
Deep Learning: A Shallow Tutorial

André Martins

NLPL Winter School, Skeicampen, 29–31/01/18

André Martins (Unbabel/IT) Deep Learning NLPL WS, 29–31/01/18 1 / 206

What is Deep Learning?

Neural networks?

Neural networks with many hidden layers?

Anything beyond shallow (linear) models for statistical learning?

Anything that learns representations?

A form of learning that is really intense and profound?

André Martins (Unbabel/IT) Deep Learning NLPL WS, 29–31/01/18 2 / 206

What is Deep Learning?

Neural networks?

Neural networks with many hidden layers?

Anything beyond shallow (linear) models for statistical learning?

Anything that learns representations?

A form of learning that is really intense and profound?

André Martins (Unbabel/IT) Deep Learning NLPL WS, 29–31/01/18 2 / 206

Why Did Deep Learning Become Mainstream?

Lots of recent breakthroughs:

Object recognition

Speech and language processing

Self-driving cars

Machine translation

Solving games (Atari, Go)

No signs of slowing down...

André Martins (Unbabel/IT) Deep Learning NLPL WS, 29–31/01/18 3 / 206

André Martins (Unbabel/IT) Deep Learning NLPL WS, 29–31/01/18 4 / 206

André Martins (Unbabel/IT) Deep Learning NLPL WS, 29–31/01/18 5 / 206

André Martins (Unbabel/IT) Deep Learning NLPL WS, 29–31/01/18 6 / 206

André Martins (Unbabel/IT) Deep Learning NLPL WS, 29–31/01/18 7 / 206

Why Now?

Why does deep learning work now, but not 20 years ago?

Many of the core ideas were there, after all.

But now we have:

more data

more computing power

better software engineering

a few algorithmic innovations (many layers, ReLUs, better
initialization and learning rates, dropout, LSTMs, convolutional nets)

André Martins (Unbabel/IT) Deep Learning NLPL WS, 29–31/01/18 8 / 206

“But It’s Non-Convex”

Why does gradient-based optimization work at all in neural nets despite
the non-convexity?

One possible, partial answer:

there are generally many hidden units

there are many ways a neural net can approximately implement the
desired input-output relationship

we only need to find one

André Martins (Unbabel/IT) Deep Learning NLPL WS, 29–31/01/18 9 / 206

Outline

1 Linear Classifiers

2 Neural Networks

3 Training Neural Networks

4 Representation Learning

5 Convolutional Nets

6 Recurrent Neural Networks

7 Sequence-to-Sequence and Beyond

8 Generative Models

André Martins (Unbabel/IT) Deep Learning NLPL WS, 29–31/01/18 10 / 206

Shallow Learning

Before talking about deep learning, let us talk about shallow learning

Roadmap:

Classification/regression

Feature representation

Linear classifiers

Perceptron’s mistake bound and linear separability

André Martins (Unbabel/IT) Deep Learning NLPL WS, 29–31/01/18 11 / 206

Notation

Input x ∈ X (a news article, an image, ...)

Output y ∈ Y (fake/not fake, a topic, an image segmentation)

Goal: learn a classifier ϕ : X→ Y that generalizes to arbitrary inputs

Supervised learning: learn ϕ from labeled data

{(xn, yn)}Nn=1 ⊆ X× Y

André Martins (Unbabel/IT) Deep Learning NLPL WS, 29–31/01/18 12 / 206

Classification/Regression

Regression: Y = R
Multivariate regression: Y = RK

Binary classification: Y = {±1}
Multi-class classification: Y = {1, 2, . . . ,K}
Structured classification: Y exponentially large and structured (e.g.,
machine translation, caption generation)

Sometimes reductions are convenient:

one-vs-all for reducing multi-class to binary

greedy search to reduce structured classification to multi-class

Other times it’s better to tackle the problem in its native form

André Martins (Unbabel/IT) Deep Learning NLPL WS, 29–31/01/18 13 / 206

Feature Representation

Feature engineering is an important step in “shallow” learning:

Bag-of-words features for text, also lemmas, parts-of-speech, ...

SIFT features and wavelet representations in computer vision

Other categorical, Boolean, and continuous features

Typical approach: define a feature map ψ : X→ RD

For multi-class/structured classification, a joint feature map
φ : X× Y→ RD is more convenient

For example, letting ey := (0, . . . , 0, 1, 0, . . . , 0) be the indicator vector of
a class:

φ(x , y) = φ(x)⊗ ey
= (0, . . . , 0,ψ(x), 0, . . . , 0).

André Martins (Unbabel/IT) Deep Learning NLPL WS, 29–31/01/18 14 / 206

Feature Representation

Feature engineering is an important step in “shallow” learning:

Bag-of-words features for text, also lemmas, parts-of-speech, ...

SIFT features and wavelet representations in computer vision

Other categorical, Boolean, and continuous features

Typical approach: define a feature map ψ : X→ RD

For multi-class/structured classification, a joint feature map
φ : X× Y→ RD is more convenient

For example, letting ey := (0, . . . , 0, 1, 0, . . . , 0) be the indicator vector of
a class:

φ(x , y) = φ(x)⊗ ey
= (0, . . . , 0,ψ(x), 0, . . . , 0).

André Martins (Unbabel/IT) Deep Learning NLPL WS, 29–31/01/18 14 / 206

Linear Classifiers

Parametrized by a weight vector w ∈ RD (one weight per feature)

Define a score for each class as a linear function of the parameters

At test time, predict the class ŷ which maximizes this score:

ŷ = ϕ(x) = arg max
y∈Y

w · φ(x , y)

Examples: perceptron, näıve Bayes, logistic regression, support
vector machines

André Martins (Unbabel/IT) Deep Learning NLPL WS, 29–31/01/18 15 / 206

Perceptron (Rosenblatt, 1958)

(Extracted from Wikipedia)

Invented in 1957 at the
Cornell Aeronautical
Laboratory by Frank
Rosenblatt

Implemented in custom-built
hardware as the “Mark 1
perceptron,” designed for
image recognition

400 photocells, randomly
connected to the “neurons.”
Weights were encoded in
potentiometers

Weight updates during
learning were performed by
electric motors.

André Martins (Unbabel/IT) Deep Learning NLPL WS, 29–31/01/18 16 / 206

Perceptron in the News...

André Martins (Unbabel/IT) Deep Learning NLPL WS, 29–31/01/18 17 / 206

Perceptron in the News...

André Martins (Unbabel/IT) Deep Learning NLPL WS, 29–31/01/18 17 / 206

Perceptron Algorithm

input: labeled data {(xi , yi)}Ni=1 ⊆ X× Y

initialize w (0) = 0
initialize k = 0 (number of mistakes)
repeat

get new training example xi , yi
predict ŷi = arg maxy∈Y w (k) · φ(xi , y)
if ŷi 6= yi then

update w (k+1) = w (k) + φ(xi , yi)− φ(xi , ŷi)
increment k

end if
until maximum number of epochs
output: model weights w

André Martins (Unbabel/IT) Deep Learning NLPL WS, 29–31/01/18 18 / 206

Perceptron’s Mistake Bound

A couple definitions:

the training data is linearly separable with margin γ > 0 iff there is a
weight vector u with ‖u‖ = 1 such that

u · φ(xi , yi) ≥ u · φ(xi , y
′
i) + γ, ∀i ∈ [N], ∀y ′i 6= yi .

radius of the data: R = maxi∈[N],y ′i 6=yi ‖φ(xi , yi)− φ(xi , y
′
i)‖.

Then we have the following bound of the number of mistakes:

Theorem (Novikoff (1962))

The perceptron algorithm is guaranteed to find a separating hyperplane
after at most R2

γ2 mistakes.

André Martins (Unbabel/IT) Deep Learning NLPL WS, 29–31/01/18 19 / 206

Perceptron’s Mistake Bound

A couple definitions:

the training data is linearly separable with margin γ > 0 iff there is a
weight vector u with ‖u‖ = 1 such that

u · φ(xi , yi) ≥ u · φ(xi , y
′
i) + γ, ∀i ∈ [N], ∀y ′i 6= yi .

radius of the data: R = maxi∈[N],y ′i 6=yi ‖φ(xi , yi)− φ(xi , y
′
i)‖.

Then we have the following bound of the number of mistakes:

Theorem (Novikoff (1962))

The perceptron algorithm is guaranteed to find a separating hyperplane
after at most R2

γ2 mistakes.

André Martins (Unbabel/IT) Deep Learning NLPL WS, 29–31/01/18 19 / 206

One-Slide Proof

Lower bound on ‖w (k+1)‖:

u ·w (k+1) = u ·w (k) + u · (φ(xi , yi)− φ(xi , ŷi))

≥ u ·w (k) + δ

≥ kδ.

Hence ‖w (k+1)‖ = ‖u‖ · ‖w (k+1)‖ ≥ u ·w (k+1) ≥ kδ (from CSI).

Upper bound on ‖w (k+1)‖:

‖w (k+1)‖2 = ‖w (k)‖2 + ‖φ(xi , yi)− φ(xi , ŷi)‖2

+2w (k) · (φ(xi , yi)− φ(xi , ŷi))

≤ ‖w (k)‖2 + R2

≤ kR2.

Equating both sides, we get (kδ)2 ≤ kR2 ⇒ k ≤ R2/δ2 (QED).

André Martins (Unbabel/IT) Deep Learning NLPL WS, 29–31/01/18 20 / 206

One-Slide Proof

Lower bound on ‖w (k+1)‖:

u ·w (k+1) = u ·w (k) + u · (φ(xi , yi)− φ(xi , ŷi))

≥ u ·w (k) + δ

≥ kδ.

Hence ‖w (k+1)‖ = ‖u‖ · ‖w (k+1)‖ ≥ u ·w (k+1) ≥ kδ (from CSI).

Upper bound on ‖w (k+1)‖:

‖w (k+1)‖2 = ‖w (k)‖2 + ‖φ(xi , yi)− φ(xi , ŷi)‖2

+2w (k) · (φ(xi , yi)− φ(xi , ŷi))

≤ ‖w (k)‖2 + R2

≤ kR2.

Equating both sides, we get (kδ)2 ≤ kR2 ⇒ k ≤ R2/δ2 (QED).

André Martins (Unbabel/IT) Deep Learning NLPL WS, 29–31/01/18 20 / 206

What a Simple Perceptron Can and Can’t Do

Can solve linearly separable problems (OR, AND)

(Image credit: Hugo Larochelle)

Can’t solve non-linearly separable problems (XOR)—unless input is
transformed into a better representation

(Image credit: Hugo Larochelle)

This was observed by Minsky and Papert (1969) and motivated
strong criticisms

André Martins (Unbabel/IT) Deep Learning NLPL WS, 29–31/01/18 21 / 206

Other Linear Classifiers

Logistic regression.

Define pw (y | x) ∝ exp(w · φ(x , y)) and maximize the conditional
log-likelihood of the training data

Support vector machines.

Similar to perceptron, but attempts to find the model w that
maximizes the separation margin δ

Adds slack variables for non-separable data, penalizing violations

Both lead to convex optimization problems ⇒ no issues with local
minima/initialization

Both assume the features are well-engineered such that the data is nearly
linearly separable

André Martins (Unbabel/IT) Deep Learning NLPL WS, 29–31/01/18 22 / 206

What If Data Are Not Linearly Separable?

Engineer better features (often works!)

Kernel methods:

works implicitly in a high-dimensional feature space

... but still need to choose/design a good kernel

model capacity confined to positive-definite kernels

Neural networks (next)

... or how I stopped worrying and learned to love non-convexity

instead of engineering features/kernels, engineer the model
architecture

André Martins (Unbabel/IT) Deep Learning NLPL WS, 29–31/01/18 23 / 206

What If Data Are Not Linearly Separable?

Engineer better features (often works!)

Kernel methods:

works implicitly in a high-dimensional feature space

... but still need to choose/design a good kernel

model capacity confined to positive-definite kernels

Neural networks (next)

... or how I stopped worrying and learned to love non-convexity

instead of engineering features/kernels, engineer the model
architecture

André Martins (Unbabel/IT) Deep Learning NLPL WS, 29–31/01/18 23 / 206

What If Data Are Not Linearly Separable?

