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What is Deep Learning?

Neural networks?

Neural networks with many hidden layers?

Anything beyond shallow (linear) models for statistical learning?

Anything that learns representations?

A form of learning that is really intense and profound?
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Why Did Deep Learning Become Mainstream?

Lots of recent breakthroughs:

Object recognition

Speech and language processing

Self-driving cars

Machine translation

Solving games (Atari, Go)

No signs of slowing down...
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Why Now?

Why does deep learning work now, but not 20 years ago?

Many of the core ideas were there, after all.

But now we have:

more data

more computing power

better software engineering

a few algorithmic innovations (many layers, ReLUs, better
initialization and learning rates, dropout, LSTMs, convolutional nets)
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“But It’s Non-Convex”

Why does gradient-based optimization work at all in neural nets despite
the non-convexity?

One possible, partial answer:

there are generally many hidden units

there are many ways a neural net can approximately implement the
desired input-output relationship

we only need to find one
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Outline

1 Linear Classifiers

2 Neural Networks

3 Training Neural Networks

4 Representation Learning

5 Convolutional Nets

6 Recurrent Neural Networks

7 Sequence-to-Sequence and Beyond

8 Generative Models
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Shallow Learning

Before talking about deep learning, let us talk about shallow learning

Roadmap:

Classification/regression

Feature representation

Linear classifiers

Perceptron’s mistake bound and linear separability
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Notation

Input x ∈ X (a news article, an image, ...)

Output y ∈ Y (fake/not fake, a topic, an image segmentation)

Goal: learn a classifier ϕ : X→ Y that generalizes to arbitrary inputs

Supervised learning: learn ϕ from labeled data

{(xn, yn)}Nn=1 ⊆ X× Y
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Classification/Regression

Regression: Y = R
Multivariate regression: Y = RK

Binary classification: Y = {±1}
Multi-class classification: Y = {1, 2, . . . ,K}
Structured classification: Y exponentially large and structured (e.g.,
machine translation, caption generation)

Sometimes reductions are convenient:

one-vs-all for reducing multi-class to binary

greedy search to reduce structured classification to multi-class

Other times it’s better to tackle the problem in its native form
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Feature Representation

Feature engineering is an important step in “shallow” learning:

Bag-of-words features for text, also lemmas, parts-of-speech, ...

SIFT features and wavelet representations in computer vision

Other categorical, Boolean, and continuous features

Typical approach: define a feature map ψ : X→ RD

For multi-class/structured classification, a joint feature map
φ : X× Y→ RD is more convenient

For example, letting ey := (0, . . . , 0, 1, 0, . . . , 0) be the indicator vector of
a class:

φ(x , y) = φ(x)⊗ ey
= (0, . . . , 0,ψ(x), 0, . . . , 0).
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Linear Classifiers

Parametrized by a weight vector w ∈ RD (one weight per feature)

Define a score for each class as a linear function of the parameters

At test time, predict the class ŷ which maximizes this score:

ŷ = ϕ(x) = arg max
y∈Y

w · φ(x , y)

Examples: perceptron, näıve Bayes, logistic regression, support
vector machines
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Perceptron (Rosenblatt, 1958)

(Extracted from Wikipedia)

Invented in 1957 at the
Cornell Aeronautical
Laboratory by Frank
Rosenblatt

Implemented in custom-built
hardware as the “Mark 1
perceptron,” designed for
image recognition

400 photocells, randomly
connected to the “neurons.”
Weights were encoded in
potentiometers

Weight updates during
learning were performed by
electric motors.
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Perceptron in the News...
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Perceptron Algorithm

input: labeled data {(xi , yi )}Ni=1 ⊆ X× Y

initialize w (0) = 0
initialize k = 0 (number of mistakes)
repeat

get new training example xi , yi
predict ŷi = arg maxy∈Y w (k) · φ(xi , y)
if ŷi 6= yi then

update w (k+1) = w (k) + φ(xi , yi )− φ(xi , ŷi )
increment k

end if
until maximum number of epochs
output: model weights w
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Perceptron’s Mistake Bound

A couple definitions:

the training data is linearly separable with margin γ > 0 iff there is a
weight vector u with ‖u‖ = 1 such that

u · φ(xi , yi ) ≥ u · φ(xi , y
′
i ) + γ, ∀i ∈ [N], ∀y ′i 6= yi .

radius of the data: R = maxi∈[N],y ′i 6=yi ‖φ(xi , yi )− φ(xi , y
′
i )‖.

