR (Li et al., 2016), and Czech PTG. In both
tracks, the goal was to design a unified parser for
all graphs.

∗ Contributed equally. Ozaki mainly developed PGN
parser. Morio mainly developed neural models.

1/take-10
2/it ARG0 [EOD]
3/long-03

2/it ARG1 [EOD]
4/- polarity [EOD]

ARG1 [EOD]
[EOG]

It did n't take long .Input text

Plain Graph
Notation

(PGN)

decode & reconstruct

output graph

equals

encode

Model

(Transformer-based

encoder-decoder)

Figure 1: Given an input text, we tokenize and en-
code the text by pre-trained Transformer encoder (e.g.,
BERT). Then, Transformer decoder is applied to pro-
duce a Plain Graph Notation (PGN) that is convertible
into a general graph.

In this paper, we propose a novel parser to unify
graph predictions across all frameworks and lan-
guages. To this end, we introduce a text-to-graph-
notation transduction. The overview of our parser
is shown in Figure 1. Our parser utilizes sequence-
to-sequence Transformer architectures (Vaswani
et al., 2017) to generate a plain graph notation
(PGN), which we newly designed as a context-
free language. PGN is a simplified notation based
on the PENMAN notation (Matthiessen and Bate-
man, 1991) that is generally used for AMR graphs.
However, PGN is tailored for direct generation by
sequence-to-sequence architecture.

Our parser is expected to combine both strengths
of the neural graph-based and transition-based
parsers (McDonald et al., 2005; Yamada and Mat-
sumoto, 2003; Kulmizev et al., 2019; Ma et al.,
2018). This is because the Transformer decoder
directly draws attentions like a graph-based parser
does, as well as handles higher-level effects of
graph structures by sequence prediction like a
transition-based parser does. Moreover, our parser
is practically able to parse most of the graph vari-

40

ants in a unified manner. For example, our parser
is able to predict directed acyclic graphs, discon-
nected graphs, directed multigraphs, reentrancy
edges (Vilares and Gómez-Rodrı́guez, 2018), and
source-side anchors without complicated language-
dependent architectures.

Consequently, ensemble versions of our parser
officially tied for 1st place in both the cross-
framework track and cross-lingual track, achieving
the top performances for English EDS, PTG, and
AMR graphs. We also summarize other contribu-
tions as follows:
Alignment Free: PGN generation allows us to
achieve completely alignment-free parsing.
Action Design Free: Compared to a transition-
based parser, there is no need to design a complex
transition strategy.
Fast Training: Since we leverage attentions, train
speed is faster than a transition-based parser.

2 Related Work

2.1 Previous Systems for Cross-Framework
Meaning Representation Parsing

MRP 2019 (Oepen et al., 2019) brought various
parsing techniques together. According to Oepen
et al. (2019), MRP systems can be characterized
into three broad families of approaches: transition-,
factorization-, or composition-based architectures.
For example, the winning technique of HIT-SCIR
(Che et al., 2019) at MRP 2019 used a transition-
based parser based on a BERT encoder (Devlin
et al., 2019). SUDA-Alibaba (Zhang et al., 2019c)
proposed a graph-based approach with BERT. They
used biaffine attention (Dozat and Manning, 2018)
for the edge prediction. Donatelli et al. (2019)
employed a compositional approach that represents
each graph with its compositional tree structure
(Lindemann et al., 2019).

2.2 Comparison with Other Systems

Like Zhang et al. (2019a), we model a context-free
language instead of a sequence of transition actions,
and parser states can be regarded as being implicitly
materialized inside BERT’s memory. However,
our parser jointly generates nodes and edges based
on PGN, making the system consider higher-level
effects of graph structures.

The work most closely related to our study is
(Zhang et al., 2019b), where the authors provided
an encoder-decoder architecture to predict a se-
quence of semantic relations, employing a target

graph = {target “[EOG]”};
edge = node id {dep ”[EOD]”};
dep = target edge label;
target = node id | edge;
node id = {digit};
edge label = {letter};

Figure 2: PGN grammar described in EBNF. Essen-
tially, a graph can be represented by a set of edges.
However, to support floating nodes, we defined a graph
as a set of edges and floating nodes.

Name Function
attr2name Append -{attr name} suffix to edge

label name instead of having attributes.
prop2node Make node properties independent

nodes linked with edges named with
properties’ names.

embed label Replace node id in PGN with
{node id}/{node label}.

Table 1: List of PGN processors.

node-, relation type-, and source node-module in
the decoder. Similar to our study, Zhang et al.
(2019b) encoded node and edge representation with
the modules. While they jointly predicted node and
edge labels, our parser outputs node and edge la-
bels separately. In addition, they provided LSTMs
whereas we provide Transformers that can draw
attentions from both past node and edge represen-
tations in the decoder. Also, while Zhang et al.
(2019b) solved reentrancies by producing the same
node ID, we solve them with a biaffine classifier,
making our parser solve reentrancies with atten-
tions.

The biggest difference between the transition-
based architectures for MRP (Che et al., 2019)
and our work is that we have designed PGN such
that it unifies all graph generation processes and
eliminates the need to design framework-specific
actions. In addition, Che et al. (2019) relied on
explicit alignment between input tokens and nodes,
whereas our model utilizes biaffine attention for
anchoring only when it is necessary, allowing our
model to be alignment-free.

3 Plain Graph Notation

3.1 Format Design

To represent a graph as a text sequence, we newly
designed a notation, called Plain Graph Notation
(PGN), with the key principles shown below.
Simpler Format: Similar to PENMAN notation
(Matthiessen and Bateman, 1991; Goodman, 2020),
which is used to represent AMR graphs with text
sequence, PGN is based on a context-free grammar.

41

_may_v_modal
may

TENSE pres

_sell_v_1
sold

ARG1

udef_q
Jackets

_jacket_n_1
Jackets
NUM pl

BVARG2

_next_a_1
next.

ARG1

3/ may v modal
6/pres TENSE [EOD]
4/ sell v 1

5/ next a 1 ARG1-of [EOD]
2/ jacket n 1

7/pl NUM [EOD]
1/udef q BV-of [EOD]

ARG2 [EOD]
ARG1 [EOD]

[EOG]

(a2) PGN

<bos> [AS] [AE] may v modal [EON]
pres [EON] TENSE [EOD]
[AS] [AE] sell v 1 [EON]
[AS] [AE] next a 1 [EON] ARG1-of [EOD]
[AS] [AE] jacket n 1 [EON]

pl [EON] NUM [EOD]
udef q [EON] BV-of [EOD]

ARG2 [EOD]
ARG1 [EOD]

[EOG] <eos>

(a3) Prediction sequence

(a) An EDS graph and its PGN and prediction sequence for Jackets may be sold next

take-10

long-03
polarity -

ARG1

it

ARG0

ARG1

1/take-10
2/it ARG0 [EOD]
3/long-03

2/it ARG1 [EOD]
4/- polarity [EOD]

ARG1 [EOD]
[EOG]

(b2) PGN

<bos> take - 10 [EON]
it [EON] ARG0 [EOD]
long - 03 [EON]
[RNT] [EON] ARG1 [EOD]
- [EON] polarity [EOD]

ARG1 [EOD]
[EOG] <eos>

(b3) Prediction sequence

(b) An AMR graph and its PGN and prediction sequence for it didn’t take long.

Figure 3: MRP graph examples and their PGN and prediction formatted expressions. We applied prop2node
and embed label processors to generate the PGN expressions.

However, PGN only represents a graph structure
(namely, all edges in the graph) for simplicity. All
node properties are omitted from PGN while we
preserve the properties separately. In addition, we
reduce redundant meta-tokens appearing in the no-
tation as much as possible. Figure 2 shows the
Extended Backus–Naur Form (EBNF)1 of PGN
grammar.

Tree-Like Structure: We employed an essentially
tree-like structure2 because all spanning graphs
with a root can be converted into tree-like struc-
tures by flipping the directions of appropriate edges.
This structure is useful when we convert graphs to
PGN.

Left-to-Right Decodable: To make our parser ro-
bust, we allow it to convert a notation into a graph
in a left-to-right manner. This operation makes us
decode an ill-formatted sequence with a best-effort
strategy. We briefly explain this algorithm in a later
sub-section.

1https://www.iso.org/obp/ui/#iso:std:
iso-iec:14977:ed-1:v1:en

2Here we define “tree-like” graph as a graph whose root
node is always an ancestor of all nodes in the graph.

3.2 Graph to PGN Conversion

MRP graph to PGN conversion starts with the top
nodes. We recursively apply the grammar shown
in Figure 2 from parents to children by depth first
search. In addition to the depth first search, at
finding a next path, we select a child node in in-
creasing order of the numbers of outgoing edges in
all descendant nodes (i.e., we select shallow branch
first) to convert. Since we assume the input graph
consists of a tree-like structure, finding children is
just extracting out-going edges. However, several
frameworks such as EDS, DRG, and AMR may
not form a tree-like structure. Thus, we provide an
option using all edges instead of out-going edges
with flipping edge directions of in-coming edges
(we append “-of” suffix to labels of flipped edges).
To deal with the reentrancy problem, our recursive
search is applied when the node first appears. Here
we describe various framework-specific modifica-
tions.
Floating Nodes: We found that some EDS and
AMR graphs have floating nodes in which no in-
coming or outgoing edges are annotated. Thus, the
PGN grammar supports floating nodes.
Floating Sub-Graphs: We found that some EDS
graphs have floating sub-graphs that have no con-

42

nection to the top. Therefore, we add temporal top
nodes for floating sub-graphs to convert all sub-
graphs on the basis of the following criteria.

1. First predicate node that has frame property,
with the first priority.

2. First node that has smallest ID in a sub-graph,
with the second priority.

3.3 Left-to-Right Decoding
This left-to-right decoding system consists of a
stack and an input stream. Every time a token is
fed from the input stream, we take an action of
ADD (put the token to the stack), ARC (create an
edge between the top two tokens on the stack), POP
(pop out the top token from the stack), or CLEAR
(pop out all tokens in the stack, and add them to the
node list). These actions correspond to node id,
edge label, [EOD], and [EOG] in Figure 2,
respectively.

Since neural networks may produce ill-formatted
PGN, the left-to-right decoding finds as many
edges as possible.3 If there is an ill-formatted ac-
tion such that a PGN sequence terminates with a
non-empty stack, we generate additional edges ac-
cording to the stack state.

3.4 PGN Processors
We define PGN processors, which are a set of in-
vertible functions to apply small modification PGN
formatted sequences. Table 1 shows all PGN pro-
cessors and their description. To better understand
these processors, Figure 3 (a2 and b2) shows ex-
ample PGN formatted graphs of EDS and AMR.
Actual PGN expressions are a list of serialized to-
kens, but here we add indentations for ease of read-
ing. According to the PGN grammar, a node id
should be digits representing a node ID, but we
insert node labels by the embed label processor.
In Figure 3 (a2), there are two flipped edges in the
graph to form a tree-like structure, i.e., (next a 1,
sell v 1, ARG1) and (udef q, jacket n 1, BV).

Also, Figure 3 (a2 and b2) depicts a larger number
of nodes than that in original MRP graphs because
node properties are converted into additional nodes
by prop2node processor, e.g., 6/pres and 7/pl in
the EDS graph.

3.5 PGN to Prediction Sequence
Though existing text generation techniques are ap-
plicable to generate PGN as is, we provide further

3In practice, ill-formatted outputs were very few in experi-
ments.

modification for PGN expressions to obtain more
suitable prediction sequences for a neural decoder.
Figure 3 (a3 and b3) shows example prediction se-
quences derived from PGN. As can be seen, we
split a node label into multiple tokens (e.g., sub-
word tokens) and add some special tokens. We add
an end-of-node token ([EON]) just after the end of
subword elements because we should know where
the node label token generation terminates. Since
[EON] is inserted as the end of node token, we
can consider [EON] as the node’s representative
token, which will be used for reentrancy classifiers
and property classifiers (described later). To handle
anchors, we add a place-holder token for anchor
starting and ending ([AS] and [AE]) before node
label tokens. When our parser predicts [AS] and
[AE] tokens, we resolve anchors by a biaffine clas-
sifier described later. We also add a place-holder
token ([RNT]) to generate a reentrancy edge after
all decoding steps have been completed.

4 Model

4.1 Problem Formalization

We describe the conceptual formalization sim-
ilarly to the work of Zhang et al. (2019b).
Given an input sequence X (i.e., tokens in the
text), we optimize an output sequence Ŷ =
〈y1, y2, . . . yn〉, where y can be represented by a
tuple

〈
ymode, yG, yE, yL, yAS, yAE

〉
,4 consisting of

a model label (ymode), mode-wise labels (yG, yE

and yL), and an index of a source-side token for
anchoring (yAS and yAE), defined as follows:

Ŷ = arg max
Y

n∏

i

P(yi | y<i, X).

4.2 Overview

To generate the prediction sequence, we provide a
sequence-to-sequence model. Figure 4 illustrates
an example of AMR parsing (i.e., the graph of
Figure 3 (b3)). Our parser is based on a typical
encoder-decoder architecture but has several pro-
posed architectures on the decoder side. Given
an input text, our parser encodes the tokens by a
pre-trained language model (PLM) such as BERT
(Devlin et al., 2019). At decoding, a Transformer
decoder produces the prediction sequence. To ef-
fectively control the decoder, we propose a mode
switching mechanism. At the i-th decode step, our

4We omit reentrancy and property outputs for simplicity.

43

G L L L G L G E G L L L G R G E

take - 10 it long - 03

<bos> [EON] [EON] [EOD] [EON] [EON]

ARG0 ARG1Input tokens

BERT encoder

Mode embed

Label embed

Edge embed

Graph embed

Mode classifier

Label classifier

Edge classifier

Graph classifier

Generate a token mask
for each classifier

Reentrancy classifier
Biaffine scoring

[CLS] It did n't take long . [SEP]

Depth embed 0 0 0 0 1 1 2 2 1 1 1 1 2 2 3 3

L L L G L G E G L L L G R G E G

[EON] [EON] [EOD] [EON] [EON] [EOD]

ARG0 ARG1

take - 10 it long - 03

Transformer decoder

Source-side repr.

G: graph meta
L: node label
E: edge label
R: reentrancy

Modes

<bos>: beginning of the sentence
<eos>: end of the sentence
[EON]: end of node
[EOD]: end of dependency
[EOG]: end of graph

Graph meta-tokens

Figure 4: Overview of our proposed parser, showing an example of AMR parsing, assuming PLM = BERT. We
encode input tokens that are fed into the decoder. In the decoder, each mode is embedded and the decoder produces
an output label for each classifier.

parser decides which mode to execute amongst the
following six modes:
G (graph) generates the meta tokens: <bos>,
<eos>, [EON], [EOD], and [EOG].
L (label) generates label tokens of a node, such as
take - 10.
E (edge) generates an edge label such as ARG0.
AS (anchor start) produces an anchoring start rep-
resentation corresponding to [AS].
AE (anchor end) produces an anchoring end rep-
resentation corresponding to [AE].
R (reentrancy) generates a place-holder token
[RNT] that is solved after all decoding steps have
been completed.

Then, a classification layer of the selected mode
is applied to predict the i-th output. For example,
if mode E is selected, an edge classifier on the de-
coder is used to produce an edge label. If mode AS
is selected, an anchoring classifier on the decoder
is used to produce an anchor starting index in the
encoder’s subword tokens. If mode R is selected,
we do nothing but generate a place-holder token.
Instead, after all decoding steps, we apply biaffine
attention, which solves the reentrancy edges for the
place-holder tokens.

4.3 Encoder
Given an input text, a PLM-specific tokenizer to-
kenizes the text into the token sequence X . Note
that we insert special tokens such as [CLS] and
[SEP] according to the PLM type. To obtain PLM
representations, a layer-wise attention is applied
(Kondratyuk and Straka, 2019; Peters et al., 2018):

hPLM,i = c
∑

j

PLMij · softmax (s)j ,

where s and c are parameters. Note that hPLM,i ∈
Rd(PLM), where d(PLM) represents the number of
dimensions of the PLM layers. PLMij is an embed-
ding of the i-th token in the j-th PLM layer. Note
that 1 ≤ i ≤ N , where N is the number of tokens.

4.4 Decoder
We employ a Transformer decoder to fully utilize
a self-attention mechanism. The decoder includes
a switching architecture of modes that makes the
decoder explicitly learn structural representations.
Decoder Input Representation: For each decod-
ing step i, we compute an input representation for
the Transformer decoder:

ei =
[
emode
i ; eG

i ; e
L
i ; e

E
i ; e

AS
i ; eAE

i ; e
depth
i

]
,

44

where ; shows a concatenate operation, and each
representation is obtained as follows:

emode
i = EMB(mode) (ymode

i

)
,

eG
i = EMB(G)

(
yG
i

)
,

eE
i = EMB(E) (yE

i

)
,

eL
i = EMB(L) (yL

i

)
,

eAS
i =W (AS)hPLM,k + b(AS),

eAE
i =W (AE)hPLM,k + b(AE),

e
depth
i = EMB(depth)

(
y

depth
i

)
,

where EMB is a layer that transfers the label into
a fixed sized vector, and W and b are parameters.
The following shows detailed descriptions.

• emode
i : This is a representation of the current

mode label. ymode
i ∈ {G,E,L,AS,AE,R}

denotes the mode label.
• eG

i , e
E
i , e

L
i : These are representations of a

graph meta-token, edge label, and node label,
respectively. In turn, yG

i , yE
i , and yL

i represent
a mode-wise label. For example, yG

i ∈
{<bos>,<eos>,[EON],[EOD],[EOG]}.
yE
i ∈ {ARG0,ARG1, . . . } when the target

framework is AMR. Note that G, E, and L
are selected exclusively and thus zero embed-
dings are assigned for non-selected modes:
for example, if ymode

i is E, eG
i = eL

i = 0.
• eAS

i , eAE
i : These are input embedding of

source-side anchors. W (AS),W (AE) ∈
Rd(PLM)×d(PLM) and b(AS),b(AE) ∈ Rd(PLM)

are trainable parameters. k is an index of the
anchor starting token for AS, or an index of
the anchor ending token for AE. Therefore,
the Transformer decoder draws attentions
from the encoder representation of source-side
anchored tokens. Note that AS and AE are
also exclusive.

• e
depth
i : This is a feature embedding to make

the network consider the current depth from
the top of the graph. The depth ydepth

i is ob-
tained by starting from zero, adding one when
[EON] appears, and subtracting one when
[EOD] appears (see Figure 4).

Transformer Decoder: To leverage self-attentions
throughout parsing, a multi-layered Transformer
decoder (Vaswani et al., 2017) is applied to ob-
tain an output sequence. Let di be a decoder
representation at i-th step that is obtained by a
multi-layered Transformer decoder where previ-
ous decoder inputs (e1 . . . ei) and encoder repre-

G AS AE L L L

_ may _

<bos>
Input tokens

Mode classifier

Label classifier

[CLS] Jackets may be sold next . [SEP]

0 0 0 0 0 0

AS AE L L L L

_ may _ v

Transformer decoder

anchor
classifier

Biaffine scoring

Biaffine scoring

BERT encoder

anchor
classifier

AS: anchor start
AE: anchor end

Figure 5: Overview of our proposed parser, showing an
example EDS parsing with anchoring prediction.

sentations (hPLM,1 . . .hPLM,N) are given. We also
apply position-encoding (Sukhbaatar et al., 2015;
Vaswani et al., 2017; Devlin et al., 2019) for the
decoder input representation. By leveraging this
decoder, we can consider the entire encoder rep-
resentation and all decoder inputs throughout the
decoding steps.
Mode Output Layers: Given the decoder repre-
sentation di, we produce a probability distribution
of the next mode label with a softmax classifier and
a feed forward network as follows:

P
(
ymode
i+1

)
= CLS(mode) (di) ,

where

CLS(t)(x) = softmax
(
W (t)FFN(t) (x) + b(t)

)
.

In the equation, ymode
i+1 denotes a mode label, i.e., G,

E, L, AS, AE, or R. We chose the mode ymode
i+1 based

on the maximum probability. Similarly, we obtain
a probability distribution for each mode-wise label
as follows:

P
(
yG
i+1

)
= CLS(G) (di) ,

P
(
yE
i+1

)
= CLS(E) (di) ,

P
(
yL
i+1

)
= CLS(L) (di) ,

After applying these layers above, we obtain
output labels ymode

i+1 , yG
i+1, yE

i+1, yL
i+1, and their cor-

responding embeddings emode
i+1 , eG

i+1, eE
i+1, eL

i+1,
which are used for the next decoder input.

45

Anchoring Classifier: To compute source-side an-
chors (i.e., AS and AE), we employ biaffine at-
tention (Dozat and Manning, 2017, 2018). The
biaffine operation computes a relation for vector
pairs as:

BIAFFINE(t)(x,y) =x>U(t)y+W (t)[x;y] +b(t),

where U(t), W (t), and b(t) are trainable param-
eters. We apply the biaffine operation between
the decoder representation di and encoder repre-
sentation hPLM,j to point a range of anchoring. If
ymode
i+1 = AS, the anchor starting probability can be

represented as

h
(A1)
i = FFN(A1) (di) ,

h
(A2)
j = FFN(A2) (hPLM,j) ,

P
(
yAS
i→j

)
= σ

(
BIAFFINE(A)

(
h
(A1)
i ,h

(A2)
j

))
,

where σ is a sigmoid function. P
(
yAS
i→j

)
repre-

sents a probability that the j-th token in the en-
coder is an anchor starting token. After the output
layer above, we draw encoder representations by
selecting arg max

j∈1,...,N
P
(
yAS
i→j

)
and its corresponding

hPLM,j , which is used as the next decoder input
eAS
i+1. Also, eAE

i+1 can be calculated in the same
manner.

Figure 5 shows an example of EDS parsing (the
graph of Figure 3 (a3)). This example illustrates
that AS is raised at the first decoding step, applying
biaffine scoring and selecting the encoder’s repre-
sentation of may token. Similarly, the AE is raised
at the second step.
Reentrancy Classifier: To solve reentrancy edges,
we provide another biaffine layer. Given that this
is a target-side (i.e., decoder-side) operation, we
apply this classifier after all decoding steps have
been finished to keep the training speed fast. If
ymode
i+1 = R, the probability that a reentrancy edge

exists between the i and j-th decoding steps can be
represented as

h
(R1)
i = FFN(R1) (di) ,

h
(R2)
j = FFN(R2) (dj) ,

P
(
yR
i→j

)
= σ

(
BIAFFINE(R)

(
h
(R1)
i ,h

(R2)
j

))
.