Engineer better features (often works!)

Kernel methods:

works implicitly in a high-dimensional feature space

... but still need to choose/design a good kernel

model capacity confined to positive-definite kernels

Neural networks (next)

... or how I stopped worrying and learned to love non-convexity

instead of engineering features/kernels, engineer the model
architecture

André Martins (Unbabel/IT) Deep Learning NLPL WS, 29–31/01/18 23 / 206

What If Data Are Not Linearly Separable?

Engineer better features (often works!)

Kernel methods:

works implicitly in a high-dimensional feature space

... but still need to choose/design a good kernel

model capacity confined to positive-definite kernels

Neural networks (next)

... or how I stopped worrying and learned to love non-convexity

instead of engineering features/kernels, engineer the model
architecture

André Martins (Unbabel/IT) Deep Learning NLPL WS, 29–31/01/18 23 / 206

Outline

1 Linear Classifiers

2 Neural Networks

3 Training Neural Networks

4 Representation Learning

5 Convolutional Nets

6 Recurrent Neural Networks

7 Sequence-to-Sequence and Beyond

8 Generative Models

André Martins (Unbabel/IT) Deep Learning NLPL WS, 29–31/01/18 24 / 206

Neural Networks

Roadmap:

Biological and artificial neuron

Activation functions

Multi-layer neural networks

Softmax and sparsemax

Universal approximation theorem

André Martins (Unbabel/IT) Deep Learning NLPL WS, 29–31/01/18 25 / 206

Biological Neuron

Three main parts: the main body (soma), dendrites and an axon

The neuron receives input signals from dendrites, and then outputs its
own signals through the axon

Axons in turn connect to the dendrites of other neurons, using special
connections called synapses

Generate sharp electrical potentials across their cell membrane
(spikes), a major signaling unit of the nervous system

André Martins (Unbabel/IT) Deep Learning NLPL WS, 29–31/01/18 26 / 206

Word of Caution

Artificial neurons are inspired by biological neurons in nervous
systems, but...

André Martins (Unbabel/IT) Deep Learning NLPL WS, 29–31/01/18 27 / 206

Artificial Neuron (McCulloch and Pitts, 1943;
Rosenblatt, 1958)

Pre-activation (input activation):

z(x) = w · x + b =
D∑
i=1

wixi + b,

where w are the connection weights and b
is a bias term.

Activation:

h(x) = g(z(x)) = g(w · x + b),

where g : R→ R is the activation function.

André Martins (Unbabel/IT) Deep Learning NLPL WS, 29–31/01/18 28 / 206

Activation Function

Typical choices:

Linear

Sigmoid (logistic function)

Hyperbolic Tangent

Rectified Linear

Later:

Softmax

Sparsemax

Max-pooling

André Martins (Unbabel/IT) Deep Learning NLPL WS, 29–31/01/18 29 / 206

Linear Activation

g(z) = z

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

No “squashing” of the input

Composing layers of linear units is equivalent to a single layer of linear
units, so no expressive power added when going multi-layer (more
later)

Still useful to linear-project the input to a lower dimension

André Martins (Unbabel/IT) Deep Learning NLPL WS, 29–31/01/18 30 / 206

Sigmoid Activation

g(z) = σ(z) =
1

1 + e−z

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

“Squashes” the neuron pre-activation between 0 and 1

The output can be interpreted as a probability

Positive, bounded, strictly increasing

Logistic regression corresponds to a network with a single sigmoid unit

Combining layers of sigmoid units will increase expressiveness (more
later)

André Martins (Unbabel/IT) Deep Learning NLPL WS, 29–31/01/18 31 / 206

Hyperbolic Tangent Activation

g(z) = tanh(z) =
ez − e−z

ez + e−z

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

“Squashes” the neuron pre-activation between −1 and 1

Related to the sigmoid via σ(z) = 1+tanh(z/2)
2

Can be positive or negative, bounded, strictly increasing

Combining layers of tanh units will increase expressiveness (more
later)

André Martins (Unbabel/IT) Deep Learning NLPL WS, 29–31/01/18 32 / 206

Rectified Linear Unit Activation (Glorot et al., 2011)

g(z) = relu(z) = max{0, z}

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

Less prone to vanishing gradients (more later), and historically the
first activation that allowed training deep nets without unsupervised
pre-training (Glorot et al., 2011)

Non-negative, increasing, but not upper bounded

Not differentiable at 0

Leads to neurons with sparse activities (biologically more plausible)

André Martins (Unbabel/IT) Deep Learning NLPL WS, 29–31/01/18 33 / 206

Capacity of Single Neuron (Linear Classifier)

With a single sigmoid activated neuron we can do logistic regression:

p(y = 1|x) = σ(w · x + b).

Can solve linearly separable
problems (OR, AND)

Can’t solve non-linearly separable
problems (XOR)—unless input is
transformed into a better
representation

(Slide credit: Hugo Larochelle)

André Martins (Unbabel/IT) Deep Learning NLPL WS, 29–31/01/18 34 / 206

Multi-Layer Neural Network

Key idea: add intermediate layers of artificial neurons before the final
output layer

Each of these hidden units computes some representation of the input
and propagates forward that representation

This increases the expressive power of the network, yielding more
complex, non-linear, classifiers

Similar role as latent variables in probabilistic models, but no need for
a probability semantics

Also called feed-forward neural network

André Martins (Unbabel/IT) Deep Learning NLPL WS, 29–31/01/18 35 / 206

Single Hidden Layer

Assume D inputs (x ∈ RD) and K hidden units (h ∈ RK)

Hidden layer pre-activation:

z(x) = W(1)x + b(1),

with W(1) ∈ RK×D and b(1) ∈ RK .

Hidden layer activation:

h(z) = g(z(x)),

where g : RK → RK is applied vectorwise.

Output layer activation:

f (x) = o(w (2)h + b(2)),

where w (2) ∈ RK and o : R→ R if the output activation function.

André Martins (Unbabel/IT) Deep Learning NLPL WS, 29–31/01/18 36 / 206

Detour: Multiple Classes

For multi-class classification, we need multiple output units (one per class)

Each output estimates the conditional probability p(y = c | x)

Predicted class is the one with highest estimated probability

We’ll see two activation functions suitable for this:

Softmax activation

Sparsemax activation

André Martins (Unbabel/IT) Deep Learning NLPL WS, 29–31/01/18 37 / 206

Softmax Activation

Let ∆C−1 ⊆ RC be the probability simplex

The typical activation function for multi-class classification is
softmax : RC → ∆C−1:

o(z) = softmax(z) =

[
exp(z1)∑
c exp(zc)

, . . . ,
exp(zC)∑
c exp(zc)

]

Strictly positive, sums to 1

Resulting distribution has full support: softmax(z) > 0,∀z
A disadvantage if a sparse probability distribution is desired

Common workaround: threshold and truncate

André Martins (Unbabel/IT) Deep Learning NLPL WS, 29–31/01/18 38 / 206

Sparsemax Activation (Martins and Astudillo, 2016)

A sparse-friendly alternative is sparsemax : RC → ∆C−1, defined as:

o(z) = sparsemax(z) := arg min
p∈∆C−1

‖p − z‖2.

In words: Euclidean projection of z onto the probability simplex

Likely to hit the boundary of the simplex, in which case
sparsemax(z) becomes sparse (hence the name)

Retains many of the properties of softmax (e.g. differentiability),
having in addition the ability of producing sparse distributions

Projecting onto the simplex amounts to a soft-thresholding operation

Efficient forward/backward propagation (more later)

André Martins (Unbabel/IT) Deep Learning NLPL WS, 29–31/01/18 39 / 206

Two Dimensions

Parametrize z = (t, 0)

The 2D softmax is the logistic (sigmoid) function:

softmax1(z) = (1 + exp(−t))−1

The 2D sparsemax is the “hard” version of the sigmoid:

− 3 − 2 − 1 0 1 2 3
t

0.0

0.2

0.4

0.6

0.8

1.0 softmax1([t,0])

sparsemax1([t,0])

André Martins (Unbabel/IT) Deep Learning NLPL WS, 29–31/01/18 40 / 206

Three Dimensions

Parameterize z = (t1, t2, 0) and plot softmax1(z) and
sparsemax1(z) as a function of t1 and t2

sparsemax is piecewise linear, but asymptotically similar to softmax

André Martins (Unbabel/IT) Deep Learning NLPL WS, 29–31/01/18 41 / 206

Multiple Hidden Layers

Now assume L ≥ 1 hidden layers:

Hidden layer pre-activation (define
h(0) = x for convenience):

z (`)(x) = W(`)h(`−1) + b(1),

with W(`) ∈ RK`×K`−1 and b(`) ∈ RK` .

Hidden layer activation:

h(`)(x) = g(z (`)(x)).

Output layer activation:

f (x) = o(z (L+1)(x)) = o(W(L+1)h(L) + b(L+1)).

André Martins (Unbabel/IT) Deep Learning NLPL WS, 29–31/01/18 42 / 206

Universal Approximation Theorem

Theorem (Hornik et al. (1989))

A neural network with a single hidden layer and a linear output unit can
approximate any continuous function arbitrarily well, given enough hidden
units.

First proved for the sigmoid case by Cybenko (1989), then to tanh
and many other activation functions by Hornik et al. (1989)

Note: may need exponentially many hidden units

Deeper networks (more hidden layers) can provide more compact
approximations

André Martins (Unbabel/IT) Deep Learning NLPL WS, 29–31/01/18 43 / 206

“Simple” Target Function, One Hidden Layer

(http://playground.tensorflow.org)

André Martins (Unbabel/IT) Deep Learning NLPL WS, 29–31/01/18 44 / 206

http://playground.tensorflow.org

Complex Target Function, One Hidden Layer

(http://playground.tensorflow.org)

André Martins (Unbabel/IT) Deep Learning NLPL WS, 29–31/01/18 45 / 206

http://playground.tensorflow.org

Complex Target Function, Two Hidden Layers

(http://playground.tensorflow.org)

André Martins (Unbabel/IT) Deep Learning NLPL WS, 29–31/01/18 46 / 206

http://playground.tensorflow.org

Complex Target Function, Two Hidden Layers, ReLU

(http://playground.tensorflow.org)

André Martins (Unbabel/IT) Deep Learning NLPL WS, 29–31/01/18 47 / 206

http://playground.tensorflow.org

Complex Target Function, Four Hidden Layers,
ReLU

(http://playground.tensorflow.org)

André Martins (Unbabel/IT) Deep Learning NLPL WS, 29–31/01/18 48 / 206

http://playground.tensorflow.org

Capacity of Neural Networks

Neural networks are excellent function approximators!

The universal approximation theorem is a nice result, but:

We need a learning algorithm that finds the necessary parameter
values

... and if we want to generalize, we need to control overfitting

André Martins (Unbabel/IT) Deep Learning NLPL WS, 29–31/01/18 49 / 206

Coffee Break

André Martins (Unbabel/IT) Deep Learning NLPL WS, 29–31/01/18 50 / 206

Outline

1 Linear Classifiers

2 Neural Networks

3 Training Neural Networks

4 Representation Learning

5 Convolutional Nets

6 Recurrent Neural Networks

7 Sequence-to-Sequence and Beyond

8 Generative Models

André Martins (Unbabel/IT) Deep Learning NLPL WS, 29–31/01/18 51 / 206

Training Neural Networks

Roadmap:

Empirical risk minimization

Stochastic gradient descent

Gradient backpropagation

Computation graph

Regularization

Initialization and other tricks of the trade

André Martins (Unbabel/IT) Deep Learning NLPL WS, 29–31/01/18 52 / 206

Empirical Risk Minimization

Goal: choose parameters θ := {(W(`),b(`))}L+1
`=1 that minimize the

following objective function:

L(θ) := λΩ(θ) +
1

N

N∑
n=1

L(f (xi ;θ), yi)

Ω(θ) is a regularizer

L(f (xi ;θ), yi) is a loss function

λ is a regularization constant
(an hyperparameter that needs
to be tuned)

André Martins (Unbabel/IT) Deep Learning NLPL WS, 29–31/01/18 53 / 206

Stochastic Gradient Descent

Batch gradient requires a full pass over the data before updating the
weights—too slow!