Then we have the following bound of the number of mistakes:

Theorem (Novikoff (1962))

The perceptron algorithm is guaranteed to find a separating hyperplane
after at most R2

γ2 mistakes.
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One-Slide Proof

Lower bound on ‖w (k+1)‖:

u ·w (k+1) = u ·w (k) + u · (φ(xi , yi )− φ(xi , ŷi ))

≥ u ·w (k) + δ

≥ kδ.

Hence ‖w (k+1)‖ = ‖u‖ · ‖w (k+1)‖ ≥ u ·w (k+1) ≥ kδ (from CSI).

Upper bound on ‖w (k+1)‖:

‖w (k+1)‖2 = ‖w (k)‖2 + ‖φ(xi , yi )− φ(xi , ŷi )‖2

+2w (k) · (φ(xi , yi )− φ(xi , ŷi ))

≤ ‖w (k)‖2 + R2

≤ kR2.

Equating both sides, we get (kδ)2 ≤ kR2 ⇒ k ≤ R2/δ2 (QED).
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What a Simple Perceptron Can and Can’t Do

Can solve linearly separable problems (OR, AND)

(Image credit: Hugo Larochelle)

Can’t solve non-linearly separable problems (XOR)—unless input is
transformed into a better representation

(Image credit: Hugo Larochelle)

This was observed by Minsky and Papert (1969) and motivated
strong criticisms

André Martins (Unbabel/IT) Deep Learning NLPL WS, 29–31/01/18 21 / 206



Other Linear Classifiers

Logistic regression.

Define pw (y | x) ∝ exp(w · φ(x , y)) and maximize the conditional
log-likelihood of the training data

Support vector machines.

Similar to perceptron, but attempts to find the model w that
maximizes the separation margin δ

Adds slack variables for non-separable data, penalizing violations

Both lead to convex optimization problems ⇒ no issues with local
minima/initialization

Both assume the features are well-engineered such that the data is nearly
linearly separable
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What If Data Are Not Linearly Separable?

Engineer better features (often works!)

Kernel methods:

works implicitly in a high-dimensional feature space

... but still need to choose/design a good kernel

model capacity confined to positive-definite kernels

Neural networks (next)

... or how I stopped worrying and learned to love non-convexity

instead of engineering features/kernels, engineer the model
architecture
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Outline
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2 Neural Networks
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Neural Networks

Roadmap:

Biological and artificial neuron

Activation functions

Multi-layer neural networks

Softmax and sparsemax

Universal approximation theorem
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Biological Neuron

Three main parts: the main body (soma), dendrites and an axon

The neuron receives input signals from dendrites, and then outputs its
own signals through the axon

Axons in turn connect to the dendrites of other neurons, using special
connections called synapses

Generate sharp electrical potentials across their cell membrane
(spikes), a major signaling unit of the nervous system
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Word of Caution

Artificial neurons are inspired by biological neurons in nervous
systems, but...
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Artificial Neuron (McCulloch and Pitts, 1943;
Rosenblatt, 1958)

Pre-activation (input activation):

z(x) = w · x + b =
D∑
i=1

wixi + b,

where w are the connection weights and b
is a bias term.

Activation:

h(x) = g(z(x)) = g(w · x + b),

where g : R→ R is the activation function.
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Activation Function

Typical choices:

Linear

Sigmoid (logistic function)

Hyperbolic Tangent

Rectified Linear

Later:

Softmax

Sparsemax

Max-pooling
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Linear Activation

g(z) = z

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

No “squashing” of the input

Composing layers of linear units is equivalent to a single layer of linear
units, so no expressive power added when going multi-layer (more
later)

Still useful to linear-project the input to a lower dimension
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Sigmoid Activation

g(z) = σ(z) =
1

1 + e−z

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

“Squashes” the neuron pre-activation between 0 and 1

The output can be interpreted as a probability

Positive, bounded, strictly increasing

Logistic regression corresponds to a network with a single sigmoid unit

Combining layers of sigmoid units will increase expressiveness (more
later)
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Hyperbolic Tangent Activation

g(z) = tanh(z) =
ez − e−z

ez + e−z

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

“Squashes” the neuron pre-activation between −1 and 1

Related to the sigmoid via σ(z) = 1+tanh(z/2)
2

Can be positive or negative, bounded, strictly increasing

Combining layers of tanh units will increase expressiveness (more
later)
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Rectified Linear Unit Activation (Glorot et al., 2011)

g(z) = relu(z) = max{0, z}

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

Less prone to vanishing gradients (more later), and historically the
first activation that allowed training deep nets without unsupervised
pre-training (Glorot et al., 2011)