To restrict the search space, we only consider the
end of node token (i.e., [EON]) for j (see Figure 4),
since we assume [EON] is a representative token
of the node.

Property Classifiers: Since we need to classify
the properties of a node for PTG graphs, we pro-
vide property classifiers on the top of the decoder.
Given that we consider [EON] as a representative
token of a node, we use decoder representations of
[EON] tokens to classify properties. Therefore, if
yG
i+1 = [EON], a probability distribution for the

property is computed as

P
(
yPi+1

)
= CLS(P) (di) ,

where P
(
yPi+1

)
represents a probability distribution

of the label of property type P at the [EON] (i.e.,
a node representative token). Note that P contains
a no label class where the node is considered to not
have the property.

4.5 Loss and Decoding

Loss: We compute a mode output cross-entropy
loss Lmode based on P

(
ymode

)
. For each mode, we

compute mode-specific cross-entropy loss LG, LL,
and LE based on P

(
yG
)
, P
(
yL
)
, and P

(
yE
)
. Note

that loss is not computed if a different mode is
selected for decode step i. For example, if ymode

i =
G, only LG is computed, and others are ignored
except the mode loss. Anchoring loss LAS and
LAE are computed based on binary cross-entropy
of the P

(
yAS
)

and P
(
yAE
)
. Similarly, reentrancy

loss is represented as LR. If the graph has property
tasks (e.g., PTG graphs), we compute the cross-
entropy of property label LP for property type P .
The following equation describes the combined
loss to be optimized:

L = λmodeLmode + λGLG + λELE + λLLL

+ λALAS + λALAE + λRLR + λP
∑

P
LP .

where λ are hyperparameters to adjust loss scales.
Decoding: For simplicity, we only consider greedy
decoding. We also apply explicit restrictions. For
example, the mode AE always comes after AS.

4.6 Ensemble

To further boost the performance of our parser, we
provide an average ensemble. We apply mode-wise
averaging over output probabilities. Therefore, we
average probabilities for the mode layer, mode-
specific layers, anchoring classifiers, reentrancy
classifier, and property classifiers, respectively.

46

Cross-framework Cross-lingual
AMR EDS UCCA PTG DRG PTG UCCA AMR DRG

Data preparation
No. of folds 36 24 12 52 16 52 12 16 8
Reverse edge X X X
prop2node X X X
embed label X X X X X X X
attr2name X X X X
Hyperparameters

Hugging Face PLM roberta
-large

roberta
-large

roberta
-large

roberta
-large

roberta
-large

bert-base-
ml-cased

bert-base-
ml-cased

chinese-roberta
-wwm-ext-large

bert-base-
ml-cased

Encoder dropout .1 .1 .1 .1 .1 .1 .1 .1 .1
FFN dropout .1 .1 .1 .1 .1 .1 .1 .1 .1
FFN activation ReLU ReLU ReLU ReLU ReLU ReLU ReLU ReLU ReLU
BIAFFINE dim 400 400 400 400 400 400 400 400 400
Decoder layer, head 6, 4 6, 4 6, 4 6, 4 6, 4 6, 4 8, 4 6, 4 8 ,4
Decoder dff 256 256 256 256 256 256 256 256 256
Decoder dropout .1 .1 .1 .1 .1 .1 .1 .1 .1
Depth embedding dim 100 100 100 100 100 100 100 100 100
λmode 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
λG .137 1.0 .06 .459 .85 .45 .162 .15 .058
λE .137 1.7 .09 .329 .25 .35 .058 .15 .613
λL 1.2 1.4 0 1.50 .4 1.5 0 1.5 .538
λA 0 2.0 1.73 2.0 0 2.0 2.96 3.0 0
λR 3.1 1.0 .50 1.5 2.0 1.5 .241 3.0 .885
λP 0 0 0 1.6 0 1.6 0 0 0
Encoder learning rate 1.4e-5 1e-5 1e-5 1e-5 5e-5 5e-5 1.6e-5 5e-6 5.4e-6
Decoder learning rate 5.4e-5 5e-5 5e-5 5e-5 1e-4 1e-4 1.2e-4 1e-4 8.0e-5
Adam beta1, 2 .9,.998 .9,.998 .9,.998 .9,.998 .9,.998 .9,.998 .9,.998 .9,.998 .9,.998
Warmup ratio .01 .01 .01 .05 .05 .05 .05 .01 .05
Batch size 8 12 8 8 4 4 16 8 32
Maximum epochs 500 500 1000 500 500 500 1000 500 1000
CV ensemble X X X X X X X X X

Table 2: Experimental setup of submitted models: data preparation (top) and hyperparameter values (bottom).

4.7 Post-Processing

We incorporate framework-specific post-processing
after reconstruction except for DRG.

For EDS, to support unknown words appearing
as a named entity, we replace the CARG property
with a node label expression extracted by anchors
when the edit distance between node label expres-
sion and CARG is larger than 70% of the node la-
bel characters. Since the EDS frame dictionary
is available5, we correct frames by checking their
arguments. When several candidates are available,
we select the most frequent frame name.

For PTG, frame dictionaries for both English
and Czech are also available6, so we correct frames
in the same manner.

For UCCA, we apply post-processing to fol-
low UCCA restrictions. We remove non-anchored
nodes appearing as terminal nodes. We also re-
move self-loop edges. We add remote attribute
to all edges except primary edges.

For AMR, we replace date-entity and

5http://svn.delph-in.net/erg/tags/
1214/etc

6http://hdl.handle.net/11234/1-1512

url-entity with an extracted date and URL
from the input by using regular expressions.

5 Experiments

Data Preparation: We first converted all MRP
formatted training data into PGN format. Ta-
ble 2 (top) summarizes the PGN conversion pa-
rameters. Since PTG and UCCA utilize tree-like
structures, we did not use the reverse edge option,
which flips edge directions to form a tree-like struc-
ture. AMR graphs form essentially non-tree-like
structures; however, given MRP data have been
converted to tree-like structures, we did not ap-
ply the reverse edge option to AMR graphs. We
used attr2name on all graphs that have edge at-
tributes (i.e., PTG and UCCA). We also applied
prop2node to all graphs that have node proper-
ties, except PTG graphs.

We divided training data into folds to apply cross-
validation (CV) (see No. of folds in Table 2 (top)).
We decided a fold size should have about a half
number of graphs in the official validation data.
Implementation: We utilize BERT (Devlin et al.,
2019) and RoBERTa (Liu et al., 2019) models as

47

Team Mean EDS PTG UCCA AMR DRG
Hitachi (ours) .8642 /1 .9356 /1 .8873 /1 .7507 /2 .8154 /1 .9319 /2
ÚFAL (Samuel and Straka, 2020) .8639 /1 .9273 /2 .8844 /2 .7640 /1 .8023 /2 .9416 /1
HIT-SCIR (Dou et al., 2020) .8106 /3 .8740 /3 .8426 /3 .7476 /3 .6980 /3 .8907 /3
HUJI-KU (Arviv et al., 2020) .6429 /4 .7968 /5 .5376 /4 .7291 /4 .5236 /5 .6275 /5
ISCAS .4813 /5 .8586 /4 .1799 /6 .0599 /6 .6148 /4 .6935 /4
TJU-BLCU .3016 /6 .4904 /6 .2149 /5 .1041 /5 .2996 /6 .3991 /6
JBNU (Na and Min, 2020) .1323 /- - - - .6613 /- -

Table 3: Official MRP results for the cross-framework track (shown as score /rank).

Team Mean Czech PTG German UCCA Chinese AMR German DRG
Hitachi (ours) .8505 /1 .8735 /2 .7904 /3 .8044 /1 .9336 /1
ÚFAL (Samuel and Straka, 2020) .8507 /1 .9127 /1 .8101 /1 .7817 /2 .8983 /2
HIT-SCIR (Dou et al., 2020) .6891 /3 .7793 /3 .8002 /2 .4939 /3 .6831 /3
HUJI-KU (Arviv et al., 2020) .6011 /4 .5849 /4 .7472 /4 .4492 /4 .6233 /4
ISCAS - - - - -
TJU-BLCU .2003 /5 .2171 /5 .0000 /5 .2464 /5 .3377 /5
JBNU (Na and Min, 2020) - - - - -

Table 4: Official MRP results for the cross-lingual track (shown as score /rank).

PLMs from Hugging Face’s Transformer library
(Wolf et al., 2019), which is included on the of-
ficial ‘white-list’ of legitimate resources in MRP
2020. RoBERTa large model is used for the cross-
framework track because we found in our prelim-
inary experiments that this model generally per-
forms better. In the cross-lingual track, we utilize
multi-lingual BERT (Devlin et al., 2019) except
for Chinese AMR. Chinese RoBERTa (Cui et al.,
2020) is used for the Chinese AMR graphs because
the model is carefully tuned for Chinese.

At training, we split network parameters into
two groups: one for the encoder and the other
for all decoder parameters, applying discriminative
fine-tuning (Kondratyuk and Straka, 2019). Each
group-specific learning rate is provided and is tuned
discriminatively. We select models by evaluating
MRP scores on CV and official validation data.

Input texts are tokenized by the PLM-specific
tokenizer. We utilized the tokenization scheme of
the tokenizer for our decoder: we use the same
vocabulary for the node labels yL

i when decoding.
The only exception is Czech PTG because node
label tokens in Czech PTG graphs include accents
that are removed from the vocabulary of multi-
lingual BERT. Thus, we employ character-level
decoding for Czech PTG, where the vocabulary
was constructed to contain Czech characters.
Hyperparameters: Hyperparameters of the sub-
mitted models are shown in Table 2 (bottom).
Adam (Kingma and Ba, 2015) was used as an op-
timizer, applying linear warmup scheduling. We
preliminarily tuned hyperparameters for learning
rates, the number of decoder layers, the number of

decoder heads, and λ values.
Search ranges of hyperparameters were

[1e-6, 1e-3] with log-uniform sampling for decoder
learning rate, [1e-6, 1e-4] with log-uniform
sampling for encoder learning rate, [4, 8] for Trans-
former layers and heads, and [0, 2] with uniform
sampling for λ. We fixed λmode = 1. In terms of
hidden dimensions, we did not aggressively tune
them because we preliminarily found their impact
on the final performance to be minuscule. In this
work, we fixed the biaffine dimensions to 400 and
the depth embedding dimensions to 100.
Validation: We used CV to validate our models
to ensure robustness. We picked four folds from
the training data in Table 2 for each framework/lan-
guage.7 For example, although we split the EDS
training data into 24 folds, we only used four of
these folds to validate the EDS model. We mixed
official validation data with each fold to evaluate
the model’s performance. Then, validation perfor-
mance was evaluated every 20 epochs, selecting
the best model.

Through this validation, we obtained four (i.e.,
the number of CV folds) trained models for each
framework/language with the same hyperparame-
ters. The obtained models were then utilized for
the average ensemble.
Setup for Cross-Lingual Pre-Training: Given
the lower resource nature of the cross-lingual
track, especially for the German UCCA and DRG
graphs, we provided two-staged cross-lingual train-
ing. First, we concatenated the cross-framework
(CF) (e.g., English DRG) and cross-lingual (CL)

7This was done to save the computation time.

48

EDS PTG UCCA AMR DRG
roberta-large .9101 .8779 .7692 .7776 .9080
bert-base-cased .8964 .8589 .7473 .7634 .8675

Table 5: Comparison of MRP all-F scores between
BERT base and RoBERTa large versions. Scores were
evaluated with CV with no ensemble.

(e.g., German DRG) training data. Then, we ap-
plied pre-training on the concatenated data for each
framework with multi-lingual BERT (Devlin et al.,
2019). After that, we applied fine-tuning on only
monolingual training data.

5.1 Results and Discussion

Overall Result: Table 3 shows the official cross-
framework evaluation results in MRP metrics. As
can be seen in the table, in terms of average MRP
scores, our parser tied for 1st place: results were
very close to the ÚFAL system (Samuel and Straka,
2020).8 We achieved the top performances on
EDS, PTG, and AMR, demonstrating the efficiency
for these frameworks. Table 4, the official cross-
lingual evaluation results, shows a similar tendency.
In the cross-lingual track, we achieved a tie for
1st place, obtaining the best performance for Chi-
nese AMR and German DRG. Notably, our parser
performed well on flavor 2 graphs (Oepen et al.,
2019) such as AMR and DRG, where no anchors
exist in the graphs. This is because we generate
node labels directly by the Transformer decoder,
thus avoiding alignment errors. However, anchor-
based graphs such as UCCA seem unsuitable for
our parser when compared to the ÚFAL system.
We presume that improving the biaffine scoring in
anchoring classifiers would remedy this problem.
Comparing Pre-Trained Models: To better un-
derstand how we benefit from PLMs, we compare
the bert-base-cased and roberta-large
models. Table 5 shows MRP all-F scores of the
cross-framework results. Note that the hyperpa-
rameters were slightly different for each model.
RoBERTa large models were better than BERT
small models, showing improvements ranging from
one to four points.
Effectiveness of Depth Embeddings: We con-
duct an ablation study to examine the role of depth
embedding. Table 6 shows a CV-averaged result
on English DRG graphs. Note that the hyperparam-
eters are different from Table 5. The result shows

8Given randomness nature of the official evaluation tool
and statistical significance concerns, system ranking was con-
sidered with rounded scores.

Label Edge All
w/ depth embedding .8661 .9200 .9011
w/o depth embedding .8611 .9138 .8952

Table 6: Ablation study of depth embedding for DRG’s
MRP metrics with CV results with no ensemble. We
used BERT base in this run.

Language & Framework Edge All
German UCCA

w/ cross-lingual pre-training .6942 .7791
w/o cross-lingual pre-training .6123 .6938

German DRG
w/ cross-lingual pre-training .9479 .9044
w/o cross-lingual pre-training .9005 .8543

Table 7: Comparison of MRP scores between cross-
lingual training and monolingual training. Scores were
evaluated through CV by micro-averaging.

that our depth embedding is effective to boost per-
formance. We presume this is because the decoder
considers a kind of stack state in PGN, which helps
the parser easily produce valid graphs.
Effectiveness of Cross-Lingual Pre-Training:
Table 7 shows a comparison of F scores
between CL and monolingual training.
We used bert-base-german instead of
bert-base-ml-cased for both monolingual
trainings. CL training outperformed monolingual
training. This indicates that both UCCA and DRG
annotations are cross-lingually consistent, and our
model can capture the consistency through the CL
training. We estimate that our parser has a better
transfer ability on cross-lingual graphs.

6 Conclusion

This paper described a novel parser for the shared
task on Meaning Representation Parsing 2020. We
proposed a text-to-graph-notation transduction that
provides a novel graph notation. Our model ef-
fectively parsed the graph-notation. Experimental
results showed that our parser achieved the top per-
formances in many frameworks. Since our parser
is not limited to the five frameworks, in future work
we will extend our technique for other tasks.

Acknowledgments

Computational resource of AI Bridging Cloud In-
frastructure (ABCI) provided by the National Insti-
tute of Advanced Industrial Science and Technol-
ogy (AIST) was used. We would like to thank the
anonymous reviewers for their helpful comments.
We also thank Dr. Masaaki Shimizu for the conve-
nience of the computational resources.

49

References
Omri Abend and Ari Rappoport. 2013. Universal con-

ceptual cognitive annotation (UCCA). In Proceed-
ings of the 51st Annual Meeting of the Association
for Computational Linguistics.

Ofir Arviv, Ruixiang Cui, and Daniel Hershcovich.
2020. HUJI-KU at MRP 2020: Two transition-
based neural parsers. In Proceedings of the CoNLL
2020 Shared Task: Cross-Framework Meaning Rep-
resentation Parsing, pages 73 – 82, Online.

Laura Banarescu, Claire Bonial, Shu Cai, Madalina
Georgescu, Kira Griffitt, Ulf Hermjakob, Kevin
Knight, Philipp Koehn, Martha Palmer, and Nathan
Schneider. 2013. Abstract meaning representation
for sembanking. In Proceedings of the 7th Linguis-
tic Annotation Workshop and Interoperability with
Discourse.

Johan Bos, Valerio Basile, Kilian Evang, Noortje J.
Venhuizen, and Johannes Bjerva. 2017. The Gronin-
gen Meaning Bank, pages 463–496. Springer.

Wanxiang Che, Longxu Dou, Yang Xu, Yuxuan Wang,
Yijia Liu, and Ting Liu. 2019. HIT-SCIR at MRP
2019: A unified pipeline for meaning representa-
tion parsing via efficient training and effective en-
coding. In Proceedings of the Shared Task on Cross-
Framework Meaning Representation Parsing at the
2019 Conference on Natural Language Learning,
pages 76–85, Hong Kong. Association for Compu-
tational Linguistics.

Yiming Cui, Wanxiang Che, Ting Liu, Bing Qin, Shi-
jin Wang, and Guoping Hu. 2020. Revisiting pre-
trained models for chinese natural language process-
ing. arXiv preprint arXiv:2004.13922.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Lucia Donatelli, Meaghan Fowlie, Jonas Groschwitz,
Alexander Koller, Matthias Lindemann, Mario Mina,
and Pia Weißenhorn. 2019. Saarland at MRP
2019: Compositional parsing across all graph-
banks. In Proceedings of the Shared Task on Cross-
Framework Meaning Representation Parsing at the
2019 Conference on Natural Language Learning,
pages 66–75, Hong Kong. Association for Compu-
tational Linguistics.

Longxu Dou, Yunlong Feng, Yuqiu Ji, Wanxi-
ang Che, and Ting Liu. 2020. HIT-SCIR at
MRP 2020: Transition-based parser and iterative in-
ference parser. In Proceedings of the CoNLL 2020
Shared Task: Cross-Framework Meaning Represen-
tation Parsing, pages 65 – 72, Online.

Timothy Dozat and Christopher D. Manning. 2017.
Deep biaffine attention for neural dependency pars-
ing. In the Fifth International Conference on Learn-
ing Representations.

Timothy Dozat and Christopher D. Manning. 2018.
Simpler but More Accurate Semantic Dependency
Parsing. In Proceedings of the 56th Annual Meeting
of the Association for Computational Linguistics.

Michael Wayne Goodman. 2020. Penman: An open-
source library and tool for AMR graphs. In Proceed-
ings of the 58th Annual Meeting of the Association
for Computational Linguistics: System Demonstra-
tions, pages 312–319, Online. Association for Com-
putational Linguistics.

Jan Hajič, Eva Hajičová, Jarmila Panevová, Petr Sgall,
Ondřej Bojar, Silvie Cinková, Eva Fučı́ková, Marie
Mikulová, Petr Pajas, Jan Popelka, Jiřı́ Semecký,
Jana Šindlerová, Jan Štěpánek, Josef Toman, Zdeňka
Urešová, and Zdeněk Žabokrtský. 2012. Announc-
ing Prague Czech-English dependency treebank 2.0.
In Proceedings of the Eighth International Confer-
ence on Language Resources and Evaluation.

Daniel Hershcovich, Omri Abend, and Ari Rappoport.
2017. A transition-based directed acyclic graph
parser for UCCA. In Proceedings of the 55th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1127–
1138, Vancouver, Canada. Association for Computa-
tional Linguistics.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In Proceedings
of the 3rd International Conference on Learning
Representations, ICLR 2015, San Diego, CA, USA,
May 7-9, 2015.

Dan Kondratyuk and Milan Straka. 2019. 75 lan-
guages, 1 model: Parsing universal dependencies
universally. In Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Language
Processing and the 9th International Joint Confer-
ence on Natural Language Processing (EMNLP-
IJCNLP), pages 2779–2795, Hong Kong, China. As-
sociation for Computational Linguistics.

Artur Kulmizev, Miryam de Lhoneux, Johannes
Gontrum, Elena Fano, and Joakim Nivre. 2019.
Deep contextualized word embeddings in transition-
based and graph-based dependency parsing - a tale
of two parsers revisited. In Proceedings of the
2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 2755–2768, Hong Kong,
China. Association for Computational Linguistics.

Bin Li, Yuan Wen, Weiguang Qu, Lijun Bu, and Ni-
anwen Xue. 2016. Annotating the little prince with
Chinese AMRs. In Proceedings of the 10th Linguis-
tic Annotation Workshop held in conjunction with
ACL 2016 (LAW-X 2016), pages 7–15, Berlin, Ger-
many. Association for Computational Linguistics.

50

Matthias Lindemann, Jonas Groschwitz, and Alexan-
der Koller. 2019. Compositional semantic parsing
across graphbanks. In Proceedings of the 57th An-
nual Meeting of the Association for Computational
Linguistics, pages 4576–4585, Florence, Italy. Asso-
ciation for Computational Linguistics.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
RoBERTa: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Xuezhe Ma, Zecong Hu, Jingzhou Liu, Nanyun Peng,
Graham Neubig, and Eduard Hovy. 2018. Stack-
pointer networks for dependency parsing. In Pro-
ceedings of the 56th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), pages 1403–1414, Melbourne, Australia.
Association for Computational Linguistics.

Christian Matthiessen and John A Bateman. 1991. Text
generation and systemic-functional linguistics: ex-
periences from English and Japanese. Pinter Pub-
lishers.

Ryan McDonald, Koby Crammer, and Fernando
Pereira. 2005. Online large-margin training of de-
pendency parsers. In Proceedings of the 43rd
Annual Meeting of the Association for Computa-
tional Linguistics (ACL’05), pages 91–98, Ann Ar-
bor, Michigan. Association for Computational Lin-
guistics.

Seung-Hoon Na and Jinwoo Min. 2020. JBNU at
MRP 2020: AMR parsing using a joint state model
for graph-sequence iterative inference. In Pro-
ceedings of the CoNLL 2020 Shared Task: Cross-
Framework Meaning Representation Parsing, pages
83 – 87, Online.

Stephan Oepen, Omri Abend, Lasha Abzianidze, Jo-
han Bos, Jan Hajič, Daniel Hershcovich, Bin Li,
Tim O’Gorman, Nianwen Xue, and Daniel Zeman.
2020. MRP 2020: The Second Shared Task on
Cross-framework and Cross-Lingual Meaning Rep-
resentation Parsing. In Proceedings of the CoNLL
2020 Shared Task: Cross-Framework Meaning Rep-
resentation Parsing, pages 1 – 22, Online.

Stephan Oepen, Omri Abend, Jan Hajic, Daniel Her-
shcovich, Marco Kuhlmann, Tim O’Gorman, and
Nianwen Xue, editors. 2019. Proceedings of the
Shared Task on Cross-Framework Meaning Repre-
sentation Parsing at the 2019 Conference on Natural
Language Learning. Association for Computational
Linguistics, Hong Kong.