Stochastic gradient descent (SGD) approximates ∇θL(θ) by a “noisy
gradient” based on a single example (a random i ∈ [N]):

∇θL(θ) ≈ ∇θLi (θ) := λ∇θΩ(θ) +∇θL(f (xi ;θ), yi).

The weights θ = {(W(`),b(`))}L+1
`=1 are then updated as:

θ ← θ − η∇θLi (θ)

We need:

The loss function L(f (xi ;θ), yi);

The regularizer Ω(θ) and its gradient;

A procedure for computing the gradients ∇θL(f (xi ;θ), yi).

André Martins (Unbabel/IT) Deep Learning NLPL WS, 29–31/01/18 54 / 206

Loss Function

Should match as much as possible the metric we want to optimize at test
time

Should be well-behaved (continuous, maybe smooth) to be amenable to
optimization (this rules out the 0/1 loss)

Some examples:

Squared loss for regression

Negative log-likelihood (cross-entropy) for multi-class classification

Sparsemax loss for multi-class and multi-label classification

André Martins (Unbabel/IT) Deep Learning NLPL WS, 29–31/01/18 55 / 206

Squared Loss

The common choice for regression/reconstruction problems

The neural network estimates f (x ;θ) ≈ y
We minimize the mean squared error:

L(f (x ;θ), y) =
1

2
‖f (x ;θ)− y‖2

Loss gradient:
∂L(f (x ;θ, y))

∂fc(x ;θ)
= fc(x ;θ)− yc

André Martins (Unbabel/IT) Deep Learning NLPL WS, 29–31/01/18 56 / 206

Negative Log-Likelihood (Cross-Entropy)

The common choice for a softmax output layer

The neural network estimates fc(x ;θ) ≈ p(y = c | x)

We minimize the negative log-likelihood (also called cross-entropy):

L(f (x ;θ), y) = −
∑
c

1(y=c) log fc(x ;θ)

= − log fy (x ;θ)

= − log softmax(z(x)),

where z is the output pre-activation.

Loss gradient at output pre-activation:

∂L(f (x ;θ, y))

∂zc
= −(1y=c − softmaxc(z(x)))

André Martins (Unbabel/IT) Deep Learning NLPL WS, 29–31/01/18 57 / 206

Sparsemax Loss (Martins and Astudillo, 2016)

The natural choice for a sparsemax output layer

The neural network estimates fc(x ;θ) ≈ p(y = c | x) as a sparse
distribution

L(f (x ;θ), y) = −zc +
1

2

∑
j∈S(z)

(z2
j − τ2(z)) +

1

2
,

where z is the output pre-activation, S(z) is the support of p(y | x)
and τ2 : RK → R is the square of the threshold function (see Martins
and Astudillo (2016) for details).

Loss gradient at output pre-activation:

∂L(f (x ;θ, y))

∂zc
= −(1y=c − sparsemaxc(z(x)))

André Martins (Unbabel/IT) Deep Learning NLPL WS, 29–31/01/18 58 / 206

Classification Losses in Two Dimensions

Let the correct label be y = 1 and define t = z1 − z2:

André Martins (Unbabel/IT) Deep Learning NLPL WS, 29–31/01/18 59 / 206

Gradient Computation

Recall that we need to compute

∇θLi (θ) := λ∇θΩ(θ) +∇θL(f (xi ;θ), yi)

for θ = {(W(`),b(`))}L+1
`=1 (the weights and biases at all layers)

This will be done with the gradient backpropagation algorithm

Key idea: use the chain rule for derivatives!

André Martins (Unbabel/IT) Deep Learning NLPL WS, 29–31/01/18 60 / 206

Recap: Chain Rule

∂r(t)

∂t
= ?

∂r(u)

∂u

∂u(t)

∂t
+
∂r(v)

∂v

∂v(t)

∂t
= 2tv + 3u

= 2t(3t + 1) + 3t2 = 9t2 + 2t.

If a function r(t) can be written as a function of intermediate results
qi (t), then we have:

∂r(t)

∂t
=
∑
i

∂r(t)

∂qi (t)

∂qi (t)

∂t

We can invoke it by setting t to a output unit in a layer; qi (t) to the
pre-activation in the layer above; and r(t) to the loss function.

André Martins (Unbabel/IT) Deep Learning NLPL WS, 29–31/01/18 61 / 206

Recap: Chain Rule

∂r(t)

∂t
=

?

∂r(u)

∂u

∂u(t)

∂t
+
∂r(v)

∂v

∂v(t)

∂t

= 2tv + 3u

= 2t(3t + 1) + 3t2 = 9t2 + 2t.

If a function r(t) can be written as a function of intermediate results
qi (t), then we have:

∂r(t)

∂t
=
∑
i

∂r(t)

∂qi (t)

∂qi (t)

∂t

We can invoke it by setting t to a output unit in a layer; qi (t) to the
pre-activation in the layer above; and r(t) to the loss function.

André Martins (Unbabel/IT) Deep Learning NLPL WS, 29–31/01/18 61 / 206

Recap: Chain Rule

∂r(t)

∂t
=

?

∂r(u)

∂u

∂u(t)

∂t
+
∂r(v)

∂v

∂v(t)

∂t
= 2tv + 3u

= 2t(3t + 1) + 3t2 = 9t2 + 2t.

If a function r(t) can be written as a function of intermediate results
qi (t), then we have:

∂r(t)

∂t
=
∑
i

∂r(t)

∂qi (t)

∂qi (t)

∂t

We can invoke it by setting t to a output unit in a layer; qi (t) to the
pre-activation in the layer above; and r(t) to the loss function.

André Martins (Unbabel/IT) Deep Learning NLPL WS, 29–31/01/18 61 / 206

Recap: Chain Rule

∂r(t)

∂t
=

?

∂r(u)

∂u

∂u(t)

∂t
+
∂r(v)

∂v

∂v(t)

∂t
= 2tv + 3u

= 2t(3t + 1) + 3t2 = 9t2 + 2t.

If a function r(t) can be written as a function of intermediate results
qi (t), then we have:

∂r(t)

∂t
=
∑
i

∂r(t)

∂qi (t)

∂qi (t)

∂t

We can invoke it by setting t to a output unit in a layer; qi (t) to the
pre-activation in the layer above; and r(t) to the loss function.

André Martins (Unbabel/IT) Deep Learning NLPL WS, 29–31/01/18 61 / 206

Hidden Layer Gradient

(Recap: z (`+1) = W(`+1)h(`) + b(`+1))

∂L(f (x ;θ), y)

∂h
(`)
j

=
∑
i

∂L(f (x ;θ), y)

∂z
(`+1)
i

∂z
(`+1)
i

∂h
(`)
j

=
∑
i

∂L(f (x ;θ), y)

∂z
(`+1)
i

W (`+1)
i ,j

Hence ∇h(`)L(f (x ;θ), y) = W (`+1)>∇z(`+1)L(f (x ;θ), y).

André Martins (Unbabel/IT) Deep Learning NLPL WS, 29–31/01/18 62 / 206

Hidden Layer Gradient (Before Activation)

(Recap: h
(`)
j = g(z

(`)
j), where g : R→ R is the activation function)

∂L(f (x ;θ), y)

∂z
(`)
j

=
∂L(f (x ;θ), y)

∂h
(`)
j

∂h
(`)
j

∂z
(`)
j

=
∂L(f (x ;θ), y)

∂h
(`)
j

g ′(z
(`)
j)

Hence ∇z(`)L(f (x ;θ), y) = ∇h(`)L(f (x ;θ), y)� g ′(z (`)).

How to compute the derivative of the activation function g ′(z (`))?

André Martins (Unbabel/IT) Deep Learning NLPL WS, 29–31/01/18 63 / 206

Linear Activation

g(z) = z

Derivative:

g ′(z) = 1

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

André Martins (Unbabel/IT) Deep Learning NLPL WS, 29–31/01/18 64 / 206

Sigmoid Activation

g(z) = σ(z) =
1

1 + e−z

Derivative:

g ′(z) = g(z)(1− g(z))

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

André Martins (Unbabel/IT) Deep Learning NLPL WS, 29–31/01/18 65 / 206

Hyperbolic Tangent Activation

g(z) = tanh(z) =
ez − e−z

ez + e−z

Derivative:

g ′(z) = 1− g(z)2

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

André Martins (Unbabel/IT) Deep Learning NLPL WS, 29–31/01/18 66 / 206

Rectified Linear Unit Activation (Glorot et al., 2011)

g(z) = relu(z) = max{0, z}

Derivative (except for z = 0):

g ′(z) = 1z>0

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

André Martins (Unbabel/IT) Deep Learning NLPL WS, 29–31/01/18 67 / 206

Parameter Gradient

(Recap: z (`) = W(`)h(`−1) + b(`))

∂L(f (x ;θ), y)

∂W
(`)
i ,j

=
∂L(f (x ;θ), y)

∂z
(`)
i

∂z
(`)
i

∂W
(`)
i ,j

=
∂L(f (x ;θ), y)

∂z
(`)
i

h
(`−1)
j

Hence ∇W(`)L(f (x ;θ), y) = ∇z(`)L(f (x ;θ), y)h(`−1)>

Similarly, ∇b(`)L(f (x ;θ), y) = ∇z(`)L(f (x ;θ), y)

André Martins (Unbabel/IT) Deep Learning NLPL WS, 29–31/01/18 68 / 206

Backpropagation

Compute output gradient (before activation):

∇z (L+1)L(f (x ;θ), y) = −(1y − f (x))

for ` from L + 1 to 1 do
Compute gradients of hidden layer parameters:

∇W(`)L(f (x ;θ), y) = ∇z (`)L(f (x ;θ), y) h(`−1)>

∇b(`)L(f (x ;θ), y) = ∇z (`)L(f (x ;θ), y)

Compute gradient of hidden layer below:

∇h(`)L(f (x ;θ), y) = W (`+1)>∇z (`+1)L(f (x ;θ), y)

Compute gradient of hidden layer below (before activation):

∇z (`)L(f (x ;θ), y) = ∇h(`)L(f (x ;θ), y)� g ′(z (`))

end for

André Martins (Unbabel/IT) Deep Learning NLPL WS, 29–31/01/18 69 / 206

Computation Graph

Forward propagation can be represented as a
DAG

Allows to implement forward propagation in a
modular way

Each box can be an object with a fprop

method, that computes the value of the box
given its children

Calling the fprop method of each box in the
right order (after a topological sort) yields
forward propagation

André Martins (Unbabel/IT) Deep Learning NLPL WS, 29–31/01/18 70 / 206

Automatic Differentiation

... Also allows to implement backpropagation
in a modular way

Each box can also have a bprop method, that
computes the loss gradient with respect to its
children, given the loss gradient with respect to
the output

Can make use of cached computation done
during the fprop method

By calling the bprop method in reverse order,
we get backpropagation (only need to reach
the parameters)

André Martins (Unbabel/IT) Deep Learning NLPL WS, 29–31/01/18 71 / 206

Many Software Toolkits for Neural Networks

Theano

Tensorflow

Torch

Keras

Caffe

DyNet

...

All implement automatic differentiation.