Non-negative, increasing, but not upper bounded

Not differentiable at 0

Leads to neurons with sparse activities (biologically more plausible)
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Capacity of Single Neuron (Linear Classifier)

With a single sigmoid activated neuron we can do logistic regression:

p(y = 1|x) = σ(w · x + b).

Can solve linearly separable
problems (OR, AND)

Can’t solve non-linearly separable
problems (XOR)—unless input is
transformed into a better
representation

(Slide credit: Hugo Larochelle)
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Multi-Layer Neural Network

Key idea: add intermediate layers of artificial neurons before the final
output layer

Each of these hidden units computes some representation of the input
and propagates forward that representation

This increases the expressive power of the network, yielding more
complex, non-linear, classifiers

Similar role as latent variables in probabilistic models, but no need for
a probability semantics

Also called feed-forward neural network
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Single Hidden Layer

Assume D inputs (x ∈ RD) and K hidden units (h ∈ RK )

Hidden layer pre-activation:

z(x) = W(1)x + b(1),

with W(1) ∈ RK×D and b(1) ∈ RK .

Hidden layer activation:

h(z) = g(z(x)),

where g : RK → RK is applied vectorwise.

Output layer activation:

f (x) = o(w (2)h + b(2)),

where w (2) ∈ RK and o : R→ R if the output activation function.
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Detour: Multiple Classes

For multi-class classification, we need multiple output units (one per class)

Each output estimates the conditional probability p(y = c | x)

Predicted class is the one with highest estimated probability

We’ll see two activation functions suitable for this:

Softmax activation

Sparsemax activation
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Softmax Activation

Let ∆C−1 ⊆ RC be the probability simplex

The typical activation function for multi-class classification is
softmax : RC → ∆C−1:

o(z) = softmax(z) =

[
exp(z1)∑
c exp(zc)

, . . . ,
exp(zC )∑
c exp(zc)

]

Strictly positive, sums to 1

Resulting distribution has full support: softmax(z) > 0,∀z
A disadvantage if a sparse probability distribution is desired

Common workaround: threshold and truncate

André Martins (Unbabel/IT) Deep Learning NLPL WS, 29–31/01/18 38 / 206



Sparsemax Activation (Martins and Astudillo, 2016)

A sparse-friendly alternative is sparsemax : RC → ∆C−1, defined as:

o(z) = sparsemax(z) := arg min
p∈∆C−1

‖p − z‖2.

In words: Euclidean projection of z onto the probability simplex

Likely to hit the boundary of the simplex, in which case
sparsemax(z) becomes sparse (hence the name)

Retains many of the properties of softmax (e.g. differentiability),
having in addition the ability of producing sparse distributions

Projecting onto the simplex amounts to a soft-thresholding operation

Efficient forward/backward propagation (more later)
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Two Dimensions

Parametrize z = (t, 0)

The 2D softmax is the logistic (sigmoid) function:

softmax1(z) = (1 + exp(−t))−1

The 2D sparsemax is the “hard” version of the sigmoid:

− 3 − 2 − 1 0 1 2 3
t

0.0

0.2

0.4

0.6

0.8

1.0 softmax1([t,0])

sparsemax1([t,0])
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Three Dimensions

Parameterize z = (t1, t2, 0) and plot softmax1(z) and
sparsemax1(z) as a function of t1 and t2

sparsemax is piecewise linear, but asymptotically similar to softmax
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Multiple Hidden Layers

Now assume L ≥ 1 hidden layers:

Hidden layer pre-activation (define
h(0) = x for convenience):

z (`)(x) = W(`)h(`−1) + b(1),

with W(`) ∈ RK`×K`−1 and b(`) ∈ RK` .

Hidden layer activation:

h(`)(x) = g(z (`)(x)).