Stephan Oepen and Jan Tore Lønning. 2006.
Discriminant-based MRS banking. In Proceed-
ings of the Fifth International Conference on
Language Resources and Evaluation.

Matthew Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke

Zettlemoyer. 2018. Deep contextualized word rep-
resentations. In Proceedings of the 2018 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long Papers), pages
2227–2237, New Orleans, Louisiana. Association
for Computational Linguistics.

David Samuel and Milan Straka. 2020. ÚFAL at
MRP 2020: Permutation-invariant semantic pars-
ing in PERIN. In Proceedings of the CoNLL 2020
Shared Task: Cross-Framework Meaning Represen-
tation Parsing, pages 53 – 64, Online.

Sainbayar Sukhbaatar, arthur szlam, Jason Weston,
and Rob Fergus. 2015. End-to-end memory net-
works. In C. Cortes, N. D. Lawrence, D. D. Lee,
M. Sugiyama, and R. Garnett, editors, Advances in
Neural Information Processing Systems 28, pages
2440–2448. Curran Associates, Inc.

Rob A. Van Der Sandt. 1992. Presupposition Projec-
tion as Anaphora Resolution. Journal of Semantics,
9(4):333–377.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In I. Guyon, U. V. Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, and R. Gar-
nett, editors, Advances in Neural Information Pro-
cessing Systems 30, pages 5998–6008. Curran Asso-
ciates, Inc.

David Vilares and Carlos Gómez-Rodrı́guez. 2018.
A transition-based algorithm for unrestricted AMR
parsing. In Proceedings of the 2018 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 2 (Short Papers), pages 142–149,
New Orleans, Louisiana. Association for Computa-
tional Linguistics.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, R’emi Louf, Morgan Funtow-
icz, and Jamie Brew. 2019. HuggingFace’s trans-
formers: State-of-the-art natural language process-
ing. ArXiv, abs/1910.03771.

Hiroyasu Yamada and Yuji Matsumoto. 2003. Statis-
tical dependency analysis with support vector ma-
chines. In Proceedings of the Eighth International
Conference on Parsing Technologies, pages 195–
206, Nancy, France.

Sheng Zhang, Xutai Ma, Kevin Duh, and Benjamin
Van Durme. 2019a. AMR parsing as sequence-to-
graph transduction. In Proceedings of the 57th An-
nual Meeting of the Association for Computational
Linguistics, pages 80–94, Florence, Italy. Associa-
tion for Computational Linguistics.

51

Sheng Zhang, Xutai Ma, Kevin Duh, and Benjamin
Van Durme. 2019b. Broad-coverage semantic pars-
ing as transduction. In Proceedings of the 2019 Con-
ference on Empirical Methods in Natural Language
Processing and the 9th International Joint Confer-
ence on Natural Language Processing (EMNLP-
IJCNLP), pages 3786–3798, Hong Kong, China. As-
sociation for Computational Linguistics.

Yue Zhang, Wei Jiang, Qingrong Xia, Junjie Cao, Rui
Wang, Zhenghua Li, and Min Zhang. 2019c. SUDA-
Alibaba at MRP 2019: Graph-based models with
BERT. In Proceedings of the Shared Task on Cross-
Framework Meaning Representation Parsing at the
2019 Conference on Natural Language Learning,
pages 149–157, Hong Kong. Association for Com-
putational Linguistics.

52

Proceedings of the CoNLL 2020 Shared Task: Cross-Framework Meaning Representation Parsing, pages 53–64
Online, Nov. 19-20, 2020. c©2020 Association for Computational Linguistics

ÚFAL at MRP 2020: Permutation-invariant Semantic Parsing in PERIN

David Samuel and Milan Straka
Charles University

Faculty of Mathematics and Physics
Institute of Formal and Applied Linguistics
{samuel,straka}@ufal.mff.cuni.cz

Abstract

We present PERIN, a novel permutation-
invariant approach to sentence-to-graph se-
mantic parsing. PERIN is a versatile, cross-
framework and language independent architec-
ture for universal modeling of semantic struc-
tures. Our system participated in the CoNLL
2020 shared task, Cross-Framework Meaning
Representation Parsing (MRP 2020), where
it was evaluated on five different frameworks
(AMR, DRG, EDS, PTG and UCCA) across
four languages. PERIN was one of the winners
of the shared task. The source code and pre-
trained models are available at http://www.
github.com/ufal/perin.

1 Introduction

The aim of the CoNLL 2020 shared task, Cross-
Framework Meaning Representation Parsing (MRP
2020; Oepen et al., 2020), is to translate plain text
sentences into their corresponding graph-structured
meaning representation.1 MRP 2020 features five
formally and linguistically different frameworks
with varying degrees of linguistic and structural
complexity:

• AMR: Abstract Meaning Representation (Ba-
narescu et al., 2013);
• DRG: Discourse Representation Graphs

(Abzianidze et al., 2017) provide a graph en-
coding of Discourse Representation Structure
(Van der Sandt, 1992);
• EDS: Elementary Dependency Structures

(Oepen and Lønning, 2006);
• PTG: Prague Tectogrammatical Graphs (Ha-

jic et al., 2012);
• UCCA: Universal Conceptual Cognitive An-

notation (Abend and Rappoport, 2013).

1See http://mrp.nlpl.eu/2020/ for more details.

These frameworks constitute the cross-framework
track of MRP 2020, while the separate cross-
lingual track introduces one additional language
for four out of the five frameworks: Chinese AMR
(Li et al., 2016), German DRG, Czech PTG and
German UCCA (Hershcovich et al., 2019).

In agreement with the shared task objective to
advance uniform meaning representation parsing
across diverse semantic graph frameworks and lan-
guages, we propose a language and structure agnos-
tic sentence-to-graph neural network architecture
modeling semantic representations from input se-
quences.

The main characteristics of our approach are:

• Permutation-invariant model: PERIN is, to
our best knowledge, the first graph-based se-
mantic parser that predicts all nodes at once
in parallel and trains them with a permutation-
invariant loss function. Semantic graphs are
naturally orderless, so constraining them to an
artificial node ordering creates an unfounded
restriction; furthermore, our approach is more
expressive and more efficient than order-
based auto-regressive models.
• Relative encoding: We present a substantial

improvement of relative encodings of node
labels, which map anchored tokens onto la-
bel strings (Straka and Straková, 2019). Our
novel formulation allows using a richer set of
encoding rules.
• Universal architecture: Our work presents a

general sentence-to-graph pipeline adaptable
for specific frameworks only by adjusting pre-
processing and post-processing steps.

Our model was ranked among the two winning
systems in both the cross-framework and the cross-
lingual tracks of MRP 2020 and significantly ad-
vanced the accuracy of semantic parsing from the
last year’s MRP 2019.

53

2 Related Work

Examples of general, formalism-independent se-
mantic parsers are scarce in the literature. Hersh-
covich et al. (2018) propose a universal transition-
based parser for directed, acyclic graphs, capable
of parsing multiple conceptually and formally dif-
ferent schemes. Furthermore, several participants
of MRP 2019 presented universal parsers. Che
et al. (2019) improved uniform transition-based
parsing and used a different set of actions for each
framework. Lai et al. (2019) submitted a transition-
based parser with shared actions across treebanks,
but failed to match the performance of the other
parsers. Straka and Straková (2019) presented a
general graph-based parser, where the meaning rep-
resentation graphs are created by repeatedly adding
nodes and edges.

Graph-based parsers (McDonald and Pereira,
2006; Peng et al., 2017; Dozat and Manning, 2018;
Cai and Lam, 2020) usually predict nodes in a se-
quential, auto-regressive manner and then connect
them with a biaffine classifier. Unlike these ap-
proaches, our model infers all nodes in parallel
while allowing the creation of rich intermediate
representations by node-to-node self-attention.

Machine learning tools able to efficiently process
unordered sets are gaining more attention in recent
years. Qi et al. (2017) and particularly Zhang et al.
(2019b) proposed permutation-invariant neural net-
works for point clouds, which are of great relevance
to our system. Our work was further inspired by
Carion et al. (2020), who utilize permutation invari-
ance for object detection in a similar fashion to our
sentence-to-graph generation.

3 Methods

3.1 Graph Representation

All five semantic formalisms share the same rep-
resentation via directed labeled multigraphs in the
graph interchange format proposed by Kuhlmann
and Oepen (2016). Universally, the semantic units
are represented by nodes and the semantic relation-
ships by labeled edges. Each node can be anchored
to a (possibly empty) set of input characters, and
can contain a (possibly empty) list of properties,
each being an attribute-value pair.

We simplify this graph structure by turning
the properties into graph nodes: every property
{attribute : value} of node n is removed
and a new node with label value is connected

"Adam" "is" "diving"

finetuned XLM-R

q1,1 q1,2 q2,1 q2,2 q3,1 q3,2

transformer decoder

linear

relative encoding classifier<add	'person'> <copy	token>
<copy	token>
<del	3	chars>
<add	'e'>

anchor biaffine attentionperson Adam dive

edge biaffine attention

"Adam" "Adam" "diving"

name

person Adam

ARG-01

dive
"Adam" "Adam" "diving"

property classifierperson

ARG-01

dive
"Adam" "diving"name: Adam

top classifierperson

ARG-01

dive
"Adam" "diving"name: Adam

tanh

Figure 1: Data flow through PERIN during inference.
Every input token is processed by an encoder and trans-
formed into multiple queries, which are further refined
by a decoder. Each query is either denied or accepted,
and the accepted ones are then gradually processed into
the final semantic graph.

to the parent node n by an edge labeled with
attribute; the anchors of the new node are the
same as of its parent.2 Figure 4 illustrates this trans-
formation together with other pre-processing steps
(specific for each framework) explained in detail in
Section 3.7.

Another change to the internal graph representa-
tion is the use of relative label encoding (discussed
in Section 3.4), which substitutes the original node
labels by lists of relative encoding rules.

3.2 Overall Architecture
A simplified illustration of the whole model can
be seen in Figure 1. The input is tokenized, an
encoder (Section 3.5) computes contextual embed-
dings of the tokens, and each embedded token ei is
then mapped onto Q queries by nonlinear transfor-
mations qi,t = tanh (Wtei + bt) , t ∈ {1, . . . Q},
where Wt is a trainable weight matrix and bt

2“Nodeification” of properties was motivated by the nature
of AMR graphs, where the properties are equivalent to in-
stanced concepts/nodes (Banarescu et al., 2013). From a more
practical viewpoint, it allows us to utilize a single classifier
for both the node labels and the less-frequent properties, and
to simplify the whole architecture.

54

is a trainable bias vector. After that, a decoder
(Transformer with pre-norm residual connections
(Nguyen and Salazar, 2019) and cross-attention
into the contextual embeddings ei) processes the
queries, obtaining their final feature vectors hi,t.
These feature vectors are shared across all classifi-
cation heads, each inferring specific aspects of the
final meaning representation graph from them:
• Relative encoding classifier decides what

node label should serve as the “answer” to
each query; a query can also be denied (no
node is created) when classified as “null”. Rel-
ative label prediction is described in detail in
Section 3.4.3.
• Anchor biaffine classifier uses deep biaffine

attention (Dozat and Manning, 2017) to create
anchors between nodes and surface tokens –
to be more precise, the biaffine attention pro-
cesses the latent vectors of queries hi,t and
tokens ej , and predicts the presence of an an-
chor between every pair of them as a binary
classification task.
• Edge biaffine classifier uses three biaffine at-

tention modules to predict whether an edge
should exist between a pair of nodes (presence
binary classification), what label(s) should it
have (label multi-class or multi-label classifi-
cation, depending on the framework) and what
attribute should it have (attribute multi-class
classification) – in essence, this module is a
simple extension of the standard edge classi-
fier by Dozat and Manning (2018).
• Property classifier uses a linear layer fol-

lowed by a sigmoid nonlinearity to identify
nodes that should be converted to properties.
• Top classifier uses a linear layer followed by

a softmax nonlinearity (where the probabili-
ties are normalized across nodes) to detect the
top node.

This section described all modules capable of han-
dling different characteristics of meaning represen-
tation graphs. Not all of them appear in each frame-
work – for example, AMR graphs do not need edge
attributes, while UCCA graphs do not contain any
properties. More details about specific framework
configurations are given in Section 3.7.

3.3 Permutation-invariant Graph Generation
Semantic graphs are orderless, so it is unnatural to
constrain their generation by some artificial node
ordering. Traditionally, graph nodes have been

predicted by a sequence-to-sequence model (Peng
et al., 2017), with the nodes being generated in
some hardwired order (Zhang et al., 2019a). De-
manding a fixed node ordering causes the disconti-
nuity issue (Zhang et al., 2019b): even when correct
items are predicted, they are viewed as completely
wrong if not in the expected order. We avoid this is-
sue by using such a loss function and such a model
that produce the same outcome independently on
the node ordering (Zaheer et al., 2017).

3.3.1 Permutation-equivariant Model
We transform the queries q = {qi}Ni=1 into hidden
features h = {hi}Ni=1 in such manner that any per-
mutation π ∈ GN of the input π(q) = {qπ(i)}Ni=1

produces the same – but permuted – output π(h) =
{hπ(i)}Ni=1. The Transformer architecture (Vaswani
et al., 2017) conveniently fulfills this requirement
(assuming positional embeddings are not used).
Furthermore, it can combine any pair of input items
independently of their distance and in an efficient
non-autoregressive way.

3.3.2 Permutation-invariant Loss
The hidden features h are further refined into pre-
dictions ŷ = fθ(h) by the classification heads. In
order to create a permutation-invariant loss func-
tion, i.e., a function L(π(ŷ), y) giving the same
result for every π ∈ GN , we find a permutation
π∗ ∈ GN assigning each query to its most similar
node. After permuting the targets according to π∗,
the standard losses can be computed, because they
are no longer dependent on the original ordering of
ŷ and y.3

To find the minimizing permutation π∗, we start
by extending the (multi)set of target nodes y by
“null” nodes (denoted as ∅) in order to fulfill
|ŷ| = |y|. When classified as “null” during infer-
ence, the query is denied and omitted from further
processing. The permutation π∗ is then defined as

π∗ = arg max
π∈GN

N∑

i=1

pmatch(ŷi,yπ(i)), (1)

where the matching score pmatch is composed of
a label score and the geometric mean (GM) of

3Unfortunately, the uniqueness of π∗ is not always guar-
anteed: given that the proposed matching depends only on
labels and anchors, there might be multiple equivalent nodes
(considering only labels and anchors). We break ties between
such nodes by also minimizing the likelihood of their edges
across all their permutations.

55

q1,1 q1,2 q2,1 q2,2 q3,1 q3,2 q4,1 q4,2 q5,1 q5,2 q6,1 q6,2 q7,1 q7,2Queries:

Matching with
target nodes: duo comedy crazy-03 person that2

Input tokens: "crazy" "comedy" "duo" "," "those "two""A"

Figure 2: Example of a matching between queries and target nodes during training. Every input token is mapped
onto Q (2 in this case) queries qi,j , which are decoded into node predictions ŷi,j . These predictions are paired
with the ground truth nodes y, as in Equation 1. Then, the loss functions are computed with respect to the paired
target nodes. Queries without any match should be classified as “null” nodes. When classified as “null” during
inference, the query is not turned into any node (the query is denied).

anchor scores of all input tokens T . The label
score of the ith query and the jth node is defined as
the predicted probability of the target jth label; the
anchor score of the ith query, jth node and a token
t ∈ T is defined as the predicted probability of the
actual (non)existence of an anchor between t and
the jth node:

pmatch = plabel · p̄anchor

plabel(ŷi,yj) = 1ylabel
j 6=∅P

(
ylabel
j |hi;θ

)

p̄anchor(ŷi,yj) = GM
t∈tokens

P
(
1t∈yanchors

j
|t,hi;θ

)
.

We use the geometric mean to keep the anchor
score p̄anchor magnitude independent of the number
of tokens, and therefore have a similar weight as
the label score plabel.

The optimal matching π∗ can be efficiently com-
puted by the Hungarian algorithm (Kuhn, 1955) in
O(n3). As a result, every query is assigned either
to a regular node or to a “null” node ∅. An illus-
tration of a matching between queries and target
nodes is presented in Figure 2.

The loss functions for the queries are computed
with respect to the matched nodes. After finding
π∗, we permute all target nodes and compute the
classification losses in the standard “order-based”
way (i.e., by minimizing the cross-entropy between
the predictions and the corresponding targets). The
losses of queries matched to the “null” nodes are
ignored, except for their relative label loss `label,
which pushes these queries to predict ∅ as their
label. The label loss is further altered by the focal
loss factor (Lin et al., 2017) to mitigate the imbal-
ance of labels introduced by extending the targets
with the “null” nodes.

3.3.3 Anchor Masking
During the early experiments with this architecture,
we noticed that nodes tend to be generated from
their anchored tokens (or more precisely from the
queries of their anchored tokens), after the outputs
stabilize during first epochs. We employ this ob-
servation to create an inductive bias by limiting
the possible pairings to occur only between target
nodes and predictions from their anchored tokens.
Formally, this is achieved by setting

p̄anchor
(
fθ(hi),yj

)
= ε,

if the jth node is not anchored to the ith token, with
ε being a small positive constant close to 0.

3.4 Relative Label Encoding

Similarly to Straka et al. (2019); Straka and
Straková (2019), we use relative encodings for the
prediction of node labels: instead of direct classifi-
cation of label strings, we utilize rules specifying
how to transform anchored surface tokens into the
semantic labels. For example, in Figure 1, the an-
chored token “diving” is transformed into “dive”
by using a relative encoding rule deleting its last
three characters and appending a character “e”.
Such a rule could be also employed for predicting
a node anchored to “taking” or “giving”. Relative
encoding of labels is thus able to reduce the num-
ber of classification targets and generalize outside
of the set of “absolute” label strings seen during
training. Alternatively, the relative encoding can
be seen as an extension of the pointer networks
(Gu et al., 2016), which also decides how to post-
process the copied tokens. Table 1 demonstrates
how the relative encoding rules reduce the number
of targets that need to be classified.

56

framework language # labels strings # encoding rules

AMR English 27,049 4,385
Chinese 30,949 2,560

DRG English 5,715 684
German 1,905 918

EDS English 31,933 1,322

PTG English 39,336 529
Czech 38,448 1,321

Table 1: The numbers of absolutely and relatively en-
coded node labels. Relative encodings lead to a signif-
icant reduction of classification targets in an order of
magnitude across all frameworks. Note that node la-
bels are the union of labels and property values (except
for PTG), as described in Section 3.1.

3.4.1 Minimal Encoding Rule Set

Naturally, a label can be generated from anchored
tokens in multiple ways. Unlike previous works
that needed some heuristic to select a single rule
from all suitable ones (Straka and Straková, 2019),
we do not constraint the space of the possible rules
much. Instead, we construct the final set of encod-
ing rules to be the smallest possible one capable of
encoding all labels.

Formally, let S be an arbitrary class of functions
transforming a list of text strings (anchored tokens)
into another string (node label), and let N be the
set of all nodes from the training set. For n ∈ N,
denote nt the anchored surface tokens and n` the
target label string. Then the set of applicable rules
for the node n is Sn = {r ∈ S |r(nt) = n`}. Our
goal is to find the smallest subclass S∗ ⊆ S capa-
ble of encoding all node labels, in other words a
subclass S∗ satisfying

∀n ∈ N : S∗ ∩ Sn 6= ∅.

This formulation is equivalent to the minimal hit-
ting set problem. Therefore, we can find the
optimal solution of our problem by reducing it
to a weighted MaxSAT formula in CNF: every
Sn = {r1, r2, . . . , rk} becomes a hard clause
(r1 ∨ r2 ∨ . . . ∨ rk) and every r ∈ S becomes
a soft clause (¬r). We then submit this formula to
the RC2 solver (Ignatiev et al., 2019) to obtain the
minimal set of rules. Note that although solving
this problem can take up to several hours, it needs
to be done only once and then cached for all the
training runs.

3.4.2 Space of Relative Rules
Our space of relative rules S consists of four dis-
joint subclasses:

1. token rules are represented by seven-tuples
(dl, dr, s, rl, rr, al, ar) and process a list of an-
chored tokens nt by first deleting the first dl
and the last dr tokens, then by concatenat-
ing the remaining ones into one text string
with the separator s inserted between them,
followed by removing the first rl and last rr
characters and finally by adding the prefix al
and suffix ar;4

2. lemma rules are created similarly to the token
rules, but use the provided lemmas instead of
tokens;

3. number rules transform word numerals into
digits – for example, tokens [“forty”, “two”]
become “42”;

4. absolute rules use the original label string n`,
without taking into account any anchored to-
kens nt; they serve as the fallback rules when
no relative encodings are applicable.

3.4.3 Prediction of Relative Rules
Even with the minimal set of rules S∗, multiple
rules may be applicable to a single node. There-
fore, the prediction of relative rules is a multi-label
classification problem. The target distribution for a
node n over all r ∈ S∗ is defined as follows:5

P (r|n) =

1

|S∗ ∩ Sn|
, if r ∈ Sn;

0, otherwise.

The label loss `label is then calculated as the cross-
entropy between the target and the predicted distri-
butions.

We use mixture of softmaxes (MoS) to mitigate
the softmax bottleneck (Yang et al., 2018) that
arises when multiple hypotheses can be correctly
applied to a single input. MoS allows the model to
consider K different hypotheses at the same time
and weight them relatively to their plausibility.

Formally, let hq be the final latent vector for
query q and let Wk, bk, wk, bk, wr, br be the train-
able weights. Then, the estimated MoS distribution

4To show a real example of a token rule from
EDS, the rule (0, 1, +, 0, 0, _, _a_1) maps tokens
(“at”, “the”, “very”, “least”, “,”) into the label
“_at+the+very+least_a_1”.

5The target distribution is further modified by label smooth-
ing (Szegedy et al., 2016) for better regularization.

57

"down" "the" "landscape"

down the land## ##scape

layer
norm

layer
norm

add &
norm

weighted
sum

weighted
sum

weighted
sum

weighted
sum

input	tokens

XLM-R	layers

subword	tokenization

encoded	tokens

layer-wise	attention

subtoken	pooling

Figure 3: Architecture of the encoder with finetuned
XLM-R. The input tokens are first tokenized into sub-
words, which are then processed into contextual embed-
dings by layer-wise attention on the XLM-R intermedi-
ate layers. Finally, the subword embeddings are pooled
to obtain the encoded tokens.

of relative rules Pθ(r|n) is defined as follows:

xk = tanh(Wkhq + bk)

πk =
sigmoid(h>q wk + bk)∑
k′ sigmoid(h>q wk′ + bk′)

Pθ(r|n) =
K∑

k=1

πk softmax(x>k wr + br).