André Martins (Unbabel/IT) Deep Learning NLPL WS, 29–31/01/18 72 / 206

Some Theano Code (Logistic Regression)

André Martins (Unbabel/IT) Deep Learning NLPL WS, 29–31/01/18 73 / 206

Some Code in Tensorflow (Linear Regression)

André Martins (Unbabel/IT) Deep Learning NLPL WS, 29–31/01/18 74 / 206

Some Code in Keras (Multi-Layer Perceptron)

André Martins (Unbabel/IT) Deep Learning NLPL WS, 29–31/01/18 75 / 206

Regularization

Recall that we’re minimizing the following objective function:

L(θ) := λΩ(θ) +
1

N

N∑
n=1

L(f (xi ;θ), yi)

It remains to define the regularizer and its gradient

We’ll talk about:

`2 regularization

`1 regularization

dropout regularization

André Martins (Unbabel/IT) Deep Learning NLPL WS, 29–31/01/18 76 / 206

`2 Regularization

Gaussian prior on the weights

Note: only the weights are regularized (not the biases)

Ω(θ) =
1

2

∑
`

‖W(`)‖2

Gradient is:
∇W(`)Ω(θ) = W(`)

This has the effect of a weight decay:

W(`) ← W(`) − η∇W(`)Li (θ)

= W(`) − η(λ∇W(`)Ω(θ) +∇W(`)L(f (xi ;θ), yi))

= (1− ηλ)W(`) − η∇W(`)L(f (xi ;θ), yi)

André Martins (Unbabel/IT) Deep Learning NLPL WS, 29–31/01/18 77 / 206

`1 Regularization

Laplacian prior on the weights

Note: only the weights are regularized (not the biases)

Ω(θ) =
∑
`

‖W(`)‖1

Gradient is:
∇W(`)Ω(θ) = sign(W(`))

Promotes sparsity of the weights

André Martins (Unbabel/IT) Deep Learning NLPL WS, 29–31/01/18 78 / 206

Dropout Regularization (Srivastava et al., 2014)

Idea: During training, remove some hidden units stochastically

André Martins (Unbabel/IT) Deep Learning NLPL WS, 29–31/01/18 79 / 206

Dropout Regularization (Srivastava et al., 2014)

Each hidden unit’s output is set to 0 with probability p (e.g. p = 0.5)

This prevents hidden units to co-adapt to other units, forcing them to
be more generally useful

At test time, keep all units, but multiply their outputs by 1− p

Shown to be a form of adaptive regularization (Wager et al., 2013)

Note: many software packages implement another variant, inverted
dropout, where at training time the output of the units that were not
dropped is divided by 1− p and requires no change at test time

André Martins (Unbabel/IT) Deep Learning NLPL WS, 29–31/01/18 80 / 206

Implementation of Dropout

This is usually implemented using random binary masks

The hidden layer activations become (for ` = 1, . . . , L):

h(`)(x) = g(z (`)(x))�m(`)

Beats regular backpropagation on many datasets (Hinton et al., 2012)

Other variants, e.g. DropConnect (Wan et al., 2013), Stochastic
Pooling (Zeiler and Fergus, 2013)

André Martins (Unbabel/IT) Deep Learning NLPL WS, 29–31/01/18 81 / 206

Backpropagation with Dropout

Compute output gradient (before activation):

∇z (L+1)L(f (x ;θ), y) = −(1y − f (x))

for ` from L + 1 to 1 do
Compute gradients of hidden layer parameters:

∇W(`)L(f (x ;θ), y) = ∇z (`)L(f (x ;θ), y) h(`−1)>︸ ︷︷ ︸
includes m(`−1)

∇b(`)L(f (x ;θ), y) = ∇z (`)L(f (x ;θ), y)

Compute gradient of hidden layer below:

∇h(`)L(f (x ;θ), y) = W (`+1)>∇z (`+1)L(f (x ;θ), y)

Compute gradient of hidden layer below (before activation):

∇z (`)L(f (x ;θ), y) = ∇h(`)L(f (x ;θ), y)� g ′(z (`))�m(`−1)

end for

André Martins (Unbabel/IT) Deep Learning NLPL WS, 29–31/01/18 82 / 206

Initialization

Initialize all biases to zero

For weights:

Cannot initialize to zero with tanh activation (the gradients would
also be zero and we would reach a saddle point)

Cannot initialize the weights to the same value (need to break the
symmetry)

Random initialization (Gaussian, uniform), sampling around 0 to
break symmetry

For ReLU activations, the mean should be a small positive number

Variance cannot be too high, otherwise all neuron activations will be
saturated

André Martins (Unbabel/IT) Deep Learning NLPL WS, 29–31/01/18 83 / 206

“Glorot Initialization”

Recipe from Glorot and Bengio (2010):

W
(`)
i ,j ∼ U[−t, t], with t =

√
6√

K (`) + K (`−1)

Works well in practice with tanh and sigmoid activations

André Martins (Unbabel/IT) Deep Learning NLPL WS, 29–31/01/18 84 / 206

Training, Validation, and Test Sets

Split datasets in training, validation, and test partitions.

Training set serves to train the model

Validation set serves to tune hyperparameters (learning rate, number
of hidden units, regularization coefficient, dropout probability, best
epoch, etc.)

Test set serves to estimate the generalization performance

André Martins (Unbabel/IT) Deep Learning NLPL WS, 29–31/01/18 85 / 206

Hyperparameter Tuning: Grid Search, Random
Search

Search for the best configuration of the hyperparameters:

Grid search: specify a set of values we want to test for each
hyperparameter, and try all configurations of these values

Random search: specify a distribution over the values of each
hyper-parameter (e.g. uniform in some range) and sample
independently each hyper-parameter to get configurations

Bayesian optimization and learning to learn (Snoek et al., 2012)

We can always go back and fine-tune the grid/distributions if necessary

André Martins (Unbabel/IT) Deep Learning NLPL WS, 29–31/01/18 86 / 206

Early Stopping

To select the number of epochs, stop training when validation error
increases (with some look ahead)

One common strategy (with SGD) is to halve the learning rate for
every epoch where the validation error increases

(Image credit: Hugo Larochelle)

André Martins (Unbabel/IT) Deep Learning NLPL WS, 29–31/01/18 87 / 206

Tricks of the Trade

Normalization of the data

Decaying the learning rate

Mini-batches

Adaptive learning rates

Gradient checking

Debugging on a small dataset

André Martins (Unbabel/IT) Deep Learning NLPL WS, 29–31/01/18 88 / 206

Normalization of the Data

For each input dimension: subtract the training set mean and divide
by the training set standard deviation

This makes each input dimension have zero mean, unit variance

This can speed up training (in number of epochs)

Doesn’t work for sparse inputs (destroys sparsity)

André Martins (Unbabel/IT) Deep Learning NLPL WS, 29–31/01/18 89 / 206

Decaying the Learning Rate

In SGD, as we get closer to a local minimum, it makes sense to take
smaller update steps (to avoid diverging)

Start with a large learning rate (say 0.1)

Keep it fixed while validation error keeps improving

Divide by 2 and go back to the previous step

André Martins (Unbabel/IT) Deep Learning NLPL WS, 29–31/01/18 90 / 206

Mini-Batches

Instead of updating after a single example, can aggregate a
mini-batch of examples (e.g. 50–200 examples) and compute the
averaged gradient for the entire mini-batch

Less noisy than vanilla SGD

Can leverage matrix-matrix computations (or tensor computations)

Large computational speed-ups in GPUs (since computation is
trivially parallelizable accross the mini-batch and we can exhaust the
GPU memory)

André Martins (Unbabel/IT) Deep Learning NLPL WS, 29–31/01/18 91 / 206

Adaptive Learning Rates

Instead of using the same step size for all parameters, have one learning
rate per parameter

Adagrad (Duchi et al., 2011): learning rates are scaled by the square
root of the cumulative sum of squared gradients

η(t) = η(t−1) + (∇θL(f (x), y))2, ∇̄(t)
θ =

∇θL(f (x), y)√
η(t) + ε

RMSprop (Tieleman and Hinton, 2012): instead of cumulative sum,
use exponential moving average

η(t) = βη(t−1) + (1− β)(∇θL(f (x), y))2, ∇̄(t)
θ =

∇θL(f (x), y)√
η(t) + ε

Adam (Kingma and Ba, 2014): combine RMSProp with momentum

André Martins (Unbabel/IT) Deep Learning NLPL WS, 29–31/01/18 92 / 206

Gradient Checking

If the training loss is not decreasing even with a very small learning
rate, there’s likely a bug in the gradient computation

To debug your implementation of fprop/bprop, compute the
“numeric gradient,” a finite difference approximation of the true
gradient:

∂f (x)

∂x
≈ f (x + ε)− f (x − ε)

2ε

André Martins (Unbabel/IT) Deep Learning NLPL WS, 29–31/01/18 93 / 206

Debugging on a Small Dataset

Extract a small subset of your training set (e.g. 50 examples)

Monitor your training loss in this set

You should be able to overfit in this small training set

If not, see if some units are saturated from the very first iterations (if
they are, reduce the initialization variance or properly normalize your
inputs)

If the training error is bouncing up and down, decrease the learning
rate

André Martins (Unbabel/IT) Deep Learning NLPL WS, 29–31/01/18 94 / 206

Outline

1 Linear Classifiers

2 Neural Networks

3 Training Neural Networks

4 Representation Learning

5 Convolutional Nets

6 Recurrent Neural Networks

7 Sequence-to-Sequence and Beyond

8 Generative Models

André Martins (Unbabel/IT) Deep Learning NLPL WS, 29–31/01/18 95 / 206

Representation Learning

One of the greatest features of neural networks is their ability to learn
representations

Deeper neural networks learn coarse-to-fine representation layers

Roadmap:

Hierarchical compositionality

Distributed representations

Unsupervised pre-training

Auto-encoders

Word embeddings

André Martins (Unbabel/IT) Deep Learning NLPL WS, 29–31/01/18 96 / 206

Hierarchical Compositionality

Vision:

pixels → edge → texton → motif → part → object → scene

Speech:

audio sample → spectral band → formant → motif → phone → word

Text:

character → word → phrase → sentence → story

(Slide inspired by Marc’Aurelio Ranzato and Yann LeCun)

André Martins (Unbabel/IT) Deep Learning NLPL WS, 29–31/01/18 97 / 206

Hierarchical Compositionality
Feature visualization of convolutional net trained on ImageNet from Zeiler
and Fergus (2013):

André Martins (Unbabel/IT) Deep Learning NLPL WS, 29–31/01/18 98 / 206

The Mammalian Visual Cortex is Hierarchical

(Slide inspired by Marc’Aurelio Ranzato and Yann LeCun)

André Martins (Unbabel/IT) Deep Learning NLPL WS, 29–31/01/18 99 / 206

Distributed Representations (Hinton, 1984)

Compare one-hot representations (one dimension per object) with
distributed representations (one dimension per property):

(Slide inspired by Moontae Lee and Dhruv Batra)

Key idea: no single neuron “encodes” everything; groups of neurons
(e.g. in the same hidden layer) work together

André Martins (Unbabel/IT) Deep Learning NLPL WS, 29–31/01/18 100 / 206

The Power of Distributed Representations

Distributed representations are more powerful, as they can generalize
to unseen objects in a meaningful way:

(Slide inspired by Moontae Lee and Dhruv Batra)

André Martins (Unbabel/IT) Deep Learning NLPL WS, 29–31/01/18 101 / 206

Unsupervised Pre-Training (Erhan et al., 2010)
Training deep networks (with many hidden layers) can be challenging

This has been a major difficulty with neural networks for a long time

Solution: initialize hidden layers using unsupervised learning:

Force network to represent latent structure of input distribution

Encourage hidden layers to encode that structure

Examples: auto-encoders, restricted Boltzmann machines

(Image credit: Hugo Larochelle)

André Martins (Unbabel/IT) Deep Learning NLPL WS, 29–31/01/18 102 / 206

Auto-Encoders

An auto-encoder is a feed-forward neural network trained to reproduce its
input at the output layer

Encoder:

h(x) = g(Wx + b)

Decoder:

x̂ = W>h(x) + c

Loss function (for real-valued inputs):

L(x̂ ; x) =
1

2
‖x̂ − x‖2

Generalizes PCA (recovered if activation function g is linear)!