Output layer activation:

f (x) = o(z (L+1)(x)) = o(W(L+1)h(L) + b(L+1)).
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Universal Approximation Theorem

Theorem (Hornik et al. (1989))

A neural network with a single hidden layer and a linear output unit can
approximate any continuous function arbitrarily well, given enough hidden
units.

First proved for the sigmoid case by Cybenko (1989), then to tanh
and many other activation functions by Hornik et al. (1989)

Note: may need exponentially many hidden units

Deeper networks (more hidden layers) can provide more compact
approximations
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“Simple” Target Function, One Hidden Layer

(http://playground.tensorflow.org)

André Martins (Unbabel/IT) Deep Learning NLPL WS, 29–31/01/18 44 / 206

http://playground.tensorflow.org


Complex Target Function, One Hidden Layer

(http://playground.tensorflow.org)
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Complex Target Function, Two Hidden Layers

(http://playground.tensorflow.org)
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Complex Target Function, Two Hidden Layers, ReLU

(http://playground.tensorflow.org)
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Complex Target Function, Four Hidden Layers,
ReLU

(http://playground.tensorflow.org)
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Capacity of Neural Networks

Neural networks are excellent function approximators!

The universal approximation theorem is a nice result, but:

We need a learning algorithm that finds the necessary parameter
values

... and if we want to generalize, we need to control overfitting
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Coffee Break
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Outline

1 Linear Classifiers

2 Neural Networks

3 Training Neural Networks

4 Representation Learning

5 Convolutional Nets

6 Recurrent Neural Networks

7 Sequence-to-Sequence and Beyond

8 Generative Models
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Training Neural Networks

Roadmap:

Empirical risk minimization

Stochastic gradient descent

Gradient backpropagation

Computation graph

Regularization

Initialization and other tricks of the trade
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Empirical Risk Minimization

Goal: choose parameters θ := {(W(`),b(`))}L+1
`=1 that minimize the

following objective function:

L(θ) := λΩ(θ) +
1

N

N∑
n=1

L(f (xi ;θ), yi )

Ω(θ) is a regularizer

L(f (xi ;θ), yi ) is a loss function

λ is a regularization constant
(an hyperparameter that needs
to be tuned)
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Stochastic Gradient Descent

Batch gradient requires a full pass over the data before updating the
weights—too slow!

Stochastic gradient descent (SGD) approximates ∇θL(θ) by a “noisy
gradient” based on a single example (a random i ∈ [N]):

∇θL(θ) ≈ ∇θLi (θ) := λ∇θΩ(θ) +∇θL(f (xi ;θ), yi ).

The weights θ = {(W(`),b(`))}L+1
`=1 are then updated as:

θ ← θ − η∇θLi (θ)

We need:

The loss function L(f (xi ;θ), yi );

The regularizer Ω(θ) and its gradient;

A procedure for computing the gradients ∇θL(f (xi ;θ), yi ).
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Loss Function

Should match as much as possible the metric we want to optimize at test
time

Should be well-behaved (continuous, maybe smooth) to be amenable to
optimization (this rules out the 0/1 loss)

Some examples:

Squared loss for regression

Negative log-likelihood (cross-entropy) for multi-class classification

Sparsemax loss for multi-class and multi-label classification
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Squared Loss

The common choice for regression/reconstruction problems

The neural network estimates f (x ;θ) ≈ y
We minimize the mean squared error:

L(f (x ;θ), y) =
1

2
‖f (x ;θ)− y‖2

Loss gradient:
∂L(f (x ;θ, y))

∂fc(x ;θ)
= fc(x ;θ)− yc
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Negative Log-Likelihood (Cross-Entropy)

The common choice for a softmax output layer

The neural network estimates fc(x ;θ) ≈ p(y = c | x)

We minimize the negative log-likelihood (also called cross-entropy):

L(f (x ;θ), y) = −
∑
c

1(y=c) log fc(x ;θ)

= − log fy (x ;θ)

= − log softmax(z(x)),

where z is the output pre-activation.

Loss gradient at output pre-activation:

∂L(f (x ;θ, y))

∂zc
= −(1y=c − softmaxc(z(x)))
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Sparsemax Loss (Martins and Astudillo, 2016)

The natural choice for a sparsemax output layer

The neural network estimates fc(x ;θ) ≈ p(y = c | x) as a sparse
distribution

L(f (x ;θ), y) = −zc +
1

2

∑
j∈S(z)

(z2
j − τ2(z)) +

1

2
,

where z is the output pre-activation, S(z) is the support of p(y | x)
and τ2 : RK → R is the square of the threshold function (see Martins
and Astudillo (2016) for details).