3.5 Finetuning XLM-R
To obtain rich contextual embeddings for each in-
put token, we finetune the pretrained multilingual
model XLM-R (Conneau et al., 2020). The archi-
tecture of the encoder is presented in Figure 3.

3.5.1 Contextual Embedding Extraction
Different layers in BERT-like models represent
varying levels of syntactic and semantic knowledge
(van Aken et al., 2019), raising a question of which
layer (or layers) should be used to extract the em-
beddings from. Following Kondratyuk and Straka
(2019), we solve this problem by a purely data-
driven approach and compute the weighted sum
of all layers. Formally, let el be the intermediate
output from the lth layer and let wl be a trainable
scalar weight. The final contextual embedding is
then calculated as

e =
L∑

l=1

softmax(wl)el.

Note that each input token can be divided into mul-
tiple subwords by the XLM-R tokenizer. To obtain

a single embedding for every token, we sum the em-
beddings of all its subwords. Finally, the contextual
embeddings are normalized with layer normaliza-
tion (Ba et al., 2016) to stabilize the training.6

3.5.2 Finetuning Stabilization
Given the large number of parameters in the pre-
trained XLM-R model, we employ several stabi-
lization and regularization techniques in attempt to
avoid overfitting.

We start by dividing the model parameters into
two groups: the finetuned XLM-R and the rest of
the network. Both groups are updated with AdamW
optimizer (Loshchilov and Hutter, 2019) , and their
learning rate follows the inverse square root sched-
ule with warmup (Vaswani et al., 2017). The learn-
ing rate of the finetuned encoder is frozen for the
first 2000 steps before the warmup phase starts
(Howard and Ruder, 2018). The warmup is set to
6000 steps for both groups, while the learning rate
peak is 6 ·10−5 for the XLM-R and 6 ·10−4 for the
rest of the network. The weight decay for XLM-R,
10−2, is considerably higher compared to 1.2·10−6

used in the rest of the network (Devlin et al., 2019).
Dropout of entire intermediate XLM-R layers

results in additional regularization – we drop each
layer with 10% probability by replacing wl with
−∞ during the final contextual embedding com-
putation (Section 3.5.1). Inter-layer and attention
dropout rates are the same as during the XLM-R
pretraining.7

3.6 Balanced Loss Weights
Semantic parsing is an instance of multi-task learn-
ing, where each task t ∈ T can have conflicting
needs and where the task losses `t can have differ-
ent magnitudes. The overall loss function L to be
optimized therefore consists of the weighted sum
of partial losses `t:

L(fθ(x), y) =
∑

t∈T
wt`t(fθ(x), y).

Finding optimal values for the loss weightswt is ex-
tremely complicated. This issue is usually resolved
either by (suboptimally) setting all weights equally
to 1 or by a thorough grid search. However, the

6A side effect of the normalization step is that the subword
summation is equal to the more common subword average
(Zhang et al., 2019a).

7Due to the space constrains, all hyperparameters for each
training configuration (together with the source code and pre-
trained models) are published at https://github.com/
ufal/perin.

58

mod

duo

crazy-03 comedy

mod

person

that

ARG01-of domain

quant: 2

duocrazy-03 comedy

person that

ARG01

domain

domain

domain

2

quant

"crazy" "comedy""duo"

"two"

"a	crazy	comedy	duo,	those	two"

Figure 4: Visualization of AMR pre-processing (Section 3.7.1) for the sentence “a crazy comedy duo, those two”.
The original graph is on the left and the transformed graph is shown on the right. Notice that the property quant:2
of person is converted into a standalone node. The graph is normalized by reversing three inverted edges (note
that mod is in fact domain-of) and some nodes get artificial anchors. Relative encoding rules are not included
in this illustration for the sake of clarity, but it is worthwhile noting that nodes person and that contain only
absolute label rules and are therefore not anchored.

0 20000 40000 60000 80000 100000 120000
steps

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0
Change of Loss Weights in EDS

label
anchor
edge presence
property
edge label
top

Figure 5: Change of the loss weights throughout the
training of an EDS parser. The relative difficulty of
edge and anchor predictions seems to be higher at the
beginning of the training, but then gradually decreases,
allowing the model to concentrate primarily on label
prediction.

complexity of the grid search grows exponentially
with |T| and would need to be performed indepen-
dently for all nine combinations of frameworks and
languages.

A more feasible solution is to set the weights
adaptively according to a data-driven metric as
in Kendall et al. (2018). We follow Chen et al.
(2018), who balance the magnitudes of gradients
‖∇θswi`i‖2, where θs are the weights of the
shared part of the network. That magnitude is made
proportional to the ratio of the current loss and its
initial value: when `i decreases relatively quickly,
its strength gets reduced to leave more space for
the other tasks. Consequently, the loss weights wt
are not static, but change throughout the training
to balance the individual gradient norms. Figure 5
shows an example of the balancing dynamics.

3.7 Framework Specifics

3.7.1 AMR

AMR is a Flavor 2 framework, which means its
nodes are not anchored to the surface forms. We
instead exploit the general algorithm for the min-
imal encoding rule set (Section 3.4.1) to create
artificial anchors: considering all possible one-to-
one anchors a ∈ An for each node n, we infer all
compatible rules Sn =

⋃
a∈An

San, and find the
minimal set of rules S∗. The artificial anchors of a
node n are then defined as {a ∈ An|San ∩S∗ 6= ∅}.
Consequently, our parser does not need any ap-
proximate anchoring (because we instead compute
an anchoring minimizing the number of relative
rules).

On the other hand, Chinese AMR graphs contain
anchors (they are actually of Flavor 1), therefore,
the described procedure is applied only on English
AMR.

AMR graphs also contains inverted edges that
transform them into tree-like structures. The in-
verted edges are marked by modified edge labels
(for example, ARG0 becomes ARG0-of). We nor-
malize the graphs back into their original non-
inverted form, making them more uniform, sim-
plifying edge prediction to become more local and
independent of the global graph structure. An ex-
ample of AMR pre-processing is shown in Figure 4.

Considering the fact that every node is artificially
anchored to at most a single token, the anchor clas-
sifier is not needed, if anchor masking is used (Sec-
tion 3.3.3). Finally, AMR parsing does not employ
the edge attribute classifier.

59

System AMReng DRGeng EDSeng PTGeng UCCAeng Average

HUJI-KU (Arviv et al., 2020) 52.36% 62.75% 79.68% 53.76% 72.91% 64.29%
Hitachi (Ozaki et al., 2020) 81.54% 93.19% 93.56% 88.73% 75.07% 86.42%
HIT-SCIR (Dou et al., 2020) 69.80% 89.07% 87.40% 84.26% 74.76% 81.06%
ÚFAL PERIN 80.23% 94.16% 92.73% 88.44% 76.40% 86.39%
ÚFAL PERIN* 80.23% 94.16% 92.73% 89.19% 76.40% 86.54%

System AMRzho DRGdeu PTGces UCCAdeu Average

HUJI-KU (Arviv et al., 2020) 44.92% 62.33% 58.49% 74.72% 60.11%
Hitachi (Ozaki et al., 2020) 80.44% 93.36% 87.35% 79.04% 85.05%
HIT-SCIR (Dou et al., 2020) 49.39% 68.31% 77.93% 80.02% 68.91%
ÚFAL PERIN 78.17% 89.83% 91.27% 81.01% 85.07%
ÚFAL PERIN* 80.52% 89.83% 92.24% 81.01% 85.90%

Table 2: The all F1 scores and a macro-average total score of the shared task systems. PERIN is our official shared
task submission and PERIN* is a post-competition submission with a fixed bug. The best results are typeset in
bold. The top table contains the cross-framework scores on English treebanks, while the bottom table presents the
cross-lingual ones.

3.7.2 DRG
Since the DRG graphs are also of Flavor 2, they are
pre-processed similarly to English AMR. Addition-
ally, we reduce all nodes representing binary rela-
tions into labeled edges between the corresponding
discourse elements.

Nodes in German DRG graphs are labeled
in English, which decreases the applicability of
relative encoding. Therefore, we employ the
opus-mt-de-en (Tiedemann and Thottingal,
2020) machine translation model from Hugging-
face’s transformers package (Wolf et al., 2019) to
translate the provided lemmas from German to En-
glish, before computing the relative encoding rules.

DRG parsing does not make use of anchor and
edge attribute classifiers, just like AMR parsing.

3.7.3 EDS
EDS graphs are post-processed to contain a single
continuous anchor for every node. The EDS parser
contains all the classification modules described in
Section 3.2, except for the edge attribute classifier.

3.7.4 PTG
Properties in PTG graphs are not converted into
nodes as in other frameworks, but are directly pre-
dicted from latent vectors hq by multi-class classi-
fiers (one for each property type). Additionally, the
frame properties are selected only from frames
listed in CzEngVallex (Urešová et al., 2015).

We utilize all classification heads except for the
top node classification, because PTG graphs con-
tain special <TOP> nodes, which make the separate
top prediction redundant.

3.7.5 UCCA
We augment the UCCA nodes by assigning them
leaf and inner labels. Additionally, the inner
nodes are anchored to the union of anchors of their
children. Therefore, the nodes can be differentiated
by the permutation-invariant loss (Section 3.3.2).

The UCCA parser does not have the property
classifier and the top classifier, where the latter is
not needed, because the top node can be inferred
from the structure of the rooted UCCA graphs.

4 Results

We present the overall results of our system in Ta-
ble 2 and Table 3. Both tables contain F1 scores
obtained using the official MRP metric.8 Table 2
shows the all F1 scores for the individual frame-
works together with the overall averages for the
cross-framework and cross-lingual tracks. Macro-
averaged results (across all nine frameworks) for
the different MRP metrics are displayed in Table 3.

Note that our original submission (denoted as
PERIN) contained a bug in anchor prediction for
Chinese AMR and both PTG frameworks. The bug
caused the nodes to get anchored to at least one
token. We submitted a fixed version called PERIN*
in the post-competition evaluation and compare it
with the original one in Table 2.

According to the official whole-percent-only all
F1 score, our competition submission reached tied
first place in both the cross-lingual and the cross-
framework track, with its performance virtually

8Fine-grained results for each framework are available in
the task overview by Oepen et al. (2020).

60

System Tops Labels Properties Anchors Edges Attributes Average

HUJI-KU (Arviv et al., 2020) 85.85% 22.80% 29.48% 46.79% 61.35% 7.67% 62.43%
Hitachi (Ozaki et al., 2020) 95.67% 68.93% 48.89% 61.95% 80.14% 24.93% 85.81%
HIT-SCIR (Dou et al., 2020) 94.37% 61.84% 30.80% 52.18% 71.41% 22.51% 75.66%
ÚFAL PERIN* 94.20% 70.36% 49.34% 63.45% 79.68% 27.07% 86.26%

Table 3: Overall results for different MRP metrics, macro-averaged over all frameworks and languages. The best
results are typeset in bold.

Configuration Tops Labels Properties Anchors Edges Average

ÚFAL PERIN* 89.53% 93.45% 94.34% 93.40% 90.74% 92.73%
w/o MoS 88.04% 93.39% 93.79% 93.48% 90.76% 92.65%
w/o focal loss 89.08% 93.33% 93.59% 93.21% 90.46% 92.46%
BERT encoder 89.95% 92.97% 94.74% 92.92% 89.84% 92.27%
w/o balanced losses 89.23% 92.28% 94.46% 92.12% 89.19% 91.60%

Table 4: Ablation study showing MRP scores of different configurations on EDS. The top row contains the sub-
mitted configuration without any changes; then we report the results for 1) label classifier without the mixture of
softmaxes (MoS); 2) label loss not multiplied by the focal loss coefficient; 3) encoder with finetuned BERT-large
(English) instead of multilingual XLM-R and 4) constant loss weights, equally set to 1.0.

System AMReng EDSeng UCCAeng

best from MRP 2019 73.11% 92.55% 82.61%
ÚFAL PERIN* 78.43% 95.17% 82.71%

Table 5: The last year’s shared task had three frame-
works – English AMR, EDS and UCCA – in common
with MRP 2020. All parsers were evaluated on The Lit-
tle Prince dataset, the first row shows the F1 scores of
the best performing parser for each framework (Oepen
et al., 2019).

identical to the system by Hitachi (Ozaki et al.,
2020). Our bugfixed submission reached the first
rank in both tracks, improving the cross-lingual
score by nearly one percent point. Our system ex-
cels in label prediction, which might suggest the
effectiveness of the relative label encoding. Fur-
thermore, our system surpasses the best systems
from the last year’s semantic shared task, MRP
2019 (Oepen et al., 2019), by a wide margin – as
can be seen in Table 5.

PERIN falls short in AMReng parsing by 1.31 %.
On closer inspection, this follows from the inferior
edge accuracy on this framework – the difference
to Hitachi is 4.56 % on AMReng and 2.78 % on
AMRzho. Furthermore, Hitachi is better in all as-
pects of EDSeng and DRGdeu. On the other hand
PERIN consistently beats Hitachi in both PTG and
both UCCA frameworks. We hope that combining
the strengths of these two parsers will help to fur-
ther advance the state of meaning representation
parsing.

4.1 Ablation Experiments
We conducted several additional experiments to
evaluate the effects of various components of our
architecture. The results are summarized in Table 4.
We have decided to use EDS for these experiments
because – in our eyes – it represents the “average”
framework without any significant irregularities.

The experiments show that using the mixture
of softmaxes for label prediction does not have a
substantial effect and can be potentially omitted to
reduce the parameter count. On the other hand, the
inferior results of the model with constant equal
loss weights demonstrate the importance of balanc-
ing them.

5 Conclusion

We introduced a novel permutation-invariant
sentence-to-graph semantic parser called PERIN.
Given its state-of-the-art performance across a
number of frameworks, we believe permutation-
invariant node prediction might be the first step
in a promising direction of semantic parsing and
generally of graph generation.

Acknowledgments

This work has been supported by the Grant Agency
of the Czech Republic, project EXPRO LUSyD
(GX20-16819X). It has also been supported by
the Ministry of Education, Youth and Sports of
the Czech Republic, Project No. LM2018101
LINDAT/CLARIAH-CZ.

61

References
Omri Abend and Ari Rappoport. 2013. Universal Con-

ceptual Cognitive Annotation (UCCA). In Proceed-
ings of the 51st Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 228–238, Sofia, Bulgaria. Association
for Computational Linguistics.

Lasha Abzianidze, Johannes Bjerva, Kilian Evang,
Hessel Haagsma, Rik van Noord, Pierre Ludmann,
Duc-Duy Nguyen, and Johan Bos. 2017. The Par-
allel Meaning Bank: Towards a Multilingual Cor-
pus of Translations Annotated with Compositional
Meaning Representations. In Proceedings of the
15th Conference of the European Chapter of the As-
sociation for Computational Linguistics: Volume 2,
Short Papers, pages 242–247, Valencia, Spain. As-
sociation for Computational Linguistics.

Betty van Aken, Benjamin Winter, Alexander Löser,
and Felix A Gers. 2019. How does bert answer ques-
tions? a layer-wise analysis of transformer repre-
sentations. In Proceedings of the 28th ACM Inter-
national Conference on Information and Knowledge
Management, pages 1823–1832.

Ofir Arviv, Ruixiang Cui, and Daniel Hershcovich.
2020. HUJI-KU at MRP 2020: Two Transition-
based Neural Parsers. In Proceedings of the CoNLL
2020 Shared Task: Cross-Framework Meaning Rep-
resentation Parsing, pages 73 – 82, Online.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hin-
ton. 2016. Layer normalization. arXiv preprint
arXiv:1607.06450.

Laura Banarescu, Claire Bonial, Shu Cai, Madalina
Georgescu, Kira Griffitt, Ulf Hermjakob, Kevin
Knight, Philipp Koehn, Martha Palmer, and Nathan
Schneider. 2013. Abstract Meaning Representation
for Sembanking. In Proceedings of the 7th Linguis-
tic Annotation Workshop and Interoperability with
Discourse, pages 178–186, Sofia, Bulgaria. Associa-
tion for Computational Linguistics.

Deng Cai and Wai Lam. 2020. AMR Parsing via
Graph-Sequence Iterative Inference. In Proceedings
of the 58th Annual Meeting of the Association for
Computational Linguistics, pages 1290–1301, On-
line. Association for Computational Linguistics.

Nicolas Carion, Francisco Massa, Gabriel Synnaeve,
Nicolas Usunier, Alexander Kirillov, and Sergey
Zagoruyko. 2020. End-to-End Object Detection
with Transformers. CoRR, abs/2005.12872.

Wanxiang Che, Longxu Dou, Yang Xu, Yuxuan Wang,
Yijia Liu, and Ting Liu. 2019. HIT-SCIR at
MRP 2019: A Unified Pipeline for Meaning Rep-
resentation Parsing via Efficient Training and Effec-
tive Encoding. In Proceedings of the Shared Task
on Cross-Framework Meaning Representation Pars-
ing at the 2019 Conference on Computational Natu-
ral Language Learning, pages 76 – 85, Hong Kong,
China.

Zhao Chen, Vijay Badrinarayanan, Chen-Yu Lee, and
Andrew Rabinovich. 2018. Gradnorm: Gradient
normalization for adaptive loss balancing in deep
multitask networks. In International Conference on
Machine Learning, pages 794–803.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzmán, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2020. Unsupervised
Cross-lingual Representation Learning at Scale. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 8440–
8451, Online. Association for Computational Lin-
guistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
Deep Bidirectional Transformers for Language Un-
derstanding. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Longxu Dou, Yunlong Feng, Yuqiu Ji, Wanxiang Che,
and Ting Liu. 2020. HIT-SCIR at MRP 2020:
Transition-Based Parser and Iterative Inference
Parser. In Proceedings of the CoNLL 2020 Shared
Task: Cross-Framework Meaning Representation
Parsing, pages 65 – 72, Online.

Timothy Dozat and Christopher D. Manning. 2017.
Deep Biaffine Attention for Neural Dependency
Parsing. In 5th International Conference on Learn-
ing Representations, ICLR 2017, Toulon, France,
April 24-26, 2017, Conference Track Proceedings.
OpenReview.net.

Timothy Dozat and Christopher D. Manning. 2018.
Simpler but More Accurate Semantic Dependency
Parsing. In Proceedings of the 56th Annual Meet-
ing of the Association for Computational Linguis-
tics (Volume 2: Short Papers), pages 484–490, Mel-
bourne, Australia. Association for Computational
Linguistics.

Jiatao Gu, Zhengdong Lu, Hang Li, and Victor O.K.
Li. 2016. Incorporating Copying Mechanism in
Sequence-to-Sequence Learning. In Proceedings
of the 54th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 1631–1640, Berlin, Germany. Association for
Computational Linguistics.

Jan Hajic, Eva Hajicová, Jarmila Panevová, Petr Sgall,
Ondrej Bojar, Silvie Cinková, Eva Fucı́ková, Marie
Mikulová, Petr Pajas, Jan Popelka, et al. 2012. An-
nouncing Prague Czech-English Dependency Tree-
bank 2.0. In LREC, pages 3153–3160.

Daniel Hershcovich, Omri Abend, and Ari Rappoport.
2018. Multitask Parsing Across Semantic Represen-
tations. In Proceedings of the 56th Annual Meet-

62

ing of the Association for Computational Linguis-
tics (Volume 1: Long Papers), pages 373–385, Mel-
bourne, Australia. Association for Computational
Linguistics.

Daniel Hershcovich, Zohar Aizenbud, Leshem
Choshen, Elior Sulem, Ari Rappoport, and Omri
Abend. 2019. SemEval-2019 Task 1: Cross-lingual
Semantic Parsing with UCCA. In Proceedings
of the 13th International Workshop on Semantic
Evaluation, pages 1–10, Minneapolis, Minnesota,
USA. Association for Computational Linguistics.

Jeremy Howard and Sebastian Ruder. 2018. Universal
Language Model Fine-tuning for Text Classification.
In Proceedings of the 56th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 328–339, Melbourne, Aus-
tralia. Association for Computational Linguistics.

Alexey Ignatiev, Antonio Morgado, and Joao Marques-
Silva. 2019. RC2: An efficient MaxSAT solver.
Journal on Satisfiability, Boolean Modeling and
Computation, 11(1):53–64.

Alex Kendall, Yarin Gal, and Roberto Cipolla. 2018.
Multi-task learning using uncertainty to weigh
losses for scene geometry and semantics. In Pro-
ceedings of the IEEE conference on computer vision
and pattern recognition, pages 7482–7491.

Dan Kondratyuk and Milan Straka. 2019. 75 Lan-
guages, 1 Model: Parsing Universal Dependencies
Universally. In Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Language
Processing and the 9th International Joint Confer-
ence on Natural Language Processing (EMNLP-
IJCNLP), pages 2779–2795, Hong Kong, China. As-
sociation for Computational Linguistics.

Marco Kuhlmann and Stephan Oepen. 2016. Towards
a catalogue of linguistic graph banks. Computa-
tional Linguistics, 42(4):819–827.

Harold W Kuhn. 1955. The Hungarian method for the
assignment problem. Naval research logistics quar-
terly, 2(1-2):83–97.

Sunny Lai, Chun Hei Lo, Kwong Sak Leung, and Yee
Leung. 2019. CUHK at MRP 2019: Transition-
Based Parser with Cross-Framework Variable-Arity
Resolve Action. In Proceedings of the Shared Task
on Cross-Framework Meaning Representation Pars-
ing at the 2019 Conference on Computational Nat-
ural Language Learning, pages 104 – 113, Hong
Kong, China.

Bin Li, Yuan Wen, Weiguang Qu, Lijun Bu, and Ni-
anwen Xue. 2016. Annotating the little prince with
chinese amrs. In Proceedings of the 10th Linguistic
Annotation Workshop held in conjunction with ACL
2016 (LAW-X 2016), pages 7–15.

Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming
He, and Piotr Dollár. 2017. Focal loss for dense ob-
ject detection. In Proceedings of the IEEE interna-
tional conference on computer vision, pages 2980–
2988.

Ilya Loshchilov and Frank Hutter. 2019. Decou-
pled Weight Decay Regularization. In 7th Inter-
national Conference on Learning Representations,
ICLR 2019, New Orleans, LA, USA, May 6-9, 2019.
OpenReview.net.