André Martins (Unbabel/IT) Deep Learning NLPL WS, 29–31/01/18 103 / 206

Some Variants of Auto-Encoders

Sparse auto-encoders: use many hidden units, and add a `1

regularization term to encourage sparse representations of the input

Denoising auto-encoders: regularize by adding noise to the input;
the goal is to learn a smooth representation function that allows to
output the denoised input (inspired by image denoising)

Stacked auto-encoders: stack several auto-encoders on top of each
other

Variational auto-encoders: a generative probabilistic model that
minimizes a variational bound (more later)

André Martins (Unbabel/IT) Deep Learning NLPL WS, 29–31/01/18 104 / 206

Unsupervised Pre-Training (Erhan et al., 2010)

A greedy, layer-wise procedure:

train one layer at a time, from first to last, with unsupervised criterion
(e.g. an auto-encoder)

fix the parameters of previous hidden layers

previous layers viewed as feature extraction

Pre-training initializes the parameters in a region such that the near local
optima overfit less the data.

André Martins (Unbabel/IT) Deep Learning NLPL WS, 29–31/01/18 105 / 206

Fine-Tuning

Once all layers are pre-trained:

add output layer

train the whole network using supervised learning

Supervised learning is performed as in a regular feed-forward network:

forward propagation, backpropagation and update

all parameters are “tuned” for the supervised task at hand

representation is adjusted to be more discriminative

André Martins (Unbabel/IT) Deep Learning NLPL WS, 29–31/01/18 106 / 206

Word Representations (Embeddings)

Distributional similarity based representations: represent a word by means
of its neighbors

“You shall know a word by the company it keeps” (J. R. Firth, 1957)

One of the most successful ideas of modern statistical NLP

How do we obtain lower dimensional vector representations of words?

Method 1: Factorization of a co-occurrence word/context matrix
(latent semantic analysis, etc.)

Method 2: Directly learn low-dimensional vectors by training a
network to predict the context of a given word (word2vec)

Word2vec (Mikolov et al., 2013) follows previous ideas of Bengio et al.
(2003) and Collobert et al. (2011), but in a simpler and faster model

André Martins (Unbabel/IT) Deep Learning NLPL WS, 29–31/01/18 107 / 206

Word Vectors

Word2vec comes with two variants:

Skip-gram (our focus): predict surrounding context words in a
window of length m of every word

Continuous bag-of-words (CBOW): predict the central word from
the context

Objective function of skip-gram: maximize the log probability of any
context word given the current center word:

J(θ) =
1

T

T∑
t=1

∑
−m≤j≤m, j 6=0

log p(wt+j | wt)

Define p(wt+j = o | wt = c) ∝ exp(uo · vc) (a log-linear model)

Every word has two vectors!

André Martins (Unbabel/IT) Deep Learning NLPL WS, 29–31/01/18 108 / 206

Negative Sampling

With large vocabularies this objective function is not scalable and
would train too slowly (requires a softmax over the entire vocabulary)

Workaround: negative sampling: train binary logistic regressions for
a true pair (center word and word in its context window) and a couple
of random pairs (the center word with a random word)

Jt(θ) = log σ(uo · vc) +
k∑

i=1

log σ(−uji · vc), ji ∼ P(w)

André Martins (Unbabel/IT) Deep Learning NLPL WS, 29–31/01/18 109 / 206

Linear Relationships (Mikolov et al., 2013)

These representations are very good at encoding dimensions of
similarity!

Word analogies can be solved quite well just by doing vector
subtraction in the embedding space

Syntactically:

xapple − xapples ≈ xcar − xcars ≈ xfamily − xfamilies

Semantically:

xshirt − xclothing ≈ xchair − xfurniture

xking − xman ≈ xqueen − xwoman

(Slide credit to Richard Socher)

André Martins (Unbabel/IT) Deep Learning NLPL WS, 29–31/01/18 110 / 206

Word Analogies (Mikolov et al., 2013)

(Slide credit to Richard Socher)

André Martins (Unbabel/IT) Deep Learning NLPL WS, 29–31/01/18 111 / 206

GloVe Visualizations: Company → CEO

(Slide credit to Richard Socher)

André Martins (Unbabel/IT) Deep Learning NLPL WS, 29–31/01/18 112 / 206

GloVe Visualizations: Superlatives

(Slide credit to Richard Socher)

André Martins (Unbabel/IT) Deep Learning NLPL WS, 29–31/01/18 113 / 206

Lunch Break

André Martins (Unbabel/IT) Deep Learning NLPL WS, 29–31/01/18 114 / 206

Outline

1 Linear Classifiers

2 Neural Networks

3 Training Neural Networks

4 Representation Learning

5 Convolutional Nets

6 Recurrent Neural Networks

7 Sequence-to-Sequence and Beyond

8 Generative Models

André Martins (Unbabel/IT) Deep Learning NLPL WS, 29–31/01/18 115 / 206

Convolutional Neural Networks

Convolutional Neural Networks are neural networks with specialized
connectivity structure

Roadmap:

Parameter Tying

2D Convolutional Nets for Object Recognition

Pooling

ImageNet, AlexNet, GoogLeNet

1D Convolutional Nets in NLP

Visualization and Google DeepDream

André Martins (Unbabel/IT) Deep Learning NLPL WS, 29–31/01/18 116 / 206

Convolutions and Parameter Tying

(Convolution: h[t] = (x ∗ w)[t] =
∑∞

a=−∞ x [a]w [t − a])

Basic idea: sparse connectivity + parameter tying

Leads to translation equivariance

Why do we want to tie (share) parameters?

Reduce the number of parameters to be learned

Deal with arbitrary long, variable-length, sequences

André Martins (Unbabel/IT) Deep Learning NLPL WS, 29–31/01/18 117 / 206

Pooling Layers

Aggregate to achieve local invariance:

Subsampling to reduce temporal/spacial scale and computation:

(Slide credit to Yoshua Bengio)

André Martins (Unbabel/IT) Deep Learning NLPL WS, 29–31/01/18 118 / 206

Multiple Convolutions: Feature Maps

Different filter weights for each channel, but keeping spatial
invariance:

(Slide credit to Yoshua Bengio)

André Martins (Unbabel/IT) Deep Learning NLPL WS, 29–31/01/18 119 / 206

2D Convolutional Nets (LeCun et al., 1989)

Inspired by “Neocognitron” (Fukushima, 1980)

2D Convolutions: the same filter (e.g. 3x3) is applied to each
location of the image

The filter weights are learned (as tied parameters)

Multiple filters

Alternates convolutional and pooling layers

André Martins (Unbabel/IT) Deep Learning NLPL WS, 29–31/01/18 120 / 206

ConvNet Successes

Handwritten text/digits:

MNIST (0.35% error (Ciresan et al., 2011b))

Arabic and Chinese (Ciresan et al., 2011a)

Simpler recognition benchmarks:

CIFAR-10 (9.3% error (Wan et al., 2013))

Traffic signs: 0.56% error vs 1.16% for humans (Cireşan et al., 2011)

But less good at more complex datasets, e.g. Caltech-101/256 (few
training examples)

André Martins (Unbabel/IT) Deep Learning NLPL WS, 29–31/01/18 121 / 206

ImageNet Dataset

14 million labeled images, 20k classes

Images gathered from Internet

Human labels via Amazon Turk

(Slide credit to Rob Fergus)

André Martins (Unbabel/IT) Deep Learning NLPL WS, 29–31/01/18 122 / 206

AlexNet (Krizhevsky et al., 2012)

54M parameters; 8 layers (5 conv, 3 fully-connected)

Trained on 1.4M ImageNet images

Trained on 2 GPUs for a week (50x speed-up over CPU)

Dropout regularization

Test error: 16.4% (second best team was 26.2%)

André Martins (Unbabel/IT) Deep Learning NLPL WS, 29–31/01/18 123 / 206

GoogLeNet (Szegedy et al., 2015)

GoogLeNet inception module: very deep convolutional network, fewer
(5M) parameters

André Martins (Unbabel/IT) Deep Learning NLPL WS, 29–31/01/18 124 / 206

Convolutional Nets in NLP

1D convolutions

Filters are applied to local windows around
each word

For word embeddings x1, . . . , xL, the filter
response for word i is:

hi = g(W[xi−h ⊕ . . .⊕ xi ⊕ . . . xi+h] + b),

where ⊕ denotes vector concatenation and W
are shared parameters

Can pad left and right with special symbols if
necessary

Kalchbrenner et al. (2014)

André Martins (Unbabel/IT) Deep Learning NLPL WS, 29–31/01/18 125 / 206

Mini-Batching, Padding, and Masking

Mini-batching is necessary to speed up training (e.g. in GPUs)

But how to cope with different input sizes (e.g. different sentence
lengths)?

Solution: Minimize waste by sorting by sentence length before forming
mini-batches, then padding:

(Image credit: Thang Luong, Kyunghyun Cho, Chris Manning)

André Martins (Unbabel/IT) Deep Learning NLPL WS, 29–31/01/18 126 / 206

What Representations Are We Learning?

Which neurons fire for recognizing a particular object?

What parts of the network are activated?

To understand this, we need a way of visualizing what’s happening inside
the network.

André Martins (Unbabel/IT) Deep Learning NLPL WS, 29–31/01/18 127 / 206

Visualization

Idea: Optimize input to maximize particular output

Depends on the initialization

Google DeepDream, maximizing “banana” output:

(from https://research.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html)

Can also specify a particular layer and tune the input to maximize the
layer’s activations—useful to see what kind of features each layer is
representing

Specifying a higher layer produces more complex representations...

André Martins (Unbabel/IT) Deep Learning NLPL WS, 29–31/01/18 128 / 206

https://research.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html

Google DeepDream

(from https://research.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html)

André Martins (Unbabel/IT) Deep Learning NLPL WS, 29–31/01/18 129 / 206

https://research.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html

Outline

1 Linear Classifiers

2 Neural Networks

3 Training Neural Networks

4 Representation Learning

5 Convolutional Nets

6 Recurrent Neural Networks

7 Sequence-to-Sequence and Beyond

8 Generative Models

André Martins (Unbabel/IT) Deep Learning NLPL WS, 29–31/01/18 130 / 206

Recurrent Neural Networks

Lots of interesting data is sequential in nature: words in sentences, DNA,
stock market returns

How do we represent an arbitrarily long history?

Roadmap:

Feedforward vs recurrent

Backpropagation through time

Vanishing/exploding gradient problem

Long short-term memories and gated recurrent units

Bidirectional RNNs

André Martins (Unbabel/IT) Deep Learning NLPL WS, 29–31/01/18 131 / 206

Feed-forward vs Recurrent Networks

Feed-forward neural networks:

h = g(Vx + c)

ŷ = Wh + b

Recurrent neural networks (Elman, 1990):

ht = g(Vxt + Uht−1 + c)

ŷt = Wht + b

(Slide credit: Chris Dyer)

André Martins (Unbabel/IT) Deep Learning NLPL WS, 29–31/01/18 132 / 206

How do We Train the RNN Parameters?

(Slide credit: Chris Dyer)

The unrolled graph is a well-formed (DAG) computation graph—we
can run the gradient backpropagation algorithm as usual

Parameters tied accross “time”, derivatives aggregated across time
steps

This instantiation is called backpropagation through time (BPTT)

André Martins (Unbabel/IT) Deep Learning NLPL WS, 29–31/01/18 133 / 206

Parameter Tying

(Slide credit: Chris Dyer)

∂F

∂U
=

4∑
t=1

∂ht

∂U

∂F

∂ht

Same idea as when learning the filters in convolutional neural networks

André Martins (Unbabel/IT) Deep Learning NLPL WS, 29–31/01/18 134 / 206

Example: Language Modeling

Assume we want to generate text, and yt is a
word in the vocabulary

Typically, large vocabulary size: |V | = 100, 000

z = Wh + b

p(yt = i) =
exp(zi)∑
j exp(zj)

= softmaxi (z)

(Slide credit: Chris Dyer)

André Martins (Unbabel/IT) Deep Learning NLPL WS, 29–31/01/18 135 / 206

Example: Language Modeling

(Slide credit: Chris Dyer)

p(x1, . . . , xL) = p(x1)× p(x2 | x1)× . . .× p(xL | x1, . . . , xL−1)

= softmax(Wh1 + b)× softmax(Wh2 + b)× . . .
× softmax(WhL + b)

André Martins (Unbabel/IT) Deep Learning NLPL WS, 29–31/01/18 136 / 206

Language Modeling Training

(Slide credit: Chris Dyer)

André Martins (Unbabel/IT) Deep Learning NLPL WS, 29–31/01/18 137 / 206

Language Modeling Training

Unlike Markov (n-gram) models, RNNs never forget!