Loss gradient at output pre-activation:

∂L(f (x ;θ, y))

∂zc
= −(1y=c − sparsemaxc(z(x)))
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Classification Losses in Two Dimensions

Let the correct label be y = 1 and define t = z1 − z2:
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Gradient Computation

Recall that we need to compute

∇θLi (θ) := λ∇θΩ(θ) +∇θL(f (xi ;θ), yi )

for θ = {(W(`),b(`))}L+1
`=1 (the weights and biases at all layers)

This will be done with the gradient backpropagation algorithm

Key idea: use the chain rule for derivatives!
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Recap: Chain Rule

∂r(t)

∂t
= ?

∂r(u)

∂u

∂u(t)

∂t
+
∂r(v)

∂v

∂v(t)

∂t
= 2tv + 3u

= 2t(3t + 1) + 3t2 = 9t2 + 2t.

If a function r(t) can be written as a function of intermediate results
qi (t), then we have:

∂r(t)

∂t
=
∑
i

∂r(t)

∂qi (t)

∂qi (t)

∂t

We can invoke it by setting t to a output unit in a layer; qi (t) to the
pre-activation in the layer above; and r(t) to the loss function.
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André Martins (Unbabel/IT) Deep Learning NLPL WS, 29–31/01/18 61 / 206



Hidden Layer Gradient

(Recap: z (`+1) = W(`+1)h(`) + b(`+1))

∂L(f (x ;θ), y)

∂h
(`)
j

=
∑
i

∂L(f (x ;θ), y)

∂z
(`+1)
i

∂z
(`+1)
i

∂h
(`)
j

=
∑
i

∂L(f (x ;θ), y)

∂z
(`+1)
i

W (`+1)
i ,j

Hence ∇h(`)L(f (x ;θ), y) = W (`+1)>∇z(`+1)L(f (x ;θ), y).
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Hidden Layer Gradient (Before Activation)

(Recap: h
(`)
j = g(z

(`)
j ), where g : R→ R is the activation function)

∂L(f (x ;θ), y)

∂z
(`)
j

=
∂L(f (x ;θ), y)

∂h
(`)
j

∂h
(`)
j

∂z
(`)
j

=
∂L(f (x ;θ), y)

∂h
(`)
j

g ′(z
(`)
j )

Hence ∇z(`)L(f (x ;θ), y) = ∇h(`)L(f (x ;θ), y)� g ′(z (`)).

How to compute the derivative of the activation function g ′(z (`))?
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Linear Activation

g(z) = z

Derivative:

g ′(z) = 1

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3
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Sigmoid Activation

g(z) = σ(z) =
1

1 + e−z

Derivative:

g ′(z) = g(z)(1− g(z))

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3
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Hyperbolic Tangent Activation

g(z) = tanh(z) =
ez − e−z

ez + e−z

Derivative:

g ′(z) = 1− g(z)2

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3
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Rectified Linear Unit Activation (Glorot et al., 2011)

g(z) = relu(z) = max{0, z}

Derivative (except for z = 0):

g ′(z) = 1z>0

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3
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Parameter Gradient

(Recap: z (`) = W(`)h(`−1) + b(`))

∂L(f (x ;θ), y)

∂W
(`)
i ,j

=
∂L(f (x ;θ), y)

∂z
(`)
i

∂z
(`)
i

∂W
(`)
i ,j

=
∂L(f (x ;θ), y)

∂z
(`)
i

h
(`−1)
j

Hence ∇W(`)L(f (x ;θ), y) = ∇z(`)L(f (x ;θ), y)h(`−1)>

Similarly, ∇b(`)L(f (x ;θ), y) = ∇z(`)L(f (x ;θ), y)
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Backpropagation

Compute output gradient (before activation):

∇z (L+1)L(f (x ;θ), y) = −(1y − f (x))

for ` from L + 1 to 1 do
Compute gradients of hidden layer parameters:

∇W(`)L(f (x ;θ), y) = ∇z (`)L(f (x ;θ), y) h(`−1)>

∇b(`)L(f (x ;θ), y) = ∇z (`)L(f (x ;θ), y)

Compute gradient of hidden layer below:

∇h(`)L(f (x ;θ), y) = W (`+1)>∇z (`+1)L(f (x ;θ), y)

Compute gradient of hidden layer below (before activation):

∇z (`)L(f (x ;θ), y) = ∇h(`)L(f (x ;θ), y)� g ′(z (`))

end for
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Computation Graph

Forward propagation can be represented as a
DAG

Allows to implement forward propagation in a
modular way

Each box can be an object with a fprop

method, that computes the value of the box
given its children

Calling the fprop method of each box in the
right order (after a topological sort) yields
forward propagation
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Automatic Differentiation

... Also allows to implement backpropagation
in a modular way

Each box can also have a bprop method, that
computes the loss gradient with respect to its
children, given the loss gradient with respect to
the output

Can make use of cached computation done
during the fprop method

By calling the bprop method in reverse order,
we get backpropagation (only need to reach
the parameters)
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Many Software Toolkits for Neural Networks

Theano

Tensorflow

Torch

Keras

Caffe

DyNet

...

All implement automatic differentiation.
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Some Theano Code (Logistic Regression)
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Some Code in Tensorflow (Linear Regression)
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Some Code in Keras (Multi-Layer Perceptron)

André Martins (Unbabel/IT) Deep Learning NLPL WS, 29–31/01/18 75 / 206



Regularization

Recall that we’re minimizing the following objective function:

L(θ) := λΩ(θ) +
1

N

N∑
n=1

L(f (xi ;θ), yi )

It remains to define the regularizer and its gradient

We’ll talk about:

`2 regularization

`1 regularization

dropout regularization
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`2 Regularization

Gaussian prior on the weights

Note: only the weights are regularized (not the biases)

Ω(θ) =
1

2

∑
`

‖W(`)‖2

Gradient is:
∇W(`)Ω(θ) = W(`)

This has the effect of a weight decay:

W(`) ← W(`) − η∇W(`)Li (θ)

= W(`) − η(λ∇W(`)Ω(θ) +∇W(`)L(f (xi ;θ), yi ))

= (1− ηλ)W(`) − η∇W(`)L(f (xi ;θ), yi )
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`1 Regularization

Laplacian prior on the weights

Note: only the weights are regularized (not the biases)

Ω(θ) =
∑
`

‖W(`)‖1

Gradient is:
∇W(`)Ω(θ) = sign(W(`))

Promotes sparsity of the weights
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Dropout Regularization (Srivastava et al., 2014)

Idea: During training, remove some hidden units stochastically
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Dropout Regularization (Srivastava et al., 2014)

Each hidden unit’s output is set to 0 with probability p (e.g. p = 0.5)

This prevents hidden units to co-adapt to other units, forcing them to
be more generally useful

At test time, keep all units, but multiply their outputs by 1− p

Shown to be a form of adaptive regularization (Wager et al., 2013)

Note: many software packages implement another variant, inverted
dropout, where at training time the output of the units that were not
dropped is divided by 1− p and requires no change at test time
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Implementation of Dropout

This is usually implemented using random binary masks

The hidden layer activations become (for ` = 1, . . . , L):

h(`)(x) = g(z (`)(x))�m(`)

Beats regular backpropagation on many datasets (Hinton et al., 2012)

Other variants, e.g. DropConnect (Wan et al., 2013), Stochastic
Pooling (Zeiler and Fergus, 2013)
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Backpropagation with Dropout

Compute output gradient (before activation):

∇z (L+1)L(f (x ;θ), y) = −(1y − f (x))

for ` from L + 1 to 1 do
Compute gradients of hidden layer parameters:

∇W(`)L(f (x ;θ), y) = ∇z (`)L(f (x ;θ), y) h(`−1)>︸ ︷︷ ︸
includes m(`−1)

∇b(`)L(f (x ;θ), y) = ∇z (`)L(f (x ;θ), y)

Compute gradient of hidden layer below:

∇h(`)L(f (x ;θ), y) = W (`+1)>∇z (`+1)L(f (x ;θ), y)

Compute gradient of hidden layer below (before activation):

∇z (`)L(f (x ;θ), y) = ∇h(`)L(f (x ;θ), y)� g ′(z (`))�m(`−1)

end for
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Initialization

Initialize all biases to zero

For weights:

Cannot initialize to zero with tanh activation (the gradients would
also be zero and we would reach a saddle point)

Cannot initialize the weights to the same value (need to break the
symmetry)

Random initialization (Gaussian, uniform), sampling around 0 to
break symmetry

For ReLU activations, the mean should be a small positive number

Variance cannot be too high, otherwise all neuron activations will be
saturated
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“Glorot Initialization”

Recipe from Glorot and Bengio (2010):

W
(`)
i ,j ∼ U[−t, t], with t =

√
6√

K (`) + K (`−1)

Works well in practice with tanh and sigmoid activations
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Training, Validation, and Test Sets

Split datasets in training, validation, and test partitions.