Ryan McDonald and Fernando Pereira. 2006. Online
learning of approximate dependency parsing algo-
rithms. In 11th Conference of the European Chapter
of the Association for Computational Linguistics.

Toan Q. Nguyen and Julian Salazar. 2019. Transform-
ers without Tears: Improving the Normalization of
Self-Attention. In Proc. Workshop on Spoken Lan-
guage Translation.

Stephan Oepen, Omri Abend, Lasha Abzianidze, Jo-
han Bos, Jan Hajič, Daniel Hershcovich, Bin Li,
Tim O’Gorman, Nianwen Xue, and Daniel Zeman.
2020. MRP 2020: The Second Shared Task on
Cross-Framework and Cross-Lingual Meaning Rep-
resentation Parsing. In Proceedings of the CoNLL
2020 Shared Task: Cross-Framework Meaning Rep-
resentation Parsing, pages 1 – 22, Online.

Stephan Oepen, Omri Abend, Jan Hajič, Daniel Her-
shcovich, Marco Kuhlmann, Tim O’Gorman, Nian-
wen Xue, Jayeol Chun, Milan Straka, and Zdeňka
Urešová. 2019. MRP 2019: Cross-Framework
Meaning Representation Parsing. In Proceedings of
the Shared Task on Cross-Framework Meaning Rep-
resentation Parsing at the 2019 Conference on Com-
putational Natural Language Learning, pages 1 – 27,
Hong Kong, China.

Stephan Oepen and Jan Tore Lønning. 2006.
Discriminant-Based MRS Banking. In LREC,
pages 1250–1255.

Hiroaki Ozaki, Gaku Morio, Yuta Koreeda, Terufumi
Morishita, and Toshinori Miyoshi. 2020. Hitachi at
MRP 2020: Text-to-Graph-Notation Transducer. In
Proceedings of the CoNLL 2020 Shared Task: Cross-
Framework Meaning Representation Parsing, pages
40 – 52, Online.

Xiaochang Peng, Chuan Wang, Daniel Gildea, and Ni-
anwen Xue. 2017. Addressing the Data Sparsity Is-
sue in Neural AMR Parsing. In Proceedings of the
15th Conference of the European Chapter of the As-
sociation for Computational Linguistics: Volume 1,
Long Papers, pages 366–375, Valencia, Spain. Asso-
ciation for Computational Linguistics.

Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J
Guibas. 2017. Pointnet: Deep learning on point sets
for 3d classification and segmentation. In Proceed-
ings of the IEEE conference on computer vision and
pattern recognition, pages 652–660.

63

Rob A Van der Sandt. 1992. Presupposition projec-
tion as anaphora resolution. Journal of semantics,
9(4):333–377.

Milan Straka and Jana Straková. 2019. ÚFAL MRPipe
at MRP 2019: UDPipe Goes Semantic in the Mean-
ing Representation Parsing Shared Task. In Pro-
ceedings of the Shared Task on Cross-Framework
Meaning Representation Parsing at the 2019 Confer-
ence on Computational Natural Language Learning,
pages 127 – 137, Hong Kong, China.

Milan Straka, Jana Straková, and Jan Hajic. 2019. UD-
Pipe at SIGMORPHON 2019: Contextualized Em-
beddings, Regularization with Morphological Cat-
egories, Corpora Merging. In Proceedings of the
16th Workshop on Computational Research in Pho-
netics, Phonology, and Morphology, pages 95–103,
Florence, Italy. Association for Computational Lin-
guistics.

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe,
Jon Shlens, and Zbigniew Wojna. 2016. Rethinking
the inception architecture for computer vision. In
Proceedings of the IEEE conference on computer vi-
sion and pattern recognition, pages 2818–2826.

Jörg Tiedemann and Santhosh Thottingal. 2020.
OPUS-MT — Building open translation services for
the World. In Proceedings of the 22nd Annual Con-
ferenec of the European Association for Machine
Translation (EAMT), Lisbon, Portugal.

Zdeňka Urešová, Eva Fučı́ková, Jan Hajič,
and Jana Šindlerová. 2015. CzEngVallex.
LINDAT/CLARIAH-CZ digital library at the
Institute of Formal and Applied Linguistics (ÚFAL),
Faculty of Mathematics and Physics, Charles
University.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998–6008.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander M. Rush. 2019.
HuggingFace’s Transformers: State-of-the-art Natu-
ral Language Processing. ArXiv, abs/1910.03771.

Zhilin Yang, Zihang Dai, Ruslan Salakhutdinov, and
William W. Cohen. 2018. Breaking the Softmax Bot-
tleneck: A High-Rank RNN Language Model. In
International Conference on Learning Representa-
tions.

Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh,
Barnabas Poczos, Russ R Salakhutdinov, and
Alexander J Smola. 2017. Deep sets. In Advances in

neural information processing systems, pages 3391–
3401.

Sheng Zhang, Xutai Ma, Kevin Duh, and Benjamin
Van Durme. 2019a. AMR Parsing as Sequence-to-
Graph Transduction. In Proceedings of the 57th An-
nual Meeting of the Association for Computational
Linguistics, pages 80–94, Florence, Italy. Associa-
tion for Computational Linguistics.

Yan Zhang, Jonathon Hare, and Adam Prugel-Bennett.
2019b. Deep set prediction networks. In Advances
in Neural Information Processing Systems, pages
3212–3222.

64

Proceedings of the CoNLL 2020 Shared Task: Cross-Framework Meaning Representation Parsing, pages 65–72
Online, Nov. 19-20, 2020. c©2020 Association for Computational Linguistics

HIT-SCIR at MRP 2020:
Transition-based Parser and Iterative Inference Parser

Longxu Dou, Yunlong Feng, Yuqiu Ji, Wanxiang Che, Ting Liu
Research Center for Social Computing and Information Retrieval

Harbin Institute of Technology, China
{lxdou,ylfeng,yqji,car,tliu}@ir.hit.edu.cn

Abstract

This paper describes our submission system
(HIT-SCIR) for the CoNLL 2020 shared task:
Cross-Framework and Cross-Lingual Mean-
ing Representation Parsing. The task includes
five frameworks for graph-based meaning rep-
resentations, i.e., UCCA, EDS, PTG, AMR,
and DRG. Our solution consists of two sub-
systems: transition-based parser for Flavor (1)
frameworks (UCCA, EDS, PTG) and itera-
tive inference parser for Flavor (2) frameworks
(DRG, AMR). In the final evaluation, our sys-
tem is ranked 3rd among the seven team both
in Cross-Framework Track and Cross-Lingual
Track, with the macro-averaged MRP F1 score
of 0.81/0.69.

1 Introduction

The goal of the CoNLL 2020 shared task (Oepen
et al., 2020) is to develop a unified parsing sys-
tem to process all five semantic graph banks across
different languages. This task combines five frame-
works for graph-based meaning representation,
each with its specific formal and linguistic assump-
tions, including UCCA, EDS, PTG, AMR, and
DRG. 1

In the context of the shared task, the organiz-
ers distinguish different flavors of semantic graphs
based on the nature of the relationship they assume
between the linguistic surface string and the nodes
of the graph. They call this relation anchoring.
Therefore, the involved five frameworks could be
divided into two classes: (a) Flavor (1), including
UCCA, EDS, and PTG, allowing arbitrary parts of
the sentence as node anchors, as well as multiple
nodes anchored to overlapping sub-strings, and (b)
Flavor (2), including AMR and DRG, not consid-
ering the correspondence between nodes and the
surface tokens.

1See http://mrp.nlpl.eu/ for further technical de-
tails, information on how to obtain the data, and official results.

Our submitted system could be summarized in
the following:

• Transition-based Parser for Flavor (1)

Following Che et al. (2019), the top system in
CoNLL 2019 shared task (Oepen et al., 2019),
we employ the transition-based parser for Fla-
vor (1) frameworks since it’s very flexible in
predicting the anchor information. We directly
use their parser for UCCA and EDS. And we
design a new parser for PTG.

• Iterative Inference Parser for Flavor (2)

Recently, Cai and Lam (2020) proposed
Graph⇔Sequence Iterative Inference system
for AMR parsing, which treats parsing as
a series of dual decisions on the input se-
quence and the incrementally constructed
graph, achieving state-of-the-art results. We
adopt their model for Flavor (2) frameworks
(AMR, DRG).

• Pretrained Language Model

Our systems benefit a lot from the pretrained
language models, i.e., BERT (Devlin et al.,
2019), ELECTRA (Clark et al., 2020) and
XLM-RoBERTa (Conneau et al., 2020).

2 Background

In the following, we will give a brief introduction to
these frameworks and our corresponding solutions.

Universal Conceptual Cognitive Annotation
(UCCA) is a multi-layer linguistic framework (Fla-
vor (1)) firstly proposed by Abend and Rappoport
(2013), which treats input words as terminal nodes.
The non-terminal node might govern one or more
nodes, which may be discontinuous. Moreover, one
node can have multiple governing (parent) nodes
through multiple edges, consisting of a single pri-
mary edge and other remote edges. Relationships

65

between nodes are represented by edge labels. The
primary edges form a tree structure, whereas the re-
mote edges introduce reentrancy, forming directed
acyclic graphs (DAGs). We directly employ the
system of Che et al. (2019), which achieves the 1st

at CoNLL 2019 shared task.
Elementary Dependency Structure (EDS) is a

graph-structured semantic representation formal-
ism (Flavor (1)) proposed by Oepen and Lønning
(2006). Che et al. (2019) introduce a neural
encoder-decoder transition-based parser for the
EDS graph, which extracts the node alignment (or
anchoring) information effectively.

Prague Tectogrammatical Graphs (PTG) are
graph-structured multi-layered semantic represen-
tation formalism (Flavor (1)) proposed by Zeman
and Hajič (2020). PTG graphs essentially recast
core predicate–argument structure in the form of
mostly anchored dependency graphs, albeit intro-
ducing ‘empty’ (or generated, in FGD terminology)
nodes, for which there is no corresponding surface
token. We didn’t find any existing parser for PTG.
Thus we design a list-based arc-eager transition-
based parser for PTG.

Abstract Meaning Representation (AMR), pro-
posed by Banarescu et al. (2013), is a broad-
coverage sentence-level semantic formalism (Fla-
vor (2)) used to encode the meaning of natural
language sentences. AMR can be regarded as a
rooted labeled directed acyclic graph. Nodes in
AMR graphs represent concepts and labeled di-
rected edges are relations between the concepts.
We directly employ state-of-the-art parser of Cai
and Lam (2020).

Discourse Representation Graphs (DRG) are pro-
posed by Abzianidze et al. (2020) (Flavor (2)),
which are derived from the DRS annotations in the
Parallel Meaning Bank (Bos et al., 2017; Abzian-
idze et al., 2017). Its concepts are represented by
WordNet 3.0 (Fellbaum, 1998) senses and semantic
roles by the adapted version of VerbNet (Schuler,
2006) roles. Similar to PTG, we don’t find any
existing parser for DRG, thus we modify the AMR
parser to process the DRG.

3 Transition-based Parser for Flavor (1)

3.1 Background

A tuple (S,L,B,E, V) is used to represent the
parsing state, where S is a stack holding processed
words, L is a list holding words popped out of S
that will be pushed back in the future, and B is a

buffer holding unprocessed words. E is a set of
labeled dependency arcs. V is a set of graph nodes
including concept nodes and surface tokens. The
initial state is ([0], [], [1, · · · , n], [], V) , where V
only contains surface tokens, whereas the concept
nodes will be generated during parsing. And the
terminal state is ([0], [], [], E, V

′
). We model the

S, L, B and action history with Stack-LSTM, which
supports PUSH and POP operations. 2

3.2 Transition Systems
For brevity, we omit the descriptions of the transi-
tion system for UCCA and EDS (Che et al., 2019).
As for PTG, we propose a new arc-eager transition-
based parser. To illustrate the transition-set and
configuration more clearly, we list the transition
process in Table 1 (UCCA), Table 2 (EDS) and
Table 3 (PTG).

3.2.1 PTG
We are not aware of any parser specifically de-
signed for PTG. But we found it is highly related to
UCCA and EDS. Thus, based on the transition sys-
tems of UCCA and EDS and the definition of PTG
(Čmejrek et al., 2004), we design a new system
for PTG as shown in Table 3. x is the top element
in the buffer and y is the top element in the stack.
Moreover, y could only be a concept node (stack
and list only contain concept nodes), and x could
be a concept node or a surface token.

LEFT-EDGEX , RIGHT-EDGEX , SHIFT, DROP,
REDUCE, PASS and FINISH are the same as EDS.

• SELF-EDGEX adds an arc with label X be-
tween x and itself.

• TERMINAL-NOLABEL creates new non-
terminal nodes without label. These nodes
have corresponding surface token(s) and their
labels will be determined by rule, which will
be introduced in Section 5.

• TERMINALX creates new non-terminal nodes
with label X .

• NODEX creates a new node on the buffer as a
parent of the first element on the stack, with
X as its label.

• NODE-ROOTX creates a new node on the
buffer as a child of the root with X as its
label.

2We recommend reading Dyer et al. (2015) for more de-
tails.

66

Before Transition Transition After Transition Condition
Stack Buffer Nodes Edges Stack Buffer Nodes Edges
S x | B V E SHIFT S | x B V E
S | x B V E REDUCE S B V E
S | x B V E NODEX S | x y | B V ∪ {y} E ∪ {(y, x)X} x 6= root
S | y, x B V E LEFT-EDGEX S | y, x B V E ∪ {(x, y)X}

x 6∈ w1:n,
y 6= root,
y 6;G x

S | x, y B V E RIGHT-EDGEX S | x, y B V E ∪ {(x, y)X}
S | y, x B V E LEFT-REMOTEX S | y, x B V E ∪ {(x, y)∗X}
S | x, y B V E RIGHT-REMOTEX S | x, y B V E ∪ {(x, y)∗X}
S | x, y B V E SWAP S | y x | B V E i(x) < i(y)
[root] ∅ V E FINISH ∅ ∅ V E

Table 1: The transition set of UCCA parser. We write the Stack with its top to the right and the Buffer with its
head to the left. (·, ·)X denotes a primary X-labeled edge, and (·, ·)∗X a remote X-labeled edge. i(x) is a running
index for the created nodes. In addition to the specified conditions, the prospective child in an EDGE transition
must not already have a primary parent. From (Hershcovich et al., 2017).

Before Transition Transition After Transition Condition
Stack List Buffer Nodes Edges Stack List Buffer Nodes Edges
S L x | B V E SHIFT S | L | x ∅ B V E concept(x)
S | x L B V E REDUCE S L B V E
S | x L y | B V E RIGHT-EDGEX S | x L y | B V E ∪ {(x, y)X} concept(x) ∧ concept(y)
S | y L x | B V E LEFT-EDGEX S | y L x | B V E ∪ {(x, y)X} concept(x) ∧ concept(y)
S | x L B V E PASS S x | L B V E
S L x | B V E DROP S | L ∅ B V E token(x)
S L x | B V E TOP S L x | B V ∪ Top(x) E concept(x)
S L x | B V E NODE-STARTX S | y L x | B V ∪ {ystart=x,label=X} E token(x)
S | y L x | B V E NODE-END S | y L x | B V ∪ {yend=x} E token(x)
[root] ∅ ∅ V E FINISH ∅ ∅ ∅ V E

Table 2: The transition set of EDS parser. We write the Stack with its top to the right, the Buffer with its head
to the left and the List with its head to the left. The elements in Stack and List are all concept nodes. Indicator
function token(x) means x is a token of the sentence, while concept(x) means it’s a concept node. Top(x) indicates
x is the top node. ystart=wi,label=X,end=wj

indicates the alignments of concept node y is starting at token wi,
ending at token wj and its label is X .

Before Transition Transition After Transition Condition
Stack List Buffer Nodes Edges Stack List Buffer Nodes Edges
S L x | B V E SHIFT S | L | x ∅ B V E concept(x)
S | x L B V E REDUCE S L B V E
S | x L y | B V E RIGHT-EDGEX S | x L y | B V E ∪ {(x, y)X}
S | y L x | B V E LEFT-EDGEX S | y L x | B V E ∪ {(x, y)X}
S | y L x | B V E SELF-EDGEX S | y L x | B V E ∪ {(x, x)X}
S | x L B V E PASS S x | L B V E
S L x | B V E DROP S | L ∅ B V E token(x)
S L x | B V E NODEX S L y | x | B V ∪ {ylabel=X} E token(x)
S L x | B V E NODE-ROOTX S L y | x | B V ∪ {ylabel=X} E root(x)
S L x | B V E TERMINAL-NOLABEL S L y | x | B V ∪ {y} E
S L x | B V E TERMINALX S L y | x | B V ∪ {ylabel=X} E
[root] ∅ ∅ V E FINISH ∅ ∅ ∅ V E

Table 3: The transition set of PTG parser. We write the Stack with its top to the right, the Buffer with its head
to the left and the List with its head to the left. The elements in Stack and List are all concept nodes. Indicator
function token(x) means x is a token of the sentence, while concept(x) means it’s a concept node. root(x) indicates
x is the top node.

67

The differences between TERMINAL and NODE are
(a) TERMINAL generates the node ahead of NODE

in the oracle transition sequence, which means the
nodes generated by TERMINAL are more closer
to the surface tokens, and (b) TERMINAL could
generate the concept node that aligns to surface
tokens(s) while NODE could only generates the
node with the particular label.

4 Iterative Inference Parser for Flavor
(2)

4.1 Overview
We adopt the Graph⇔Sequence Iterative Inference
system proposed by Cai and Lam (2020) to parse
the Flavor (2) graphs. We name it iterative infer-
ence parser in this paper. At each time step, the
model performs multiple rounds of attention, rea-
soning, and composition that aim to answer two
critical questions: (a) which part of the input se-
quence to abstract, and (b) where in the output
graph to construct the new concept.

4.2 Implementation
This model consists of four modules:

• Sentence Encoder encodes the input se-
quence and generates a set of text memories
to provide grounding for concept node gener-
ation.

• Graph Encoder encodes the partial graph
and generate a set of graph memories to pro-
vide grounding for relation prediction.

• Concept Solver uses the graph hypothesis for
concept node generation.

• Graph Solver uses the concept node hypoth-
esis for relation prediction.

The last two components correspond to the reason-
ing functions g(·) and f(·) respectively.

More specifically, at the beginning of parsing,
Sentence Encoder computes the text memories,
while Graph Encoder constructs the graph memo-
ries incrementally.3 During the iterative inference,
a semantic representation of the current state is
used to attend to both graph and text memories to
locate the new concept and obtain its relations to
the existing graph, both of which subsequently re-
fine each other. Then in each step, Concept Solver

3In the beginning, we represent the empty graph with a
special symbol: BOG (begin of graph).

generates the concept node and Relation Solver
predicts the relation between the concept node with
other node(s) through attention.4

This process could be described as follows:

yit = g(Gi, xit),

xit+1 = f(W, yit),

where W and Gi are the input sentence and the
current semantic graph respectively. g(·) looks for
where to construct (edge prediction) and f(·) seeks
what to abstract (node prediction) respectively. The
xit, y

i
t are the t−th graph hypothesis and the t−th

sequence hypothesis for the i−th expansion step
respectively.

In summary, Iterative Inference Parser uses a
sentence encoder to encode the input sequence and
a graph encoder to build the graph iteratively. In
each step, the parser uses the graph state and the
sentence representation to generate a new concept
node and build the relation between the concept
node and other parts of the graph.5

5 Pre-processing and Post-processing

In this session, we introduce the pre-processing and
post-processing work. The MRP graph can be bro-
ken down into seven component pieces: top nodes,
node labels, node properties, node anchoring, di-
rected edges, edge labels, and edge attributes.

The directed edges, edge labels, and node id
form the standard input of our system. For node
anchoring, we directly derive the anchoring infor-
mation through segmentation from companion data.
For other elements, such as top nodes, are a bit dif-
ferent among the frameworks. We will introduce
these framework-specific work in the following.

5.1 UCCA
Top Nodes There is only one top node for each
sentence in UCCA, which is used to initialize the
stack. Meanwhile, the top node is the protected
symbol of the stack (which will never be popped
out).

Edge Properties The edge property in UCCA is
used as the sign for remote edges. We treat remote
edges in the same way as primary edges, except for
those with a special star (*) symbol.

4The iterative process between concept node generation
and relation prediction will last until the concept solver pre-
dicts a special symbol: EOG (end of graph).

5More details could be found in the original paper (Cai
and Lam, 2020).

68

Node Anchoring Referring to the original
UCCA framework design, we link the node in the
foundational layer to the surface token with the
edge label ‘Terminal’. In post-processing, we com-
bine surface tokens and foundational layer nodes
via collapsing ‘Terminal’ edge to extract the anchor
information.

5.2 EDS

Top Nodes The TOP operation will set the first
concept node in the buffer as top node.

Node Labels We train a tagger to predict the
node labels. The tagger is directly adopted from
AllenNLP. Although there are thousands of node
labels, the result shows our system performs well
on this.

Node Properties We count the co-occurrence of
node label, upos, dep and property value in the
training dataset, and select the property based on
the co-occurrence statistics in the predicting pro-
cedure. If the triple (node label, upos, dep) is not
found, we backoff to the tuple (upos, dep).6

Node Anchoring We obtain alignment informa-
tion through NODE START and NODE END opera-
tion.

5.3 PTG

The original PTG is not a directed acyclic graph
(DAG). We find that all the cycles are caused by
coref.gram edges. Thus we reverse these edges to
convert PTG to DAG to avoid this problem.

Top Nodes The top node of PTG is the root of
the stack, which is used to initialize the stack.

Node Labels We obtain the node label through a
rule-based method: (1) collecting the tokens that
node aligns to, and (2) setting the node label as
the lemma of one of the tokens. Which token to
be chosen is determined by a rule considering the
pos-tag, dependency tree.

Node Properties Similar to EDS, we used the
statistic-based method to compute the properties.

Node Anchoring We obtain alignment informa-
tion through NODE or TERMINAL operation.

6The ‘upos’ and ‘dep’ are obtained from corresponding
companion data, which refers to the upos-tag of the token(s)
that the concept node aligns to, and the label of the edge
between the token(s) and its parents in the dependency tree.

5.4 AMR
The original definition of AMR consists of TOP

NODES, NODE LABELS and NODE PROPERTIES.
Thus we directly used the system’s output.