However we will see they might have trouble learning to use their
memories (more soon...)

Algorithms:

Sample a sequence from the probability distribution defined by the
RNN

Train the RNN to minimize cross entropy (aka MLE)

What about: what is the most probable sequence?

André Martins (Unbabel/IT) Deep Learning NLPL WS, 29–31/01/18 138 / 206

Backpropagation Through Time

What happens to the gradients as we go back in time?

(Slide credit: Chris Dyer)

André Martins (Unbabel/IT) Deep Learning NLPL WS, 29–31/01/18 139 / 206

Backpropagation Through Time

What happens to the gradients as we go back in time?

∂F

∂h1
=

∂h2

∂h1

∂h3

∂h2

∂h4

∂h3︸ ︷︷ ︸∏4
t=2

∂ht
∂ht−1

∂ŷ
∂h4

∂F

∂ŷ

where ∏
t

∂ht

∂ht−1
=
∏
t

∂ht

∂zt
∂zt
∂ht−1

=
∏
t

Diag(g ′(zt))U

Three cases:

largest eigenvalue of U exactly 1: gradient propagation is stable

largest eigenvalue of U < 1: gradient vanishes (exponential decay)

largest eigenvalue of U > 1: gradient explodes (exponential growth)

André Martins (Unbabel/IT) Deep Learning NLPL WS, 29–31/01/18 140 / 206

Vanishing and Exploding Gradients

Exploding gradients can be dealt with by gradient clipping (truncating
the gradient if it exceeds some magnitude)

Vanishing gradients are more frequent and harder to deal with

In practice: long-range dependencies are difficult to learn

Solutions:

Better optimizers (second order methods)

Normalization to keep the gradient norms stable across time

Clever initialization so that you at least start with good spectra (e.g.,
start with random orthonormal matrices)

Alternative parameterizations: LSTMs and GRUs

André Martins (Unbabel/IT) Deep Learning NLPL WS, 29–31/01/18 141 / 206

Gradient Clipping

Norm clipping:

∇̃ ↔
{ c
‖∇‖∇ if ‖∇‖ ≥ c

∇ otherwise.

Elementwise clipping:

∇̃i ↔ min{c , |∇i |} × sign(∇i), ∀i

André Martins (Unbabel/IT) Deep Learning NLPL WS, 29–31/01/18 142 / 206

Alternative RNNs

I’ll next describe:

Gated recurrent units (GRUs; Cho et al. (2014))

Long short-term memories (LSTMs; Hochreiter and Schmidhuber
(1997))

Intuition: instead of multiplying across time (which leads to exponential
growth), we want the error to be approximately constant

They solve the vanishing gradient problem, but still have exploding
gradients (gradient clipping still helps)

André Martins (Unbabel/IT) Deep Learning NLPL WS, 29–31/01/18 143 / 206

Gated Recurrent Units (Cho et al., 2014)

Recall the problem: the error must backpropagate through all the
intermediate nodes:

Idea: Maybe we can create some kind of shortcut connections:

(Image credit: Thang Luong, Kyunghyun Cho, Chris Manning)

Create adaptive shortcuts controlled by special gates

André Martins (Unbabel/IT) Deep Learning NLPL WS, 29–31/01/18 144 / 206

Gated Recurrent Units (Cho et al., 2014)

(Image credit: Thang Luong, Kyunghyun Cho, Chris Manning)

ht = ut � h̃t + (1− ut)� ht−1

Candidate update: h̃t = g(Vxt + U(rt � ht−1) + b)

Reset gate: rt = σ(Vrxt + Urht−1 + br)

Update gate: ut = σ(Vuxt + Uuht−1 + bu)

André Martins (Unbabel/IT) Deep Learning NLPL WS, 29–31/01/18 145 / 206

Long Short-Term Memories
(Hochreiter and Schmidhuber, 1997)

Key idea: use memory cells ct
To avoid the multiplicative effect, flow information additively through
these cells

Control the flow with special input, forget, and output gates

(Image credit: Chris Dyer)

André Martins (Unbabel/IT) Deep Learning NLPL WS, 29–31/01/18 146 / 206

Long Short-Term Memories

(Image credit: Chris Dyer)

ct = ft � ct−1 + it � (Vxt + Uht−1 + b), ht = ot � g(ct)

Forget gate: ft = σ(Vf xt + Uf ht−1 + bf)

Input gate: it = σ(Vixt + Uiht−1 + bi)

Output gate: ot = σ(Voxt + Uoht−1 + bo)

André Martins (Unbabel/IT) Deep Learning NLPL WS, 29–31/01/18 147 / 206

Long Short-Term Memories

(Slide credit: Christopher Olah)

André Martins (Unbabel/IT) Deep Learning NLPL WS, 29–31/01/18 148 / 206

Summary

Better gradient propagation is possible if we use additive rather than
multiplicative/highly non-linear recurrent dynamics

Recurrent architectures are an active area of research (but LSTMs are
hard to beat)

Other variants of LSTMs exist which tie/simplify some of the gates

Extensions exist for non-sequential structured inputs/outputs (e.g.
trees): recursive neural networks (Socher et al., 2011), PixelRNN
(Oord et al., 2016)

André Martins (Unbabel/IT) Deep Learning NLPL WS, 29–31/01/18 149 / 206

RNNs for Generating Images

Input-to-state and state-to-state mappings for PixelCNN an two
PixelRNN models (Oord et al., 2016):

André Martins (Unbabel/IT) Deep Learning NLPL WS, 29–31/01/18 150 / 206

RNNs for Generating Images

(Oord et al., 2016)

André Martins (Unbabel/IT) Deep Learning NLPL WS, 29–31/01/18 151 / 206

More Tricks of the Trade

Depth

Dropout

Implementation Tricks

André Martins (Unbabel/IT) Deep Learning NLPL WS, 29–31/01/18 152 / 206

Deep RNNs/LSTMs/GRUs

Depth in recurrent layers helps in practice (2–8 layers seem to be
standard)

Input connections may or may not be used

(Slide credit: Chris Dyer)

André Martins (Unbabel/IT) Deep Learning NLPL WS, 29–31/01/18 153 / 206

Dropout in Deep RNNs/LSTMs/GRUs

Apply dropout between layers, but not on the recurrent connections

... Or use the same mask for all recurrent connections (Gal and
Ghahramani, 2015)

(Slide credit: Chris Dyer)

André Martins (Unbabel/IT) Deep Learning NLPL WS, 29–31/01/18 154 / 206

Implementation Tricks

For speed:

Use diagonal matrices instead of full matrices (esp. for gates)

Concatenate parameter matrices for all gates and do a single
matrix-vector multiplication

Use optimized implementations (from NVIDIA)

Use GRUs or reduced-gate variant of LSTMs

For learning speed and performance:

Initialize so that the bias on the forget gate is large (intuitively: at
the beginning of training, the signal from the past is unreliable)

Use random orthogonal matrices to initialize the square matrices

André Martins (Unbabel/IT) Deep Learning NLPL WS, 29–31/01/18 155 / 206

Mini-Batching

RNNs, LSTMs, GRUs all consist of lots of elementwise operations
(addition, multiplication, nonlinearities), and lots of matrix-vector
products

Mini-batching: convert many matrix-vector products into a single
matrix-matrix multiplication

Batch across instances, not across time

The challenge with working with mini batches of sequences is...
sequences are of different lengths (we’ve seen this when talking about
convolutional nets)

This usually means you bucket training instances based on similar
lengths, and pad with zeros

Be careful when padding not to back propagate a non-zero value!

André Martins (Unbabel/IT) Deep Learning NLPL WS, 29–31/01/18 156 / 206

Bidirectional RNNs

We can read a sequence from left to
right to obtain a representation

Or we can read it from right to left

Or we can read it from both and
combine the representations

More later...

(Slide credit: Chris Dyer)

André Martins (Unbabel/IT) Deep Learning NLPL WS, 29–31/01/18 157 / 206

Coffee Break

André Martins (Unbabel/IT) Deep Learning NLPL WS, 29–31/01/18 158 / 206

Outline

1 Linear Classifiers

2 Neural Networks

3 Training Neural Networks

4 Representation Learning

5 Convolutional Nets

6 Recurrent Neural Networks

7 Sequence-to-Sequence and Beyond

8 Generative Models

André Martins (Unbabel/IT) Deep Learning NLPL WS, 29–31/01/18 159 / 206

Sequence-to-Sequence Learning
(Cho et al., 2014; Sutskever et al., 2014)

Roadmap:

Sequence vector representation

Encoder-decoder architecture

Sequence matrix representation

Attention mechanisms

Encoder-decoder with attention

Applications: machine translation, caption generation

André Martins (Unbabel/IT) Deep Learning NLPL WS, 29–31/01/18 160 / 206

Encode a Sequence as a Vector

(Slide credit: Chris Dyer)

What is a vector representation of a sequence x?

c = RNN(x)

What is the probability of a sequence y | x?

y | x ∼ RNNLM(c)

André Martins (Unbabel/IT) Deep Learning NLPL WS, 29–31/01/18 161 / 206

Encoder-Decoder Architecture

(Slide credit: Chris Dyer)

André Martins (Unbabel/IT) Deep Learning NLPL WS, 29–31/01/18 162 / 206

Some Additional Tricks

From Sutskever et al. (2014):

Deep LSTMs

Reversing the source
sentence

At run time:

Beam search

Ensembling: combine N independently trained models and obtaining
a “consensus” (always helps!)

André Martins (Unbabel/IT) Deep Learning NLPL WS, 29–31/01/18 163 / 206

End-to-End Neural Machine Translation

Previous statistical machine translation models were complicated
pipelines (word alignments → phrase table extraction → language
model → decoding a phrase lattice)

As an alternative, can do end-to-end NMT using a simple
encoder-decoder

Doesn’t quite work yet, but gets close to top performance

André Martins (Unbabel/IT) Deep Learning NLPL WS, 29–31/01/18 164 / 206

Progress in Machine Translation

Slide credit: Rico Sennrich

André Martins (Unbabel/IT) Deep Learning NLPL WS, 29–31/01/18 165 / 206

Encode Everything as a Vector
Works for image inputs too!

(Slide credit: Chris Dyer)

André Martins (Unbabel/IT) Deep Learning NLPL WS, 29–31/01/18 166 / 206

Limitations

A possible conceptual problem:

Sentences have unbounded lengths

Vectors have finite capacity

“You can’t cram the meaning of a whole %&$# sentence into a
single $&# vector!” (Ray Mooney)

A possible practical problem:

Distance between “translations” and their sources are distant—can
LSTMs learn this?

André Martins (Unbabel/IT) Deep Learning NLPL WS, 29–31/01/18 167 / 206

Encode Sentences as Matrices, Not Vectors

Problem with the fixed-size vector model

Sentences are of different sizes but vectors are of the same size

Solution: use matrices instead

Fixed number of rows, but number of columns depends on the
number of words

Then, before generating each word in the decoder, use an attention
mechanism to condition on the relevant source words only

André Martins (Unbabel/IT) Deep Learning NLPL WS, 29–31/01/18 168 / 206

How to Encode a Sentence as a Matrix?

Define the sentence words’ vectors as the columns (probably not very
effective, since the word vectors carry no contextual information)

(Image credit: Chris Dyer)

Convolutional neural networks (Kalchbrenner et al., 2014): can
capture context

Typical choice: Bidirectional LSTMs (Bahdanau et al., 2015)

André Martins (Unbabel/IT) Deep Learning NLPL WS, 29–31/01/18 169 / 206

Bidirectional LSTM Decoder

(Slide credit: Chris Dyer)

André Martins (Unbabel/IT) Deep Learning NLPL WS, 29–31/01/18 170 / 206

Generation from Matrices

We now have a matrix F representing the input. How to generate from it?

Answer: use attention (Bahdanau et al., 2015)

Generate the output sentence word by word using an RNN

At each output position t, the RNN receives two inputs:

a fixed-size vector embedding of the previous output symbol yt−1

a fixed-size vector encoding a “view” of the input matrix F, via a
weighted sum of its columns (i.e., words): Fat

The weighting of the input columns at each time-step (at) is called the
attention distribution

André Martins (Unbabel/IT) Deep Learning NLPL WS, 29–31/01/18 171 / 206

Attention Mechanism (Bahdanau et al., 2015)

Let s1, s2, . . . be the states produced by the decoder RNN

When predicting the tth target word:

1 Compute “similarity” with each of the source words:

zt,i = v · g(Whi + Ust−1 + b), ∀i ∈ [L]

where hi is the ith column of F (representation of the ith source
word), and v , W, U, b are parameters of the model

2 Form vector zt = (zt,1, . . . , zt,i , . . . , zt,L) and compute attention
at = softmax(zt)

3 Use attention to compute input conditioning state ct = Fat
4 Update RNN state st based on st−1, yt−1, ct
5 Predict yt ∼ p(yt | st)

André Martins (Unbabel/IT) Deep Learning NLPL WS, 29–31/01/18 172 / 206

Encoder-Decoder with Attention

(Slide credit: Chris Dyer)

André Martins (Unbabel/IT) Deep Learning NLPL WS, 29–31/01/18 173 / 206

Putting It All Together

obtain input matrix F with a bidirectional LSTM
t = 0, y0 = start (the start symbol)
s0 = w (learned initial state)
repeat
t = t + 1
et = v · g(WF + Ust−1 + b)
compute attention at = softmax(et)
compute input conditioning state ct = Fat
st = RNN(st−1, [E(yt−1), ct])
yt |y<t , x ∼ softmax(Pst + b)

until yt 6= stop

André Martins (Unbabel/IT) Deep Learning NLPL WS, 29–31/01/18 174 / 206

Attention Mechanisms

Attention is closely related to “pooling” operations in convnets (and other
architectures)

Attention in MT plays a similar role as alignment, but leads to “soft”
alignment instead of “hard” alignment

Bahdanau et al. (2015)’s model has no bias in favor of diagonals,
short jumps, fertility, etc.

Some recent work adds some “structural” biases (Luong et al., 2015;
Cohn et al., 2016)

André Martins (Unbabel/IT) Deep Learning NLPL WS, 29–31/01/18 175 / 206

Attention Mechanisms

Attention is used in other problems, sometimes under different names:

image caption generation (Xu et al., 2015)

speech recognition (Chorowski et al., 2015)

memory networks for reading comprehension (Sukhbaatar et al., 2015;
Hermann et al., 2015)

neural Turing machines and other “differentiable computers” (Graves
et al., 2014; Grefenstette et al., 2015)

Also: Sparse attention via sparsemax (Martins and Astudillo, 2016)

André Martins (Unbabel/IT) Deep Learning NLPL WS, 29–31/01/18 176 / 206

Sparse Attention (Martins and Astudillo, 2016)

Recall the similarities/differences between softmax and sparsemax:

André Martins (Unbabel/IT) Deep Learning NLPL WS, 29–31/01/18 177 / 206

Example: Sparse Attention for Natural Language
Inference

SNLI corpus (Bowman et al., 2015): 570K sentence pairs (a premise
and an hypothesis), labeled as entailment, contradiction, or neutral

We used an attention-based architecture as Rocktäschel et al. (2015)

André Martins (Unbabel/IT) Deep Learning NLPL WS, 29–31/01/18 178 / 206

Example: Sparse Attention for Natural Language
Inference

In blue, the premise words selected by the sparse attention mechanism

In red, the hypothesis

Only a few words are selected, which are key for the system’s decision

The sparsemax activation yields a compact and more interpretable
selection, which can be particularly useful in long sentences

A boy rides on a camel in a crowded area while talking on his cellphone.
—— A boy is riding an animal. [entailment]
A young girl wearing a pink coat plays with a yellow toy golf club.
—— A girl is wearing a blue jacket. [contradiction]
Two black dogs are frolicking around the grass together.
—— Two dogs swim in the lake. [contradiction]
A man wearing a yellow striped shirt laughs while seated next to another man who
is wearing a light blue shirt and clasping his hands together.
—— Two mimes sit in complete silence. [contradiction]

André Martins (Unbabel/IT) Deep Learning NLPL WS, 29–31/01/18 179 / 206

Example: Machine Translation
Some positive examples where NMT has impressive performance:

(From Wu et al. (2016))

André Martins (Unbabel/IT) Deep Learning NLPL WS, 29–31/01/18 180 / 206

Example: Machine Translation

... But also some negative examples:

Dropping source words (lack of attention)

Repeated source words (too much attention)

Source: 1922 in Wien geboren, studierte Mang während und nach dem Zweiten
Weltkrieg Architektur an der Technischen Hochschule in Wien bei
Friedrich Lehmann.

Human: Born in Vienna in 1922, Meng studied architecture at the Technical Uni-
versity in Vienna under Friedrich Lehmann during and after the second
World War.

NMT: *Born in Vienna in 1922, Mang studied architecture at the Technical
College in Vienna with Friedrich Lehmann.

Source: Es ist schon komisch, wie dies immer wieder zu dieser Jahreszeit auf-
taucht.

Human: It’s funny how this always comes up at this time of year.
NMT: *It’s funny how this time to come back to this time of year.

André Martins (Unbabel/IT) Deep Learning NLPL WS, 29–31/01/18 181 / 206

Example: Machine Translation

... And an example where neural MT failed miserably:

(Credit: Barry Haddow)

André Martins (Unbabel/IT) Deep Learning NLPL WS, 29–31/01/18 182 / 206

Example: Caption Generation

Attention over images:

(Slide credit to Yoshua Bengio)

André Martins (Unbabel/IT) Deep Learning NLPL WS, 29–31/01/18 183 / 206

A More Extreme Example...

(Slide credit to Dhruv Batra)

André Martins (Unbabel/IT) Deep Learning NLPL WS, 29–31/01/18 184 / 206

Outline

1 Linear Classifiers

2 Neural Networks

3 Training Neural Networks

4 Representation Learning

5 Convolutional Nets

6 Recurrent Neural Networks

7 Sequence-to-Sequence and Beyond

8 Generative Models

André Martins (Unbabel/IT) Deep Learning NLPL WS, 29–31/01/18 185 / 206

Generative Modeling

Modeling complex high-dimensional data is an open problem

Deep generative models are currently making progress on this

Roadmap:

Boltzmann machines

Restricted Boltzmann machines

Deep belief networks

Variational auto-encoders

Generative adversarial networks

André Martins (Unbabel/IT) Deep Learning NLPL WS, 29–31/01/18 186 / 206

The Big Picture

André Martins (Unbabel/IT) Deep Learning NLPL WS, 29–31/01/18 187 / 206

Boltzmann Machine

Energy-based model to learn arbitrary
probability distributions over binary vectors
(Ackley et al., 1985)

Defined over a binary random vector
x = (v ,h) ∈ {0, 1}N×M :

p(v ,h) =
exp(−E (v ,h))

Z

Some variables are observed (v), others are latent (h)

Energy function:

E (v ,h) = −v>Rv − v>Wh − h>Sh − b>v − c>h

André Martins (Unbabel/IT) Deep Learning NLPL WS, 29–31/01/18 188 / 206

Boltzmann Machine

The Boltzmann machine is a universal approximator of probability mass
functions over discrete variables (Le Roux and Bengio, 2008)

In general:

Sampling is hard

Inference is hard

Learning is hard

All Boltzmann machines have an intractable partition function Z , so for
learning the gradient must be approximated:

contrastive divergence

pseudo-likelihood

noise-contrastive estimation

annealed importance sampling

André Martins (Unbabel/IT) Deep Learning NLPL WS, 29–31/01/18 189 / 206

Restricted Boltzmann Machines

Also called harmonium (Smolensky, 1986)

RBMs are undirected probabilistic graphical models containing a layer
of observable variables and a single layer of latent variables

A bipartite graph, without intra-layer connections

Energy becomes: E (v ,h) = −v>Wh − b>v − c>h

André Martins (Unbabel/IT) Deep Learning NLPL WS, 29–31/01/18 190 / 206

Restricted Boltzmann Machines

The partition function Z is still intractable

... however, the conditional distributions p(h | v) and p(v | h) are
tractable!

easy to compute!

easy to sample!

can do MCMC with Gibbs sampling

Why are the conditionals tractable?

Because without intra-layer connections h1, . . . , hN are conditionally
independent given v , hence p(h | v) factors (and similarly for
p(v | h))

RBMs are relatively straightforward to train (by approximating Z)

RBMs may be stacked (one on top of the other) to form deeper models
(e.g. DBNs, DBMs)

André Martins (Unbabel/IT) Deep Learning NLPL WS, 29–31/01/18 191 / 206

Some RBM’s Friends

(Image from Goodfellow et al. (2016))

(a) Restricted Boltzmann machine (RBM)

(b) Deep belief network (DBN): hybrid directed/undirected GM with
multiple latent layers

(c) Deep Boltzmann machine (DBM): undirected GM with several layers
of latent variables

André Martins (Unbabel/IT) Deep Learning NLPL WS, 29–31/01/18 192 / 206

Deep Belief Networks (Hinton et al., 2006)

Began the deep learning renaissance!

Before DBNs: deep models were considered
too difficult to optimize

Today, DBNs mostly fell out of favor

Idea: several layers of latent variables, again
no intra-layer connections

The connections between the top two layers are undirected:

p(h(`),h(`−1)) ∝ exp(−h(`−1)>W(`)h(`)−(b(`−1))>h(`−1)−b(`)>h(`))

The connections between all other layers are directed:

p(hki = 1 | h(k+1)) = σ(b
(k)
i + W

(k+1)
:,i

>
h(k+1))

p(vi = 1 | h(1)) = σ(b
(0)
i + W

(1)
:,i

>
h(1))

André Martins (Unbabel/IT) Deep Learning NLPL WS, 29–31/01/18 193 / 206

Deep Belief Networks

Inference in a deep belief network is intractable:

“explaining away” effect within each directed layer

interaction between the two hidden layers with undirected connections

Evaluating or maximizing the standard evidence lower bound on the
log-likelihood is also intractable

How to train a DBN?

André Martins (Unbabel/IT) Deep Learning NLPL WS, 29–31/01/18 194 / 206

Deep Belief Networks

How to train a DBN?

Layerwise training: begin by training a RBM for the first layer; then
train a second RBM to model the distribution defined by sampling the
hidden units of the first RBM, etc.