5.5 DRG
The DRG parsing system is based on the parser of
AMR (Cai and Lam, 2020). Before training, we
need to convert DRG to AMR. After prediction, we
recover it reversely. More specifically, we attach
the unreal label to the unlabeled node of DRG to
satisfy the requirement of AMR that all nodes must
have a label. The labeled node of DRG can be
divided into three types:

• Abstract Node Such nodes are representing
comparison relations, e.g., EQU, which is usu-
ally uppercased.

• Labeled Node with property: We split the
node into the label part and property parts.
For example, impossible.a.01 could be spilt
into label part (impossible) and property parts
(a and 01). Then we add two edges with the
label ‘op’ from label part to property parts.

• Labeled Node without property: Such node
are covered by double quotes, like “now”. We
simply copy the node label to the AMR graph
ignoring the double quotes. We will add them
back during post-processing.

6 Experiments

In this section, we will show the basic model setup
and overall evaluation results.

6.1 Model Setup
Transition-based Parser Based on the system
of Che et al. (2019), we build the transition-based
parser for UCCA, EDS, and PTG. We split pa-
rameters into two groups, i.e., BERT parameters
and other parameters (base parameters). The two
parameter groups differ in the learning rate. For
training, we use the Adam optimizer (Kingma and
Ba, 2015).

Iterative Inference Parser Based on the system
of Cai and Lam (2020), we build the parser for
AMR and DRG.7

Code for our parser and model weights are
available at https://github.com/DreamerDeo/

HIT-SCIR-CoNLL2020.
7https://github.com/jcyk/AMR-gs

69

System UCCA EDS PTG AMR DRG ALL
Hitachi 0.75 0.94 0.89 0.82 0.93 0.86
UFAL 0.76 0.93 0.88 0.80 0.94 0.86
HIT-SCIR 0.75 0.87 0.84 0.70 0.89 0.81
HUJI-KU 0.73 0.80 0.54 0.52 0.63 0.64
ISCAS 0.06 0.86 0.18 0.61 0.69 0.48
TJU-BLCU 0.10 0.49 0.21 0.3 0.40 0.30

Table 4: Evaluation results on Cross-Framework Track upon MRP F1.

System UCCA PTG AMR DRG ALL
UFAL 0.81 0.91 0.78 0.90 0.85
Hitachi 0.79 0.87 0.80 0.93 0.85
HIT-SCIR 0.80 0.78 0.49 0.68 0.69
HUJI-KU 0.75 0.58 0.45 0.62 0.60

Table 5: Evaluation results on Cross-Lingual Track upon MRP F1.

6.2 Fine-Tuning BERT with Parser

Based on Devlin et al. (2019), fine-tuning BERT
with supervised downstream task will receive the
most benefit. So we choose to fine-tune BERT
model together with the original parser. In our
preliminary study, gradual unfreezing and slanted
triangular learning rate scheduler is essential for
BERT fine-tuning model.

We find it beneficial to warm up the learning
rate at beginning of training progress and cool
down after. With the slanted triangular learning
rate scheduler, the learning rate increases linearly
from lr/ratio to lr during the first num step ×
cut frac steps and decreases linearly back to
lr/ratio during the left steps.

Gradual unfreezing is also used during training
so in the first few (1 ∼ 5) epochs BERT parame-
ters are frozen. While being gradually unfrozen,
the learning rate experiences a full warm-up and
cool-down cycle per epoch. And then a full cycle
is performed during the rest training progress once
all parameters are unfrozen. Batch normalization
(Sergey and Christian, 2015) is useful when avoid-
ing the gradient exploding during training UCCA
and EDS.

6.3 Hyperparameters

Pretrained Language Model The model
choices for each framework across two tracks, are
listed in Table 6.

Transition-based Parser Following Che et al.
(2019), we adopt the hyper-parameters listed in
Table 7.

Iterative Inference Parser Following Cai and
Lam (2020), we perform N = 4 steps of iterative
inference. Other hyper-parameter settings can be
found in the Table 8.

6.4 Overall Evaluation Results and Analysis
We list the evaluation results on Table 4 and Table
5, which is ranked by the cross-framework metric,
named macro-averaged MRP F1.8

For Flavor (1) framework, our transition-based
parser is a local-decision model. Thus, our parser
cannot effectively use global information when pre-
dicting the attributes of graph nodes, resulting in
some more complex structures that can not be ef-
fectively generated. On another hand, our system
in UCCA achieves nearly state-of-the-art perfor-
mance but falls behind in EDS and PTG. We argue
that the main reason is that we obtain the properties
by the statistic-based way instead of training a spe-
cific model, which lower the overall performance
in EDS and PTG.

For Flavor (2) framework, we suppose that the
main reason for the performance degradation in
AMR is the entity vocabulary, which is obtained
in AMR2.0 from Cai and Lam (2020) and doesn’t
match the MRP2020-AMR very well. Based on
our experience, the AMR parser will benefit a lot
from a high-quality entity vocabulary.

7 Conclusion

In this paper, we describe our submission system
for the CoNLL 2020 shared task. We separate

8Evaluation results of CoNLL 2020 shared task are avail-
able at http://bit.ly/cfmrp20.

70

Track Cross-Framework Cross-Lingual
UCCA BERT-Base BERT-Base German
EDS BERT-Base -
PTG BERT-Base BERT-Base Multilingual
AMR ELECTRA-Large ELECTRA-Large Chinese
DRG ELECTRA-Large XLM-RoBERTa-Large

Table 6: The pretrained language model used in each track .
.

HYPERPARAMETER VALUE

Hidden dimension 200
Action dimension 50
Optimizer Adam
β1, β2 0.9, 0.99
Dropout 0.5
Layer dropout 0.2
Recurrent dropout 0.2
Input dropout 0.2
Batch size 16
Epochs 50
Base learning rate 1× 10−3

BERT learning rate 5× 10−5

Gradient clipping 5.0
Gradient norm 5.0
Learning rate scheduler slanted triangular
Gradual Unfreezing True
Cut Frac 0.1
Ratio 32

Table 7: Transition-based parser hyper-parameters set-
tings.

our solutions into two classes based on the flavor
of the framework: (a) transition-based parser for
Flavor (1) (UCCA, EDS, PTG), and (b) iterative
inference parser for Flavor (2) (AMR, DRG). Espe-
cially, we propose a new transition-based parser for
the PTG framework, which achieves comparable
performance. In the final evaluation, our system
positions at 3rd in both tracks.

Acknowledgments

We thank the reviewers for their insightful com-
ments and the HIT-SCIR colleagues for the coordi-
nation on the machine usage. This work was sup-
ported by the National Natural Science Foundation
of China (NSFC) via grant 61976072, 61632011
and 61772153.

References
Omri Abend and Ari Rappoport. 2013. Universal

conceptual cognitive annotation (UCCA). In ACL,
pages 228–238.

HYPERPARAMETER VALUE

lemma dimension 300
NER dimension 16
POS dimension 32
concept dimension 300
char dimension 32
CNN
filters 256
filter size 3
output size 128
Transformer
heads 8
hidden size 512
feed-forward hidden size 1024
Sentence Encoder transformer layers 4
Graph Encoder transformer layers 2
Concept Solver feed-forward hidden size 1024
Releation Solver feed-forward hidden size 1024
Releation Solver feed-forward heads 8
Deep biaffine classifier hidden size 100

Table 8: Iterative Inference parser hyper-parameters
settings.

Lasha Abzianidze, Johannes Bjerva, Kilian Evang,
Hessel Haagsma, Rik van Noord, Pierre Ludmann,
Duc-Duy Nguyen, and Johan Bos. 2017. The paral-
lel meaning bank: Towards a multilingual corpus of
translations annotated with compositional meaning
representations. In EACL, pages 242–247.

Lasha Abzianidze, Johan Bos, and Stephan Oepen.
2020. DRS at MRP 2020: Dressing up Discourse
Representation Structures as graphs. In Proceedings
of the CoNLL 2020 Shared Task: Cross-Framework
Meaning Representation Parsing, pages 23 – 32, On-
line.

Laura Banarescu, Claire Bonial, Shu Cai, Madalina
Georgescu, Kira Griffitt, Ulf Hermjakob, Kevin
Knight, Philipp Koehn, Martha Palmer, and Nathan
Schneider. 2013. Abstract meaning representation
for sembanking. In Proceedings of the 7th Linguis-
tic Annotation Workshop and Interoperability with
Discourse, pages 178–186.

Johan Bos, Valerio Basile, Kilian Evang, Noortje J.
Venhuizen, and Johannes Bjerva. 2017. The Gronin-
gen Meaning Bank, pages 463–496.

Deng Cai and Wai Lam. 2020. AMR parsing via graph-

71

sequence iterative inference. In ACL, pages 1290–
1301.

Wanxiang Che, Longxu Dou, Yang Xu, Yuxuan Wang,
Yijia Liu, and Ting Liu. 2019. HIT-SCIR at
MRP 2019: A unified pipeline for meaning rep-
resentation parsing via efficient training and effec-
tive encoding. In Proceedings of the Shared Task
on Cross-Framework Meaning Representation Pars-
ing at the 2019 Conference on Computational Natu-
ral Language Learning, pages 76 – 85, Hong Kong,
China.

Kevin Clark, Minh-Thang Luong, Quoc V. Le, and
Christopher D. Manning. 2020. ELECTRA: Pre-
training text encoders as discriminators rather than
generators. In ICLR.

Martin Čmejrek, Jan Cuřı́n, and Jiřı́ Havelka. 2004.
Prague Czech-English dependency treebank: Any
hopes for a common annotation scheme? In HLT-
NAACL, pages 47–54.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzmán, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2020. Unsupervised
cross-lingual representation learning at scale. In
ACL, pages 8440–8451.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In NAACL-HLT, pages 4171–4186.

Chris Dyer, Miguel Ballesteros, Wang Ling, Austin
Matthews, and Noah A. Smith. 2015. Transition-
based dependency parsing with stack long short-
term memory. In ACL and IJCNLP, pages 334–343.

Christiane Fellbaum. 1998. WordNet: An Electronic
Lexical Database. Bradford Books.

Daniel Hershcovich, Omri Abend, and Ari Rappoport.
2017. A transition-based directed acyclic graph
parser for UCCA. In ACL, pages 1127–1138.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In ICLR.

Stephan Oepen, Omri Abend, Lasha Abzianidze, Jo-
han Bos, Jan Hajič, Daniel Hershcovich, Bin Li,
Tim O’Gorman, Nianwen Xue, and Daniel Zeman.
2020. MRP 2020: The Second Shared Task on
Cross-framework and Cross-Lingual Meaning Rep-
resentation Parsing. In Proceedings of the CoNLL
2020 Shared Task: Cross-Framework Meaning Rep-
resentation Parsing, pages 1 – 22, Online.

Stephan Oepen, Omri Abend, Jan Hajič, Daniel Her-
shcovich, Marco Kuhlmann, Tim O’Gorman, Nian-
wen Xue, Jayeol Chun, Milan Straka, and Zdeňka
Urešová. 2019. MRP 2019: Cross-framework
Meaning Representation Parsing. In Proceedings of

the Shared Task on Cross-Framework Meaning Rep-
resentation Parsing at the 2019 Conference on Com-
putational Natural Language Learning, pages 1 – 27,
Hong Kong, China.

Stephan Oepen and Jan Tore Lønning. 2006.
Discriminant-based MRS banking. In Proceed-
ings of the Fifth International Conference on
Language Resources and Evaluation (LREC’06).

Karin Kipper Schuler. 2006. VerbNet: A Broad-
Coverage, Comprehensive Verb Lexicon. Ph.D. the-
sis.

Ioffe Sergey and Szegedy Christian. 2015. Batch nor-
malization: Accelerating deep network training by
reducing internal covariate shift. In ICML.

Daniel Zeman and Jan Hajič. 2020. FGD at MRP 2020:
Prague Tectogrammatical Graphs. In Proceedings
of the CoNLL 2020 Shared Task: Cross-Framework
Meaning Representation Parsing, pages 33 – 39, On-
line.

72

Proceedings of the CoNLL 2020 Shared Task: Cross-Framework Meaning Representation Parsing, pages 73–82
Online, Nov. 19-20, 2020. c©2020 Association for Computational Linguistics

HUJI-KU at MRP 2020: Two Transition-based Neural Parsers

Ofir Arviv*, Ruixiang Cui**, and Daniel Hershcovich**

*Hebrew University of Jerusalem, School of Computer Science and Engineering
**University of Copenhagen, Department of Computer Science
ofir.arviv@mail.huji.ac.il, {rc,dh}@di.ku.dk

Abstract

This paper describes the HUJI-KU system
submission to the shared task on Cross-
Framework Meaning Representation Parsing
(MRP) at the 2020 Conference for Computa-
tional Language Learning (CoNLL), employ-
ing TUPA and the HIT-SCIR parser, which
were, respectively, the baseline system and
winning system in the 2019 MRP shared
task. Both are transition-based parsers using
BERT contextualized embeddings. We gener-
alized TUPA to support the newly-added MRP
frameworks and languages, and experimented
with multitask learning with the HIT-SCIR
parser. We reached 4th place in both the cross-
framework and cross-lingual tracks.

1 Introduction

The CoNLL 2020 MRP Shared Task (Oepen et al.,
2020) combines five frameworks for graph-based
meaning representation: EDS, PTG, UCCA,
AMR and DRG. It further includes evaluations
in English, Czech, German and Chinese. While
EDS, UCCA and AMR participated in the 2019
MRP shared task (Oepen et al., 2019), which fo-
cused only on English, PTG and DRG are newly-
added frameworks to the MRP uniform format.

For this shared task, we extended TUPA (Her-
shcovich et al., 2017), which was adapted as the
baseline system in the 2019 MRP shared task
(Hershcovich and Arviv, 2019), to support the two
new frameworks and the different languages. In
order to add this support, only minimal changes
were needed, demonstrating TUPA’s strength in
parsing a wide array of representations. TUPA is a
general transition-based parser for directed acyclic
graphs (DAGs), originally designed for parsing
UCCA (Abend and Rappoport, 2013). It was pre-
viously used as the baseline system in SemEval
2019 Task 1 (Hershcovich et al., 2019), and gener-
alized to support other frameworks (Hershcovich

et al., 2018a,b).
We also experimented with the HIT-SCIR

parser (Che et al., 2019). This was the parser with
the highest average score across frameworks in the
2019 MRP shared task, and has also since been
applied to other frameworks (Hershcovich et al.,
2020).

2 TUPA-MRP

TUPA (Hershcovich et al., 2017) is a transition-
based parser supporting general DAG parsing.
The parser state is composed of a buffer B of to-
kens and nodes to be processed, a stack S of nodes
currently being processed, and an incrementally
constructed graph G. The input to the parser is
a sequence of tokens: w1, . . . , wn. A classifier is
trained using an oracle to select the next transi-
tion based on features encoding the parser’s cur-
rent state, where the training objective is to maxi-
mize the sum of log-likelihoods of all gold transi-
tions at each step.

The MRP variant (Hershcovich and Arviv,
2019) supports node and edge labels, as well as
node properties and edge attributes. The code is
publicly available.1

2.1 Transition set
The TUPA-MRP transition set, shown in Fig-
ure 1, is the same as the one used by Hersh-
covich and Arviv (2019). It includes the tran-
sitions SHIFT and REDUCE to manipulate the
stack, NODEX to create nodes compositionally,
CHILDX to create unanchored children, LABELX

to label nodes, PROPERTYX to set node proper-
ties, LEFT-EDGEX and RIGHT-EDGEX to create
edges, ATTRIBUTEX to set edge attributes, SWAP

to allow non-planar graphs and FINISH to termi-
nate the sequence.

1https://github.com/danielhers/tupa/
tree/mrp

73

Before Transition
Transition

After Transition
Stack Buffer N. Edges Stack Buffer Nodes Edges Extra Effect
S x | B V E SHIFT S | x B V E
S | x B V E REDUCE S B V E
S | x B V E NODEX S | x y | B V ∪ {y} E | (y, x) `E(y, x)← X
S | x B V E CHILDX S | x y | B V ∪ {y} E | (x, y) `E(x, y)← X
S | x B V E LABELX S | x B V E `V (x)← X
S | x B V E PROPERTYX S | x B V E p(x)← p(x) ∪ {X}
S | y, x B V E LEFT-EDGEX S | y, x B V E | (x, y) `E(x, y)← X
S | x, y B V E RIGHT-EDGEX S | x, y B V E | (x, y) `E(x, y)← X
S B V E | (x, y) ATTRIBUTEX S B V E | (x, y) a(x, y)← a(x, y) ∪ {X}
S | x, y B V E SWAP S | y x | B V E
[root] ∅ V E FINISH ∅ ∅ V E terminal state

Figure 1: The TUPA-MRP transition set, from Hershcovich and Arviv (2019). We write the stack with its top to
the right and the buffer with its head to the left; the set of edges is also ordered with the latest edge on the right.
NODE, LABEL, PROPERTY and ATTRIBUTE require that x 6= root; CHILD, LABEL, PROPERTY, LEFT-EDGE and
RIGHT-EDGE require that x 6∈ w1:n; ATTRIBUTE requires that y 6∈ w1:n; LEFT-EDGE and RIGHT-EDGE require
that y 6= root and that there is no directed path from y to x; and SWAP requires that i(x) < i(y), where i(x) is a
running index for nodes. `E and `V are respectively the edge and node labeling functions. p(x) is the set of node
x’s properties, and a(x, y) is the set of edge (x, y)’s attributes.

2.2 Transition Classifier

To predict the next transition at each step, TUPA
uses a BiLSTM module followed by an MLP and a
softmax layer for classification (Kiperwasser and
Goldberg, 2016). The BiLSTM module is ap-
plied before the transition sequence starts, run-
ning over the input tokenized sequence. It con-
sists of a pre-BiLSTM MLP with feature embed-
dings (§2.3) and pre-trained contextualized BERT
(Devlin et al., 2019) embeddings concatenated as
inputs, followed by (multiple layers of) a bidirec-
tional recurrent neural network (Schuster and Pali-
wal, 1997; Graves, 2008) with a long short-term
memory cell (Hochreiter and Schmidhuber, 1997).

Whenever a LABELX /PROPERTYX /ATTRIBUTEX

transition is selected, an additional classifier is
evoked with the set of possible label/property/at-
tribute values for the currently parsed framework,
respectively, as possible outputs. This hard sep-
aration is made due to the large number of node
labels and properties in the MRP frameworks.

2.3 Features

In both training and testing, we use vector embed-
dings representing the lemmas, coarse POS tags
(UPOS) and fine-grained POS tags (XPOS). These
feature values are provided by UDPipe as compan-
ion data by the task organizers. In addition, we
use punctuation and gap type features (Maier and
Lichte, 2016), and previously predicted node and
edge labels, node properties, edge attributes and
parser actions. These embeddings are initialized

randomly (Glorot and Bengio, 2010).
To the feature embeddings, we concatenate nu-

meric features representing the node height, num-
ber of parents and children, and the ratio between
the number of terminals to total number of nodes
in the graph G (Hershcovich et al., 2017). Nu-
meric features are taken as they are, whereas cat-
egorical features are mapped to real-valued em-
bedding vectors. For each non-terminal node, we
select a head terminal for feature extraction, by
traversing down the graph, selecting the first out-
going edge each time according to alphabetical or-
der of labels.

2.4 Intermediate Graph Representation

We mostly reuse Hershcovich and Arviv (2019)’s
internal representation of MRP graphs in TUPA,
where top nodes and anchoring are combined into
the graph by adding a virtual root node and vir-
tual terminal nodes, respectively, during prepro-
cessing. Similarly, we introduce placeholders in
the node labels and properties matching the tokens
they are aligned to, and collapse AMR name prop-
erties. In the case of DRG and PTG, the newly
added frameworks, where graphs may contains cy-
cles, we break those cycles in order for them to be
parseable by TUPA, which supports general DAG
parsing. Only 0.27% of the DRG graphs in the
provided dataset are cyclic. In the case of PTG,
33.97% are cyclic. Figure 2 shows an example
PTG graph, and Figure 3 the graph in TUPA’s in-
termediate representation. As the latter demon-

74

Figure 2: PTG graph, in the MRP formalism, for the sentence “*Actual performance, not annualized”. Edge labels
are shown on the edges. Node labels are shown inside the nodes, along with any node properties (in the form
|property value|). Anchoring is also provided for PTG.

strates, cycles are broken by removing an arbitrary
edge in the cycle (the coref.gram edge in this
case).

2.5 Constraints
As each framework has different constraints on
the allowed graph structures, we apply these con-
straints separately for each one. During training
and parsing, the relevant constraint set rules out
some of the transitions according to the parser
state.

Some constraints are task-specific, others are
generic. For the new frameworks, DRG and PTG,
all the constraints, except for one (PTG being
multigraph), are derived from the graph proper-
ties as defined by their component pieces.2 For
example, both require node labels, but only PTG
requires node properties. No new types of con-
straints were needed to be added to TUPA to sup-
port these frameworks.

2http://mrp.nlpl.eu/2020/index.php?
page=15

2.6 Training details
The model is implemented using DyNet v2.1
(Neubig et al., 2017).3 Unless otherwise noted,
we use the default values provided by the pack-
age. We use the same hyperparameters as Her-
shcovich and Arviv (2019), without any hyperpa-
rameter tuning on the CoNLL 2020 data.

We use the weighted sum of last four hidden
layers of a BERT (Devlin et al., 2019) pre-trained
model4 as extra input features, summing over
wordpiece vectors to get word representations.

2.7 Cross-framework track
In the cross-framework track, we use the English
bert-large-cased pre-trained encoder, and
train separate TUPA models for each of the PTG,
UCCA, AMR and DRG frameworks. Table 1
shows the number of training epochs per frame-
work, as well as validation and evaluation results.

3http://dynet.io
4https://github.com/huggingface/

pytorch-transformers

75

Figure 3: Converted PTG graph in the TUPA intermediate graph representation. Same as in the intermediate graph
representation for all frameworks, it contains a virtual root node attached to the graph’s top node with a TOP
edge, and virtual terminal nodes corresponding to text tokens, attached according to the anchoring with ANCHOR
edges. Same as for all frameworks with node labels and properties (i.e., all but UCCA), labels and properties are
replaced with placeholders corresponding to anchored tokens, where possible. The placeholder 〈`〉 corresponds to
the concatenated lemmas of anchored tokens. For graphs containing cycles, like this one, the cycles are broken by
removing an arbitrary edge in the cycle (the coref.gram edge in this case).

2.8 Cross-lingual track
For the cross-lingual track, as a generic con-
textualized encoder that supports many lan-
guages, we use multilingual BERT (bert-
base-multilingual-cased) and train the
models exactly the same as in the cross-framework
track (separate model for each framework’s re-
spective monolingual dataset from the cross-
lingual track), for Czech PTG and Chinese AMR.

For German DRG, as the provided dataset con-
tains a relatively small amount of examples, 1575
as opposed to 6606 in English DRG (from the
cross-framework track), we first pre-train a model
on the DRG data in English and then fine-tune it
on the DRG German dataset, in this case using
mBERT to facilitate cross-lingual transfer. Sur-
prisingly, this improves our validation F1 score
only by 0.013 points as opposed to training on
the German dataset only, showing that the con-

tribution of cross-lingual transfer is limited (but
at least not detrimental) with this architecture and
data sizes.

3 HIT-SCIR Parser

The HIT-SCIR parser (Che et al., 2019) is a
transition-based parser, which extended previous
parsers by employing stack LSTM (Dyer et al.,
2015) to allow computing homogeneous opera-
tion within a batch efficiently, and by adopting and
fine-tuning BERT (Devlin et al., 2019) embedding
for effectively encoding contextual information.
The parser is implemented in the AllenNLP frame-
work (Gardner et al., 2018). It supports parsing
DM, PSD, UCCA, EDS and AMR, all included in
the 2019 MRP shared task. The official dataset
would be pre-processed for system input and post-
processed for output.

In our experiment, we modified the HIT-SCIR

76

Track Framework System # Epochs Best Epoch Validation F1 Eval F1 Rank Best System
CF EDS HIT-SCIR 6 2 0.82 0.80 5 0.94 (H)
CF PTG TUPA 32 19 0.53 0.54 4 0.89 (H)
CF UCCA TUPA 99 66 0.79 0.73 4 0.76 (Ú)
CF UCCA HIT-SCIR 6 3 0.78
CF AMR TUPA 8 2 0.44 0.52 5 0.82 (H)
CF DRG TUPA 200 99 0.52 0.63 5 0.94 (Ú)
CL PTG TUPA 20 13 0.60 0.58 4 0.91 (Ú)
CL UCCA HIT-SCIR 13 6 0.77 0.75 4 0.81 (Ú)
CL UCCA TUPA 100 95 0.43
CL AMR TUPA 21 12 0.44 0.45 4 0.80 (H)
CL DRG TUPA 100 (*) 68 0.52 0.62 4 0.93 (H)
CL DRG TUPA 100 81 0.51
CF Overall 0.64 4 0.86 (H&Ú)
CL Overall 0.60 4 0.85 (H&Ú)

Table 1: Training details and official evaluation MRP F-scores. For comparison, the highest score achieved for
each framework and evaluation set is shown: H stands for Hitachi (Ozaki et al., 2020) and Ú for ÚFAL (Na and
Min, 2020). HIT-SCIR for English UCCA (CF) and TUPA for German UCCA (CL), both in gray, were not used
in the submission, since their validation F1 were lower than the other system. For German DRG (CL) we trained
2 parsers: one on only the CL DRG dataset (in grey), not used in the submission, and another (*) trained on the
English DRG dataset in per-training. The number of epochs does not include pre-training on English DRG.

MRP 2019 parser to support the 2020 data for
English EDS (for the cross-framework track) and
German UCCA (for the cross-lingual track). We
also explored the possibilities of employing multi-
task learning with the parser (§5). A repository
containing our modified version of the parser is
publicly available.5

3.1 Transition set

Che et al. (2019) defined a different transition set
per framework, according to framework’s charac-
teristics. As UCCA and EDS are already targets
of 2019 MRP shared task, we inherit the existing
transition sets for both frameworks. For UCCA,
the transition system was modelled after that of the
UCCA-specific (not MRP generic) TUPA (Hersh-
covich et al., 2017), which includes SHIFT, RE-
DUCE, NODEX , LEFT-EDGEX , RIGHT-EDGEX ,
LEFT-REMOTEX , RIGHT-REMOTEX and SWAP.

The parser’s EDS transition set is based on Buys
and Blunsom (2017)’s work, from which NODE-
STARTX and NODE-END are two steps to create
concept nodes and form node alignment. Apart
from these two, SHIFT, REDUCE, LEFT-EDGEX ,
RIGHT-EDGEX , DROP, PASS and FINISH are also
used to represent EDS transition process.

5https://github.com/ruixiangcui/
hit-scir-mrp2020

3.2 Transition Classifier

The parser state is represented by (S,L,B,E, V),
where S is a stack holding processed words, L is
a list holding words popped out of S that will be
pushed back in the future, and B is a buffer hold-
ing unprocessed words. E is a set of labeled de-
pendency arcs. V is a set of graph nodes include
concept nodes and surface tokens. Transition clas-
sifier takes S,L,B and also the action history as
input, all are modeled with stack LSTM, and out-
puts an action. The input to the parser is a se-
quence of BERT embedding. A transition classi-
fier takes S,L,B and the action history as inputs
and maximizes the log-likeihood of the correct ac-
tion given the current state using an oracle to get
the correct action.

3.3 Preprocessing

MRP 2019 provided companion data (contain-
ing the results of syntactic preprocessing) in both
CoNLL-U and mrp formats. However, this
year’s task only provides mrp-formatted compan-
ion data. Since the HIT-SCIR 2019 parser can
only take CoNLL-U-formatted companion data,
we update it to allow converting companion data
provided by 2020 MRP shared task from mrp for-
mat to CoNLL-U format.

77

3.4 Anchoring
The parser itself is also modified to support the
MRP 2020 task. For EDS parsing specifically, in
this year’s task’s provided data, anchoring for a
token containing spaces, such as an integer num-
ber followed by a fraction number (e.g., “3 1/2”)
is treated as one token, while the original parser’s
node anchoring treats the two parts separately. An-
other example would be: “x-Year-to-date 1988
figure includes Volkswagen domestic-production
through July.” In this sentence, “x-Year-to-date
1988” is marked as a node anchored from char-
acters 2 to 26, but the provided companion data
treats “x-Year-to-date” as anchored from charac-
ters 0 to 14 as the corresponding token anchor. To
handle these cases, we allow the parsing system to
perform partial node alignment regardless of over-
lapping token anchors.

3.5 Constraints
The second problem we encounter when parsing
EDS is that there are a few instances that are too
short, and no valid actions can be performed ac-
cording to the existing transition system. In this
case, we allow the FINISH action, adding it di-
rectly to the allowed action set when no valid ac-
tion exists, with the effect that the transition se-
quence is terminated and the current graph is re-
turned.

3.6 Training
We train the modified HIT-SCIR parser on En-
glish and German UCCA (in the cross-framework
and cross-lingual tracks, respectively) and English
EDS (in the cross-lingual track). The training time
is 2 days 1 hour for English UCCA, 22 hours
for German UCCA, and 4 days 6 hours for En-
glish EDS. The training details are shown in Ta-
ble 1. Since HIT-SCIR parser’s validation score
on cross-framework UCCA is 0.01 lower than
TUPA, we opt for TUPA in that category. Hy-
perparameters are taken directly from Che et al.
(2019).

4 Results

Table 1 presents the averaged scores on the test
sets in the official evaluation, for our submission
and for the best-performing system in each frame-
work and evaluation set.

Validation vs. evaluation scores. The valida-
tion scores of 5 out of the 9 parsers is lower than

their evaluation score: CF PTG by 0.01 F1 points,
CF AMR by 0.08, CF DRG by 0.11, CL AMR
by 0.01 and CL DRG by 0.1. We hypothesize it
is due to the randomness in the evaluation met-
ric: the MRP scorer uses a search algorithm to
find a correspondence relation between the gold-
standard and system graphs that maximizes tuple
overlap. This search algorithm runs for a limited
number of iterations. In order to decrease its run-
ning time, we used a lower limit on its param-
eters (10 random restarts, 5,000 iterations) than
the default (20 random restarts, 50,000 iterations),
which may have affected the accuracy of our val-
idation score and potentially our system perfor-
mance.

CF vs. CL tracks. Surprisingly, the CL track
scores are mostly on-par with the CF tack ones,
even though the CL parsers were often trained
on significantly less examples. While the CF
UCCA training dataset contains 6,872 examples
and the CL UCCA contains only 3,713, both
parsers gained similar scores. Similarly, the CF
DRG dataset contains 6,606 example, while the
the CL DRG contains only 1,575. TUPA trained
only on the 1,575 examples gained a similar score
to the CF one, while training on less then a fourth
of the examples. The CF PTG dataset contains
42,024 examples. And while the CL PTG contains
a lower, however similar, amount (39,560), it got a
higher score (0.07 F1 point in validation, and 0.04
in evaluation). And while the CL AMR dataset is
only a third of the CF AMR datsaet (16,529 and
57,885 examples respectively), both parser gained
the same validation score. However, the evalua-
tion score of the CF AMR is higher by 0.07 F1
points. This could be possibly attributed to our
MRP scorer low iteration limit.

5 Multitask Cross-Framework Parsing

In addition to training separate models per frame-
work and language, we also experiment with train-
ing multitask cross-framework parsers, using a
neural architecture with parameter sharing (Peng
et al., 2017, 2018; Hershcovich et al., 2018a;
Lindemann et al., 2019; Hershcovich and Arviv,
2019). We use the HIT-SCIR parser as a ba-
sis, with different variations of shared architecture
on top of it. For our experiments we choose the
UCCA and EDS frameworks. The code is pub-

78

Figure 4: Illustration of the first variant of the HIT-SCIR multitask model, parsing the sentence “The fox gazed at
the little prince.” Top: Dedicated HIT-SCIR parsers for each framework. Bottom: Encoder architecture. BERT
embeddings are extracted for each token and are concatenated with framework-specific learned embedding. Vector
representations for the input tokens are then computed by a shared stacked self-attention encoder. The encoded
vectors are then fed to a framework-specific HIT-SCIR parsers as input tokens.

Hyperparameter Value
Task embedding dim 20
Shared encoder
Input dim 1024
Framework-specific encoder
Input dim 768
Both encoders
Input dim 768
Projection dim 512
Feedforward hidden dim 512
layers 3
attention heads 8

Table 2: HIT-SCIR multitask model hyperparameters.

licly available.6

5.1 Model

We try two different sharing architectures. In both
architectures, both frameworks share a stacked
self-attention encoder (see Table 2 for details). In
the first variation, we additionally use task embed-
dings; in the second, we use task-specific encoders
instead.

Task embedding. In the first sharing archi-
tecture, both frameworks share a stacked self-
attention encoder whose input is a BERT em-
bedding concatenated with a learned task embed-

6https://github.com/OfirArviv/
hit-scir-mrp2020/tree/multitask

ding of dimension 20. This has been shown to
help in shared architecture multitask models (Sun
et al., 2020), as well as cross-lingual parsing mod-
els, where a language embedding is used (Ammar
et al., 2016; de Lhoneux et al., 2018). In our case,
the “task” has two possible values, namely UCCA
and EDS. The output of the shared encoder is then
fed into two separate “decoders”, which are HIT-
SCIR parser transition classifiers. We use one for
each framework, whose architecture and hyperpa-
rameters are the same as in the single task setting.
Figure 4 illustrates this architecture.

Task-specific encoders. In the second archi-
tectures, both frameworks share a stacked self-
attention encoder whose input is a BERT embed-
ding, and in addition each framework has another
stacked self-attention encoder of it own, similar in
concept to Peng et al. (2017, 2018)’s FREDA1 ar-
chitecture (which, however, used BiLSTMs), also
employed by Hershcovich et al. (2018a); Linde-
mann et al. (2019). The outputs of these encoders
are processed the same as in the first variation
(task-specific decoders). Figure 5 illustrates this
architecture.

5.2 Training details

Each training batch contains examples from a sin-
gle framework, while the model is alternating be-
tween the different batch types. As the EDS train-
ing dataset is much larger than the UCCA one,

79

Validation Validation Validation
Sharing architecture # Epochs Best Epoch Average F1 UCCA F1 EDS F1
Shared encoder
+ task embedding 13 2 0.55 0.68 0.43
+ task specific encoders 13 4 0.38 0.49 0.27

Table 3: HIT-SCIR multitask model training details and scores.

Figure 5: Illustration of the second variant of the HIT-SCIR multitask model, parsing the sentence “The fox gazed
at the little prince.” Top: Dedicated HIT-SCIR parsers for each framework. Bottom: Encoder architecture. BERT
embeddings are extracted for each token. Vector representations for the input tokens are then computed by a shared
stacked self-attention encoder and by a framework-specific self-attention encoder. The encoded vectors are then
fed to a framework-specific HIT-SCIR parsers as input tokens.

we balance them out by training the same number
of examples from each framework in each epoch.
Due to time constraints we tried out only a single
set of hyperparameters, chosen arbitrarily without
tuning. We select the epoch with the best aver-
age MRP F-score on a validation set, which is the
union of both validation sets of EDS and UCCA.

5.3 Results

Table 3 presents the average scores on the val-
idation sets for multitask trained models. The
multitask HIT-SCIR consistently falls behind the
single-task one, for each framework separately
and in the overall scores; but it is clear that our
first multitask architecture (with task embedding)
outperforms the second one (with task-specific en-
coders).

5.4 Discussion

Previous results on multitask MRP showed mixed
results, some showing improved performances
(Peng et al., 2017; Hershcovich et al., 2018a; Lin-
demann et al., 2019). Others failed to show im-
provements (Hershcovich and Arviv, 2019), and
argued that the large multitask models were un-
derfitting due to insufficient training. In our case,
however, the multitask models underperform de-
spite reaching convergence.

We hypothesize that with better hyperparam-
eters or different sharing architectures, more fa-
vorable results could be obtained. However, it
is possible that multitask learning would be more
helpful in a factorization-based parser (Peng et al.,
2017; Lindemann et al., 2019), where inference is
global and more uniform across frameworks. A
transition-based parser may be less suited for uti-
lizing information from different tasks that have

80

different transition systems, as in the HIT-SCIR
parser. Adapting it to have a more uniform tran-
sition system, like TUPA does, could facilitate
cross-framework sharing. Alternatively, improv-
ing TUPA’s training efficiency would also enable
such experimentation.

6 Conclusion

We have presented TUPA-MRP and a modified
HIT-SCIR parser, which constitute the HUJI-
KU submission in the CoNLL 2020 shared task
on Cross-Framework Meaning Representation.
TUPA is a general transition-based DAG parser
with a uniform transition system, which is easily
adaptable for multiple frameworks. We used it for
parsing in both the cross-framework and the cross-
lingual tracks, adapting it for the newly intro-
duced frameworks, PTG and DRG. HIT-SCIR is
a transition-based parser with framework-specific
transition systems, which we adapted for this
year’s shared task and used for English EDS and
UCCA parsing in the cross-framework track. The
HIT-SCIR parser was additionally used in exper-
imenting on multitask learning, with negative re-
sults for that approach.

Future work will tackle the MRP task with more
modern transition-based-like parser architectures,
such as pointer networks (Ma et al., 2018), which
have so far only been applied to bilexical fram-
works, i.e., flavor-0 SDP (Fernández-González
and Gómez-Rodríguez, 2020).

Acknowledgments

We are grateful for the valuable feedback from the
anonymous reviewers.

References
Omri Abend and Ari Rappoport. 2013. Universal Con-

ceptual Cognitive Annotation (UCCA). In Proc. of
ACL, pages 228–238.

Waleed Ammar, George Mulcaire, Miguel Ballesteros,
Chris Dyer, and Noah A. Smith. 2016. Many lan-
guages, one parser. Transactions of the Association
for Computational Linguistics, 4:431–444.

Jan Buys and Phil Blunsom. 2017. Robust incremen-
tal neural semantic graph parsing. In Proceedings of
the 55th Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers),
pages 1215–1226, Vancouver, Canada. Association
for Computational Linguistics.

Wanxiang Che, Longxu Dou, Yang Xu, Yuxuan Wang,
Yijia Liu, and Ting Liu. 2019. HIT-SCIR at MRP
2019: A unified pipeline for meaning representa-
tion parsing via efficient training and effective en-
coding. In Proceedings of the Shared Task on Cross-
Framework Meaning Representation Parsing at the
2019 Conference on Natural Language Learning,
pages 76–85, Hong Kong. Association for Compu-
tational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proc. of NAACL, pages 4171–4186.

Chris Dyer, Miguel Ballesteros, Wang Ling, Austin
Matthews, and Noah A. Smith. 2015. Transition-
based dependeny parsing with stack long short-term
memory. In Proc. of ACL, pages 334–343.

Daniel Fernández-González and Carlos Gómez-
Rodríguez. 2020. Transition-based semantic
dependency parsing with pointer networks. In
Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics, pages
7035–7046, Online. Association for Computational
Linguistics.

Matt Gardner, Joel Grus, Mark Neumann, Oyvind
Tafjord, Pradeep Dasigi, Nelson F. Liu, Matthew
Peters, Michael Schmitz, and Luke S. Zettle-
moyer. 2018. AllenNLP: A deep semantic natu-
ral language processing platform. arXiv preprint
arXiv:1803.07640.

Xavier Glorot and Yoshua Bengio. 2010. Understand-
ing the difficulty of training deep feedforward neu-
ral networks. In Proceedings of the thirteenth in-
ternational conference on artificial intelligence and
statistics, pages 249–256.

Alex Graves. 2008. Supervised sequence labelling
with recurrent neural networks. Ph. D. thesis.

Daniel Hershcovich, Omri Abend, and Ari Rap-
poport. 2017. A transition-based directed acyclic
graph parser for UCCA. In Proc. of ACL, pages
1127–1138.

Daniel Hershcovich, Omri Abend, and Ari Rappoport.
2018a. Multitask parsing across semantic represen-
tations. In Proceedings of the 56th Meeting of the
Association for Computational Linguistics, pages
373 – 385, Melbourne, Australia.

Daniel Hershcovich, Omri Abend, and Ari Rappoport.
2018b. Universal dependency parsing with a general
transition-based DAG parser. In Proc. of CoNLL
UD Shared Task, pages 103–112.

Daniel Hershcovich, Zohar Aizenbud, Leshem
Choshen, Elior Sulem, Ari Rappoport, and Omri
Abend. 2019. SemEval-2019 task 1: Cross-lingual
semantic parsing with UCCA. In Proc. of SemEval,
pages 1–10.

81

Daniel Hershcovich and Ofir Arviv. 2019. TUPA at
MRP 2019: A multi-task baseline system. In Pro-
ceedings of the Shared Task on Cross-Framework
Meaning Representation Parsing at the 2019 Con-
ference on Natural Language Learning, pages
28–39, Hong Kong. Association for Computational
Linguistics.

Daniel Hershcovich, Miryam de Lhoneux, Artur Kul-
mizev, Elham Pejhan, and Joakim Nivre. 2020.
Køpsala: Transition-based graph parsing via effi-
cient training and effective encoding. In Proceed-
ings of the 16th International Conference on Pars-
ing Technologies and the IWPT 2020 Shared Task
on Parsing into Enhanced Universal Dependencies,
pages 236–244, Online. Association for Computa-
tional Linguistics.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Eliyahu Kiperwasser and Yoav Goldberg. 2016. Sim-
ple and accurate dependency parsing using bidi-
rectional LSTM feature representations. TACL,
4:313–327.

Miryam de Lhoneux, Johannes Bjerva, Isabelle Au-
genstein, and Anders Søgaard. 2018. Parameter
sharing between dependency parsers for related lan-
guages. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Process-
ing, pages 4992–4997, Brussels, Belgium. Associ-
ation for Computational Linguistics.

Matthias Lindemann, Jonas Groschwitz, and Alexan-
der Koller. 2019. Compositional semantic parsing
across graphbanks. In Proceedings of the 57th An-
nual Meeting of the Association for Computational
Linguistics, pages 4576–4585, Florence, Italy. Asso-
ciation for Computational Linguistics.

Xuezhe Ma, Zecong Hu, Jingzhou Liu, Nanyun Peng,
Graham Neubig, and Eduard Hovy. 2018. Stack-
pointer networks for dependency parsing. In Pro-
ceedings of the 56th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), pages 1403–1414, Melbourne, Australia.
Association for Computational Linguistics.

Wolfgang Maier and Timm Lichte. 2016. Discontinu-
ous parsing with continuous trees. In Proc. of Work-
shop on Discontinuous Structures in NLP, pages
47–57.

Seung-Hoon Na and Jinwoo Min. 2020. JBNU at
MRP 2020: AMR parsing using a joint state model
for graph-sequence iterative inference. In Pro-
ceedings of the CoNLL 2020 Shared Task: Cross-
Framework Meaning Representation Parsing, pages
83 – 87, Online.

Graham Neubig, Chris Dyer, Yoav Goldberg, Austin
Matthews, Waleed Ammar, Antonios Anastasopou-
los, Miguel Ballesteros, David Chiang, Daniel

Clothiaux, Trevor Cohn, Kevin Duh, Manaal
Faruqui, Cynthia Gan, Dan Garrette, Yangfeng Ji,
Lingpeng Kong, Adhiguna Kuncoro, Gaurav Ku-
mar, Chaitanya Malaviya, Paul Michel, Yusuke
Oda, Matthew Richardson, Naomi Saphra, Swabha
Swayamdipta, and Pengcheng Yin. 2017. DyNet:
The dynamic neural network toolkit. CoRR,
abs/1701.03980.

Stephan Oepen, Omri Abend, Lasha Abzianidze, Jo-
han Bos, Jan Hajič, Daniel Hershcovich, Bin Li,
Tim O’Gorman, Nianwen Xue, and Daniel Zeman.
2020. MRP 2020: The Second Shared Task on
Cross-framework and Cross-Lingual Meaning Rep-
resentation Parsing. In Proceedings of the CoNLL
2020 Shared Task: Cross-Framework Meaning Rep-
resentation Parsing, pages 1 – 22, Online.

Stephan Oepen, Omri Abend, Jan Hajič, Daniel Her-
shcovich, Marco Kuhlmann, Tim O’Gorman, Nian-
wen Xue, Jayeol Chun, Milan Straka, and Zdeňka
Urešová. 2019. MRP 2019: Cross-framework
Meaning Representation Parsing. In Proceedings
of the Shared Task on Cross-Framework Meaning
Representation Parsing at the 2019 Conference on
Computational Natural Language Learning, pages
1 – 27, Hong Kong, China.

Hiroaki Ozaki, Gaku Morio, Yuta Koreeda, Terufumi
Morishita, and Toshinori Miyoshi. 2020. Hitachi
at MRP 2020: Text-to-graph-notation transducer.
In Proceedings of the CoNLL 2020 Shared Task:
Cross-Framework Meaning Representation Parsing,
pages 40 – 52, Online.