Most interest in DBNs arose from their ability to improve classification:

take DBN’s weights and define a MLP (discriminative fine-tuning)

André Martins (Unbabel/IT) Deep Learning NLPL WS, 29–31/01/18 195 / 206

Other Deep Generative Models

Deep Boltzmann Machines

Gaussian-Bernoulli RBMs

Convolutional Boltzmann Machines

Sigmoid Belief Nets

Variational Auto-Encoders

Generative Adversarial Networks

Convolutional Generative Networks

Auto-Regressive Networks

Generative Stochastic Networks

André Martins (Unbabel/IT) Deep Learning NLPL WS, 29–31/01/18 196 / 206

Other Deep Generative Models

Deep Boltzmann Machines

Gaussian-Bernoulli RBMs

Convolutional Boltzmann Machines

Sigmoid Belief Nets

Variational Auto-Encoders

Generative Adversarial Networks

Convolutional Generative Networks

Auto-Regressive Networks

Generative Stochastic Networks

André Martins (Unbabel/IT) Deep Learning NLPL WS, 29–31/01/18 196 / 206

Variational Auto-Encoders (Kingma and Ba, 2014)

http://kvfrans.com/variational-autoencoders-explained

Decoder computes p(z) and pθ(x | z)

Encoder computes qϕ(z | x) = N(z ;µz(x),σz(x)) with variational
parameters ϕ

Loss function: lower variational bound of the log-likelihood

André Martins (Unbabel/IT) Deep Learning NLPL WS, 29–31/01/18 197 / 206

http://kvfrans.com/variational-autoencoders-explained

DRAW: Deep Recurrent Attentive Writer
(Gregor et al., 2015)

André Martins (Unbabel/IT) Deep Learning NLPL WS, 29–31/01/18 198 / 206

Generative Adversarial Networks (GANs)
(Goodfellow et al., 2014)

André Martins (Unbabel/IT) Deep Learning NLPL WS, 29–31/01/18 199 / 206

Images Generated by GANs

(https://tryolabs.com/blog/2016/12/06/major-advancements-deep-learning-2016/)

André Martins (Unbabel/IT) Deep Learning NLPL WS, 29–31/01/18 200 / 206

https://tryolabs.com/blog/2016/12/06/major-advancements-deep-learning-2016/

Conclusions

Deep learning achieved a lot of recent breakthroughs

It’s getting mainstream and will have a increasingly impact in our lives

Part of the success is that neural networks learn good representations, are
excellent function approximators, and now we have enough data to make
them generalize well (and enough computation power to train them)

Many architectures for different input/output formats: feedforward,
convolutional, recurrent

Most successes are for supervised learning—unsupervised is pretty much
unsolved

Things we didn’t talk about:

Neural Turing machines and differentiable computers

Deep reinforcement learning (lots of exciting recent results)

...

André Martins (Unbabel/IT) Deep Learning NLPL WS, 29–31/01/18 201 / 206

Thank you!

Questions?

André Martins (Unbabel/IT) Deep Learning NLPL WS, 29–31/01/18 202 / 206

References I
Ackley, D., Hinton, G., and Sejnowski, T. (1985). A learning algorithm for Boltzmann machines. Cognitive science,

9(1):147–169.

Bahdanau, D., Cho, K., and Bengio, Y. (2015). Neural Machine Translation by Jointly Learning to Align and Translate. In
International Conference on Learning Representations.

Bengio, Y., Ducharme, R., Vincent, P., and Jauvin, C. (2003). A neural probabilistic language model. Journal of Machine
Learning Research, 3(Feb):1137–1155.

Bowman, S. R., Angeli, G., Potts, C., and Manning, C. D. (2015). A Large Annotated Corpus for Learning Natural Language
Inference. In Proc. of Empirical Methods in Natural Language Processing.

Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., and Bengio, Y. (2014). Learning Phrase
Representations Using RNN Encoder-Decoder for Statistical Machine Translation. In Proc. of Empirical Methods in Natural
Language Processing.

Chorowski, J. K., Bahdanau, D., Serdyuk, D., Cho, K., and Bengio, Y. (2015). Attention-based Models for Speech Recognition.
In Advances in Neural Information Processing Systems, pages 577–585.

Cireşan, D., Meier, U., Masci, J., and Schmidhuber, J. (2011). A committee of neural networks for traffic sign classification. In
Neural Networks (IJCNN), The 2011 International Joint Conference on, pages 1918–1921. IEEE.

Ciresan, D. C., Meier, U., Gambardella, L. M., and Schmidhuber, J. (2011a). Convolutional neural network committees for
handwritten character classification. In 2011 International Conference on Document Analysis and Recognition, pages
1135–1139. IEEE.

Ciresan, D. C., Meier, U., Masci, J., Maria Gambardella, L., and Schmidhuber, J. (2011b). Flexible, high performance
convolutional neural networks for image classification. In IJCAI Proceedings-International Joint Conference on Artificial
Intelligence, volume 22, page 1237.

Cohn, T., Hoang, C. D. V., Vymolova, E., Yao, K., Dyer, C., and Haffari, G. (2016). Incorporating structural alignment biases
into an attentional neural translation model. arXiv preprint arXiv:1601.01085.

Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., and Kuksa, P. (2011). Natural language processing (almost)
from scratch. Journal of Machine Learning Research, 12(Aug):2493–2537.

Cybenko, G. (1989). Approximation by superpositions of a sigmoidal function. Mathematics of control, signals and systems,
2(4):303–314.

André Martins (Unbabel/IT) Deep Learning NLPL WS, 29–31/01/18 203 / 206

References II
Duchi, J., Hazan, E., and Singer, Y. (2011). Adaptive subgradient methods for online learning and stochastic optimization.

Journal of Machine Learning Research, 12(Jul):2121–2159.

Elman, J. L. (1990). Finding structure in time. Cognitive science, 14(2):179–211.

Erhan, D., Bengio, Y., Courville, A., Manzagol, P.-A., Vincent, P., and Bengio, S. (2010). Why does unsupervised pre-training
help deep learning? Journal of Machine Learning Research, 11(Feb):625–660.

Fukushima, K. (1980). Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected
by shift in position. Biological cybernetics, 36(4):193–202.

Gal, Y. and Ghahramani, Z. (2015). Dropout as a bayesian approximation: Representing model uncertainty in deep learning.
arXiv preprint arXiv:1506.02142.

Glorot, X. and Bengio, Y. (2010). Understanding the difficulty of training deep feedforward neural networks. In AISTATS,
volume 9, pages 249–256.

Glorot, X., Bordes, A., and Bengio, Y. (2011). Deep Sparse Rectifier Neural Networks. In International Conference on Artificial
Intelligence and Statistics, pages 315–323.

Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep Learning. Book in preparation for MIT Press.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., and Bengio, Y. (2014).
Generative adversarial nets. In Advances in Neural Information Processing Systems, pages 2672–2680.

Graves, A., Wayne, G., and Danihelka, I. (2014). Neural Turing Machines. arXiv preprint arXiv:1410.5401.

Grefenstette, E., Hermann, K. M., Suleyman, M., and Blunsom, P. (2015). Learning to Transduce with Unbounded Memory. In
Advances in Neural Information Processing Systems, pages 1819–1827.

Gregor, K., Danihelka, I., Graves, A., Rezende, D. J., and Wierstra, D. (2015). Draw: A recurrent neural network for image
generation. In Proc. of the International Conference on Machine Learning.

Hermann, K. M., Kocisky, T., Grefenstette, E., Espeholt, L., Kay, W., Suleyman, M., and Blunsom, P. (2015). Teaching
Machines to Read and Comprehend. In Advances in Neural Information Processing Systems, pages 1684–1692.

Hinton, G. E. (1984). Distributed representations.

Hinton, G. E., Osindero, S., and Teh, Y.-W. (2006). A fast learning algorithm for deep belief nets. Neural computation,
18(7):1527–1554.

André Martins (Unbabel/IT) Deep Learning NLPL WS, 29–31/01/18 204 / 206

References III
Hinton, G. E., Srivastava, N., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R. R. (2012). Improving neural networks by

preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580.

Hochreiter, S. and Schmidhuber, J. (1997). Long short-term memory. Neural computation, 9(8):1735–1780.

Hornik, K., Stinchcombe, M., and White, H. (1989). Multilayer feedforward networks are universal approximators. Neural
networks, 2(5):359–366.

Kalchbrenner, N., Grefenstette, E., and Blunsom, P. (2014). A convolutional neural network for modelling sentences. arXiv
preprint arXiv:1404.2188.

Kingma, D. and Ba, J. (2014). Adam: A Method for Stochastic Optimization. In Proc. of International Conference on Learning
Representations.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. In
Advances in neural information processing systems, pages 1097–1105.

Le Roux, N. and Bengio, Y. (2008). Representational power of restricted boltzmann machines and deep belief networks. Neural
computation, 20(6):1631–1649.

LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W., and Jackel, L. D. (1989). Backpropagation
applied to handwritten zip code recognition. Neural computation, 1(4):541–551.

Luong, M.-T., Pham, H., and Manning, C. D. (2015). Effective approaches to attention-based neural machine translation. arXiv
preprint arXiv:1508.04025.

Martins, A. F. T. and Astudillo, R. (2016). From Softmax to Sparsemax: A Sparse Model of Attention and Multi-Label
Classification. In Proc. of the International Conference on Machine Learning.

McCulloch, W. S. and Pitts, W. (1943). A logical calculus of the ideas immanent in nervous activity. The bulletin of
mathematical biophysics, 5(4):115–133.

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., and Dean, J. (2013). Distributed representations of words and phrases and
their compositionality. In Advances in neural information processing systems, pages 3111–3119.

Minsky, M. and Papert, S. (1969). Perceptrons.

Novikoff, A. B. (1962). On convergence proofs for perceptrons. In Symposium on the Mathematical Theory of Automata.

Oord, A. v. d., Kalchbrenner, N., and Kavukcuoglu, K. (2016). Pixel Recurrent Neural Networks. In Proc. of the International
Conference on Machine Learning.

André Martins (Unbabel/IT) Deep Learning NLPL WS, 29–31/01/18 205 / 206

References IV
Rocktäschel, T., Grefenstette, E., Hermann, K. M., Kočiskỳ, T., and Blunsom, P. (2015). Reasoning about Entailment with

Neural Attention. arXiv preprint arXiv:1509.06664.

Rosenblatt, F. (1958). The perceptron: A probabilistic model for information storage and organization in the brain.
Psychological review, 65(6):386.

Smolensky, P. (1986). Information processing in dynamical systems: Foundations of harmony theory. Technical report, DTIC
Document.

Snoek, J., Larochelle, H., and Adams, R. P. (2012). Practical bayesian optimization of machine learning algorithms. In Advances
in neural information processing systems, pages 2951–2959.

Socher, R., Lin, C. C., Manning, C., and Ng, A. Y. (2011). Parsing natural scenes and natural language with recursive neural
networks. In Proceedings of the 28th international conference on machine learning (ICML-11), pages 129–136.

Srivastava, N., Hinton, G. E., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R. (2014). Dropout: a simple way to prevent
neural networks from overfitting. Journal of Machine Learning Research, 15(1):1929–1958.

Sukhbaatar, S., Szlam, A., Weston, J., and Fergus, R. (2015). End-to-End Memory Networks. In Advances in Neural
Information Processing Systems, pages 2431–2439.

Sutskever, I., Vinyals, O., and Le, Q. V. (2014). Sequence to sequence learning with neural networks. In Advances in Neural
Information Processing Systems, pages 3104–3112.

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., and Rabinovich, A. (2015). Going
deeper with convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 1–9.

Tieleman, T. and Hinton, G. (2012). Rmsprop: Divide the gradient by a running average of its recent magnitude. COURSERA:
Neural Networks for Machine Learning, 4(2).

Wager, S., Wang, S., and Liang, P. S. (2013). Dropout training as adaptive regularization. In Advances in neural information
processing systems, pages 351–359.

Wan, L., Zeiler, M., Zhang, S., Cun, Y. L., and Fergus, R. (2013). Regularization of neural networks using dropconnect. In
Proc. of the International Conference on Machine Learning, pages 1058–1066.

Wu, Y., Schuster, M., Chen, Z., Le, Q. V., Norouzi, M., Macherey, W., Krikun, M., Cao, Y., Gao, Q., Macherey, K., et al.
(2016). Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv
preprint arXiv:1609.08144.

Xu, K., Ba, J., Kiros, R., Courville, A., Salakhutdinov, R., Zemel, R., and Bengio, Y. (2015). Show, Attend and Tell: Neural
Image Caption Generation with Visual Attention. In International Conference on Machine Learning.

Zeiler, M. D. and Fergus, R. (2013). Stochastic pooling for regularization of deep convolutional neural networks. arXiv preprint
arXiv:1301.3557.

André Martins (Unbabel/IT) Deep Learning NLPL WS, 29–31/01/18 206 / 206

	Linear Classifiers
	Neural Networks
	Training Neural Networks
	Representation Learning
	Convolutional Nets
	Recurrent Neural Networks
	Sequence-to-Sequence and Beyond
	Generative Models