Hao Peng, Sam Thomson, and Noah A. Smith. 2017.
Deep multitask learning for semantic dependency
parsing. In Proceedings of the 55th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 2037–2048, Van-
couver, Canada. Association for Computational Lin-
guistics.

Hao Peng, Sam Thomson, Swabha Swayamdipta, and
Noah A. Smith. 2018. Learning joint semantic
parsers from disjoint data. In Proc. of NAACL-HLT.

Mike Schuster and Kuldip K Paliwal. 1997. Bidirec-
tional recurrent neural networks. IEEE Transactions
on Signal Processing, 45(11):2673–2681.

Y. Sun, Shuohuan Wang, Yukun Li, Shikun Feng, Hao
Tian, H. Wu, and Haifeng Wang. 2020. Ernie 2.0: A
continual pre-training framework for language un-
derstanding. In AAAI.

82

Proceedings of the CoNLL 2020 Shared Task: Cross-Framework Meaning Representation Parsing, pages 83–87
Online, Nov. 19-20, 2020. c©2020 Association for Computational Linguistics

JBNU at MRP 2020: AMR Parsing Using a Joint State Model for
Graph-Sequence Iterative Inference

Jinwoo Min†, Seung-Hoon Na†, Jong-Hun Shin‡ and Young-Kil Kim‡
†Computer Science and Engineering, Jeonbuk National University, South Korea
‡Electronics and Telecommunication Research Institute (ETRI), South Korea

jinwoomin4488@gmail.com, nash@jbnu.ac.kr
{jhshin82,kimyk}@etri.re.kr

Abstract

This paper describes the Jeonbuk National
University (JBNU) system for the 2020 shared
task on Cross-Framework Meaning Represen-
tation Parsing at the Conference on Computa-
tional Natural Language Learning. Among the
five frameworks, we address only the abstract
meaning representation framework and pro-
pose a joint state model for the graph-sequence
iterative inference of (Cai and Lam, 2020) for
a simplified graph-sequence inference. In our
joint state model, we update only a single joint
state vector during the graph-sequence infer-
ence process instead of keeping the dual state
vectors, and all other components are exactly
the same as in (Cai and Lam, 2020).

1 Introduction

Recent studies on meaning representation pars-
ing (MRP) have focused on different semantic
graph frameworks (Oepen et al., 2019) such as
bilexical semantic dependency graphs (Peng et al.,
2017; Wang et al., 2018; Peng et al., 2018; Dozat
and Manning, 2018; Na et al., 2019), a univer-
sal conceptual cognitive annotation (Hershcovich
et al., 2017, 2018), abstract meaning representa-
tion (Wang and Xue, 2017; Guo and Lu, 2018;
Song et al., 2019; Zhang et al., 2019; Cai and
Lam, 2019, 2020; Zhou et al., 2020), and a dis-
course representation structure (Abzianidze et al.,
2019; Liu et al., 2018; van Noord et al., 2018; Liu
et al., 2019; Evang, 2019; Liu et al., 2020). To
jointly address various semantic graphs, the aim
of the Cross-Framework MRP task at the 2020
Conference (MRP 2020) on Computational Nat-
ural Language Learning (CoNLL) is to develop
semantic graph parsing across the following five
frameworks (Oepen et al., 2020): 1) EDS: Elemen-
tary Dependency Structures (Oepen and Lønning,
2006), 2) PTG: Prague Tectogrammatical Graphs

(Hajič et al., 2012), 3) UCCA: Universal Concep-
tual Cognitive Annotation (Abend and Rappoport,
2013), 4) AMR: Abstract Meaning Representation
(Banarescu et al., 2013), and 5) DRG: Discourse
Representation Graphs (Abzianidze et al., 2017).

For MRP 2020, we address only the AMR frame-
work and present a joint state model for graph-
sequence iterative inference, as a simple extension
of (Cai and Lam, 2020). The graph-sequence itera-
tive model of (Cai and Lam, 2020) incrementally
constructs an AMR graph starting from an empty
graph G0 by alternatively applying two modules:
1) Concept Solver, which uses a previous graph
hypothesis Gi to predict a new concept, and 2)
Relation Solver, which uses a previous concept
hypothesis to predict relations for the new concept.

The dual-state model of (Cai and Lam, 2020)
deploys two state vectors xt and yt for the graph-
sequence iterative inference, which refers to the
t-th sequence hypothesis and t-th graph hypothe-
sis, respectively. Unlike the dual state model, we
instead maintain a joint state vector zt, which en-
codes both sequence and graph hypotheses to ap-
ply a graph-sequence iterative inference in a sim-
ple and unified manner. During the iterative infer-
ence stage, we take the current joint state vector
as a query vector and update the next joint state
vector by applying attention mechanisms both to
the text (i.e., sequence memory) and graph (i.e.,
graph memory) parts separately. The final joint
state vector is then passed to the concept and rela-
tion solvers, which predict new concepts and their
relations, respectively, as with the dual state model
by (Cai and Lam, 2020).

We submitted the results of our AMR parsing
model during the post-evaluation stage and ranked
between 3rd and 4th place among the participants
in the official results under the cross-framework

83

metric 1.
The remainder of this paper is organized as fol-

lows: Section 2 presents the detailed architecture
of our system. Section 3 describes the detailed
process used for training biaffine attention models.
Section 4 provides the official results of MRP 2020.
Finally, some concluding remarks and a description
of future research are given in Section 5.

2 Model

Figure 1 shows the neural architecture based on
the joint state model for a graph-sequence iterative
inference.

The neural architecture consists of five compo-
nents: a 1) sequence encoder, 2) graph encoder, 3)
concept solver, 4) relation solver, and 5) joint state
model for a graph-sequence iterative inference.

In the following, we briefly summarize the first
four components of our model, which are almost
the same as those of (Cai and Lam, 2020), where
only the joint state vector is used as the unified
query vector for the concept and relation solvers.
We then present our joint state model in more de-
tails.

2.1 Sequence encoder: Multi-layer
transformer

Following the notations of (Cai and Lam, 2020), let
W be the input sentence consisting of w1, · · · , wn.
The sequence encoder is based on a multi-layer
transformer architecture (Vaswani et al., 2017),
where inputs at the bottom layer combine the
character-level features, POS tag, named entity
tags, and BERT-based features. Roughly, the se-
quence encoder takes W as input and generates the
sequence of hidden states as follows:

h0, h1, · · · , hn =

SequenceEncoder((BOS,w1, · · · , wN))

where h0 corresponds to the special token BOS.

2.2 Graph encoder: Multi-layer Transformer

Suppose that Gi is the current graph consisting of
i nodes, c1, · · · , ci. The graph encoder is based
on a multi-layer transformer encoder with masked
self-attention and source-attention. Roughly, the

1In other words, when our submission is included in the
official ranking, our AMR parsing system ranks 4th and 3rd
on the full test set and the 100-sentence LPPS sub-set, respec-
tively.

graph encoder takes G and produces the following
hidden states of the concept nodes:

s0, s1, · · · , si = GraphEncoder(G = {c1, · · · , ci})

where s0 corresponds to the special token BOG.

2.3 Concept solver: Attention over words

Suppose that zt is the current joint state vector that
encodes the t-th sequence and graph hypotheses.
The concept solver takes zt and generates a new
concept.

qt = WQzt

k1:n = WKh1:n

v1:n = W V h1:n

[αt, rt] = Attention(qt, k1:n, v1:n)

z′t = zt + rt

(1)

where Attention(q, k, v) is the attention module
that takes q, k, and v as the query vector, keys, and
values, respectively, and returns the attention prob-
abilities αt and attentive representation rt. Given
z′t, the concept generation process equipped with
the copying mechanism generates a new concept
as follows:

P (vocab) = softmax
(
W (vocab)z′t + b(vocab)

)

[p1, p2, p3] = softmax
(
W (switch)z′t

)

P (c) = p0 · P (vocab)(c) +

p1 ·

 ∑

i∈L(c)
αt[i]

+

p2 ·

 ∑

i∈T (c)

αt[i]

where L(c) and T (c) are index sets of lemmas and
tokens respectively, which have the surface form
as a concept c defined by (Cai and Lam, 2020).

2.4 Relation solver: Multi-head attention
over graph nodes

The relation solver is based on the multi-head at-
tention over graph nodes. Suppose that zt is the
current joint state vector, Gi is the current graph,
and H is the number of heads for the multi-head
attention. For each head h, the relation solver first

84

Figure 1: The neural architecture of the joint state model for a graph-sequence iterative inference.

applies the attention over graph nodes s0, · · · , si.

qht = WQ
h zt

kh0:i = WK
h s0:i

vh0:i = W V
h s0:i[

βht , r
h
t

]
= Attention(qht , k

h
0:i, v

h
0:i)

(2)

The final edge probabilities are obtained by tak-
ing the maximum over the multi-attention probabil-
ities:

βt[i] = maxHh=1β
h
t [i] (3)

2.5 Iterative inference: Joint state model
The remaining part is to obtain the new joint state
vector zt+1 from zt. Suppose again that zt is the
current joint state vector andGi is the current graph.
The joint state model for an iterative inference is
formulated as follows:

z0 = fusion(h0, si)

gt = σ(Wgzt + bg)

[, zseqt] = Attention(zt, h1:n, h1:n)[
, zgrapht

]
= Attention(zt, s0:i, s0:i)

zt+1 = zt + (1− gt)zseqt + gtz
graph
t

where Wg and bg are the parameters for the affine
transformation of zt and fusion(x,y) is the fusion

Encoder
lemma emb dim 300

char emb dim 50
cnn filter size 100
pos emb dim 50
ner emb dim 50

encoder layers 3
encoder dropout 0.33

Decoder
concept emb dim 300

concept char emb dim 50
cnn filter size 100
decoder layers 3

decoder dropout 0.33

Table 1: Hyper-parameter settings

function defined by (Hu et al., 2018) 2.

3 Training

3.1 Hyperparameters

We used the Adam optimizer (Kingma and Ba,
2015) to train our AMR parsing model. Table 1
summarizes the hyper-parameters used for training
these models

4 Official Results

The official results of our AMR parsing based
on the joint state model, referred to as “Graph-
Sequence+Joint”, are summarized in Table 2,

2For simplicity, we obtain z0 based on a function of h0

and si. More generally, however, z0 could be initialized as a
function of h1:n and s0:i.

85

which compares the results of the top-2 systems
(Hitachi and ÚFAL). Overall, our system ranks
between 3rd and 4th place among all participants
which submitted to the AMR framework.

5 Summary and Conclusion

In this paper, we presented the Jeonbuk National
University system based on a joint state model for
a graph-sequence iterative inference on the AMR
framework at MRP 2020 task. However, one lim-
itation of the current joint state model is that the
iterative inference process is separately formulated
from the concept and relation solvers, without a
tight coupling. In a future study, we plan to further
elaborate the joint state models by reformulating an
iterative inference based on attention results from
the concept and relation solvers.

Acknowledgments

This work was supported by Institute of Informa-
tion & communications Technology Planning &
Evaluation (IITP) grant funded by the Korea gov-
ernment(MSIT) (R7119-16-1001, Core technology
development of the real-time simultaneous speech
translation based on knowledge enhancement)

References
Omri Abend and Ari Rappoport. 2013. Universal concep-

tual cognitive annotation (UCCA). In Proceedings of the
51st Annual Meeting of the Association for Computational
Linguistics, ACL ’13, pages 228–238. Association for Com-
putational Linguistics.

Lasha Abzianidze, Johannes Bjerva, Kilian Evang, Hessel
Haagsma, Rik van Noord, Pierre Ludmann, Duc-Duy
Nguyen, and Johan Bos. 2017. The Parallel Meaning Bank:
Towards a multilingual corpus of translations annotated
with compositional meaning representations. In Proceed-
ings of the 15th Conference of the European Chapter of the
Association for Computational Linguistics, pages 242–247.

Lasha Abzianidze, Rik van Noord, Hessel Haagsma, and Jo-
han Bos. 2019. The first shared task on discourse repre-
sentation structure parsing. In Proceedings of the IWCS
Shared Task on Semantic Parsing.

Laura Banarescu, Claire Bonial, Shu Cai, Madalina
Georgescu, Kira Griffitt, Ulf Hermjakob, Kevin Knight,
Philipp Koehn, Martha Palmer, and Nathan Schneider.
2013. Abstract meaning representation for sembanking.
In Proceedings of the 7th Linguistic Annotation Workshop
and Interoperability with Discourse, pages 178–186.

Deng Cai and Wai Lam. 2019. Core semantic first: A top-
down approach for AMR parsing. In Proceedings of the
2019 Conference on Empirical Methods in Natural Lan-
guage Processing and the 9th International Joint Confer-
ence on Natural Language Processing (EMNLP-IJCNLP),
pages 3799–3809.

Deng Cai and Wai Lam. 2020. AMR parsing via graph-
sequence iterative inference. In Proceedings of the 58th
Annual Meeting of the Association for Computational Lin-
guistics, pages 1290–1301.

Timothy Dozat and Christopher D. Manning. 2018. Simpler
but more accurate semantic dependency parsing. In Pro-
ceedings of the 56th Annual Meeting of the Association for
Computational Linguistics, ACL’18, pages 484–490.

Kilian Evang. 2019. Transition-based DRS parsing using
stack-LSTMs. In Proceedings of the IWCS Shared Task on
Semantic Parsing.

Zhijiang Guo and Wei Lu. 2018. Better transition-based AMR
parsing with a refined search space. In Proceedings of
the 2018 Conference on Empirical Methods in Natural
Language Processing, EMNLP ’18, pages 1712–1722.

Jan Hajič, Eva Hajičová, Jarmila Panevová, Petr Sgall, Ondřej
Bojar, Silvie Cinková, Eva Fučı́ková, Marie Mikulová,
Petr Pajas, Jan Popelka, Jiřı́ Semecký, Jana Šindlerová,
Jan Štěpánek, Josef Toman, Zdeňka Urešová, and Zdeněk
Žabokrtský. 2012. Announcing Prague Czech-English de-
pendency treebank 2.0. In Proceedings of the Eighth Inter-
national Conference on Language Resources and Evalua-
tion (LREC-2012), LREC-2012, pages 3153–3160.

Daniel Hershcovich, Omri Abend, and Ari Rappoport. 2017.
A transition-based directed acyclic graph parser for UCCA.
In Proceedings of the 55th Annual Meeting of the Associa-
tion for Computational Linguistics, ACL’17, pages 1127–
1138.

Daniel Hershcovich, Omri Abend, and Ari Rappoport. 2018.
Multitask parsing across semantic representations. In Pro-
ceedings of the 56th Annual Meeting of the Association for
Computational Linguistics, pages 373–385.

Minghao Hu, Yuxing Peng, Zhen Huang, Xipeng Qiu, Furu
Wei, and Ming Zhou. 2018. Reinforced mnemonic reader
for machine reading comprehension. In Proceedings of the
Twenty-Seventh International Joint Conference on Artificial
Intelligence, IJCAI ’18, pages 4099–4106.

Diederick P Kingma and Jimmy Ba. 2015. Adam: A method
for stochastic optimization. In International Conference
on Learning Representations, ICLR ’13.

Jiangming Liu, Shay B. Cohen, and Mirella Lapata. 2018.
Discourse representation structure parsing. In Proceedings
of the 56th Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers), pages
429–439.

Jiangming Liu, Shay B. Cohen, and Mirella Lapata. 2019. Dis-
course representation parsing for sentences and documents.
In Proceedings of the 57th Annual Meeting of the Associa-
tion for Computational Linguistics, pages 6248–6262.

Jiangming Liu, Shay B. Cohen, and Mirella Lapata. 2020.
Dscorer: A fast evaluation metric for discourse representa-
tion structure parsing. In Proceedings of the 58th Annual
Meeting of the Association for Computational Linguistics,
pages 4547–4554. Association for Computational Linguis-
tics.

Seung-Hoon Na, Jinwoo Min, Kwanghyeon Park, Jong-Hun
Shin, and Young-Kil Kim. 2019. Jbnu at MRP 2019: Multi-
level biaffine attention for semantic dependency parsing.
In Proceedings of the Shared Task on Cross-Framework

86

method tops labels properties edges all
P R F P R F P R F P R F P R F

Hitachi lpps 0.84 0.84 0.84 0.83 0.85 0.84 0.86 0.77 0.81 0.71 0.73 0.72 0.78 0.79 0.79
all 0.86 0.86 0.86 0.88 0.86 0.87 0.83 0.81 0.82 0.77 0.74 0.76 0.83 0.80 0.82

ÚFAL
lpps 0.86 0.86 0.86 0.85 0.87 0.86 0.78 0.71 0.75 0.69 0.71 0.70 0.77 0.79 0.78
all 0.84 0.84 0.84 0.88 0.87 0.87 0.86 0.85 0.85 0.73 0.70 0.71 0.81 0.79 0.80

Graph-Sequence+Joint lpps 0.86 0.86 0.86 0.79 0.80 0.79 0.54 0.45 0.49 0.68 0.67 0.68 0.74 0.73 0.74
all 0.84 0.84 0.84 0.79 0.73 0.76 0.68 0.39 0.50 0.61 0.54 0.57 0.71 0.62 0.66

Table 2: The official results of the MRP metrics on the AMR framework, comparing the top-2 systems (Hitachi
and ÚFAL) with our system using the joint state iterative inference (Graph-Sequence+Joint).

Meaning Representation Parsing at the 2019 Conference
on Computational Natural Language Learning, pages 95 –
103, Hong Kong, China.

Rik van Noord, Lasha Abzianidze, Antonio Toral, and Johan
Bos. 2018. Exploring neural methods for parsing discourse
representation structures. Transactions of the Association
for Computational Linguistics, 6:619–633.

Stephan Oepen, Omri Abend, Lasha Abzianidze, Johan Bos,
Jan Hajič, Daniel Hershcovich, Bin Li, Tim O’Gorman, Ni-
anwen Xue, and Daniel Zeman. 2020. MRP 2020: The Sec-
ond Shared Task on Cross-framework and Cross-Lingual
Meaning Representation Parsing. In Proceedings of the
CoNLL 2020 Shared Task: Cross-Framework Meaning
Representation Parsing, pages 1 – 22, Online.

Stephan Oepen, Omri Abend, Jan Hajič, Daniel Hersh-
covich, Marco Kuhlmann, Tim O’Gorman, Nianwen Xue,
Jayeol Chun, Milan Straka, and Zdeňka Urešová. 2019.
MRP 2019: Cross-framework Meaning Representation
Parsing. In Proceedings of the Shared Task on Cross-
Framework Meaning Representation Parsing at the 2019
Conference on Computational Natural Language Learning,
pages 1 – 27, Hong Kong, China.

Stephan Oepen and Jan Tore Lønning. 2006. Discriminant-
based MRS banking. In Proceedings of the Fifth Interna-
tional Conference on Language Resources and Evaluation,
LREC’06.

Hao Peng, Sam Thomson, and Noah A. Smith. 2017. Deep
multitask learning for semantic dependency parsing. In
Proceedings of the 55th Annual Meeting of the Association
for Computational Linguistics, ACL ’17, pages 2037–2048.

Hao Peng, Sam Thomson, Swabha Swayamdipta, and Noah A.
Smith. 2018. Learning joint semantic parsers from disjoint
data. In Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computational
Linguistics: Human Language Technologies, NAACL ’18,
pages 1492–1502.

Linfeng Song, Daniel Gildea, Yue Zhang, Zhiguo Wang, and
Jinsong Su. 2019. Semantic neural machine translation
using AMR. Transactions of the Association for Computa-
tional Linguistics, 7:19–31.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit,
Llion Jones, Aidan N Gomez, Ł ukasz Kaiser, and Illia
Polosukhin. 2017. Attention is all you need. In Advances
in Neural Information Processing Systems 30, pages 5998–
6008.

Chuan Wang and Nianwen Xue. 2017. Getting the most out
of AMR parsing. In Proceedings of the 2017 Conference
on Empirical Methods in Natural Language Processing,
EMNLP ’17, pages 1257–1268.

Yuxuan Wang, Wanxiang Che, Jiang Guo, and Ting Liu.
2018. A neural transition-based approach for semantic
dependency graph parsing. In Proceedings of the Thirty-
Second AAAI Conference on Artificial Intelligence, AAAI
’18, pages 5561–5568.

Sheng Zhang, Xutai Ma, Kevin Duh, and Benjamin
Van Durme. 2019. AMR parsing as sequence-to-graph
transduction. In Proceedings of the 57th Annual Meeting
of the Association for Computational Linguistics, ACL ’19,
pages 80–94.

Qiji Zhou, Yue Zhang, Donghong Ji, and Hao Tang. 2020.
AMR parsing with latent structural information. In Pro-
ceedings of the 58th Annual Meeting of the Association for
Computational Linguistics, pages 4306–4319. Association
for Computational Linguistics.

87

Author Index

Abend, Omri, 1
Abzianidze, Lasha, 1, 23
Arviv, Ofir, 73

Bos, Johan, 1, 23

Che, Wanxiang, 65
Cui, Ruixiang, 73

Dou, Longxu, 65

Feng, Yunlong, 65

Hajic, Jan, 1, 33
Hershcovich, Daniel, 1, 73

Ji, Yuqiu, 65

Koreeda, Yuta, 40

Li, Bin, 1
Liu, Ting, 65

Min, Jinwoo, 83
Miyoshi, Toshinori, 40
Morio, Gaku, 40
Morishita, Terufumi, 40

Na, Seung-Hoon, 83

Oepen, Stephan, 1, 23
O’Gorman, Tim, 1
Ozaki, Hiroaki, 40

Samuel, David, 53
Straka, Milan, 53

Xue, Nianwen, 1

Zeman, Daniel, 1, 33

89

	Program
	MRP 2020: The Second Shared Task on Cross-Framework and Cross-Lingual Meaning Representation Parsing
	DRS at MRP 2020: Dressing up Discourse Representation Structures as Graphs
	FGD at MRP 2020: Prague Tectogrammatical Graphs
	Hitachi at MRP 2020: Text-to-Graph-Notation Transducer
	ÚFAL at MRP 2020: Permutation-invariant Semantic Parsing in PERIN
	HIT-SCIR at MRP 2020: Transition-based Parser and Iterative Inference Parser
	HUJI-KU at MRP 2020: Two Transition-based Neural Parsers
	JBNU at MRP 2020: AMR Parsing Using a Joint State Model for Graph-Sequence Iterative Inference