Training set serves to train the model

Validation set serves to tune hyperparameters (learning rate, number
of hidden units, regularization coefficient, dropout probability, best
epoch, etc.)

Test set serves to estimate the generalization performance
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Hyperparameter Tuning: Grid Search, Random
Search

Search for the best configuration of the hyperparameters:

Grid search: specify a set of values we want to test for each
hyperparameter, and try all configurations of these values

Random search: specify a distribution over the values of each
hyper-parameter (e.g. uniform in some range) and sample
independently each hyper-parameter to get configurations

Bayesian optimization and learning to learn (Snoek et al., 2012)

We can always go back and fine-tune the grid/distributions if necessary
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Early Stopping

To select the number of epochs, stop training when validation error
increases (with some look ahead)

One common strategy (with SGD) is to halve the learning rate for
every epoch where the validation error increases

(Image credit: Hugo Larochelle)
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Tricks of the Trade

Normalization of the data

Decaying the learning rate

Mini-batches

Adaptive learning rates

Gradient checking

Debugging on a small dataset
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Normalization of the Data

For each input dimension: subtract the training set mean and divide
by the training set standard deviation

This makes each input dimension have zero mean, unit variance

This can speed up training (in number of epochs)

Doesn’t work for sparse inputs (destroys sparsity)
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Decaying the Learning Rate

In SGD, as we get closer to a local minimum, it makes sense to take
smaller update steps (to avoid diverging)

Start with a large learning rate (say 0.1)

Keep it fixed while validation error keeps improving

Divide by 2 and go back to the previous step
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Mini-Batches

Instead of updating after a single example, can aggregate a
mini-batch of examples (e.g. 50–200 examples) and compute the
averaged gradient for the entire mini-batch

Less noisy than vanilla SGD

Can leverage matrix-matrix computations (or tensor computations)

Large computational speed-ups in GPUs (since computation is
trivially parallelizable accross the mini-batch and we can exhaust the
GPU memory)
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Adaptive Learning Rates

Instead of using the same step size for all parameters, have one learning
rate per parameter

Adagrad (Duchi et al., 2011): learning rates are scaled by the square
root of the cumulative sum of squared gradients

η(t) = η(t−1) + (∇θL(f (x), y))2, ∇̄(t)
θ =

∇θL(f (x), y)√
η(t) + ε

RMSprop (Tieleman and Hinton, 2012): instead of cumulative sum,
use exponential moving average

η(t) = βη(t−1) + (1− β)(∇θL(f (x), y))2, ∇̄(t)
θ =

∇θL(f (x), y)√
η(t) + ε

Adam (Kingma and Ba, 2014): combine RMSProp with momentum
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Gradient Checking

If the training loss is not decreasing even with a very small learning
rate, there’s likely a bug in the gradient computation

To debug your implementation of fprop/bprop, compute the
“numeric gradient,” a finite difference approximation of the true
gradient:

∂f (x)

∂x
≈ f (x + ε)− f (x − ε)

2ε
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Debugging on a Small Dataset

Extract a small subset of your training set (e.g. 50 examples)

Monitor your training loss in this set

You should be able to overfit in this small training set

If not, see if some units are saturated from the very first iterations (if
they are, reduce the initialization variance or properly normalize your
inputs)

If the training error is bouncing up and down, decrease the learning
rate
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Outline

1 Linear Classifiers

2 Neural Networks

3 Training Neural Networks

4 Representation Learning

5 Convolutional Nets

6 Recurrent Neural Networks

7 Sequence-to-Sequence and Beyond

8 Generative Models
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Representation Learning

One of the greatest features of neural networks is their ability to learn
representations

Deeper neural networks learn coarse-to-fine representation layers

Roadmap:

Hierarchical compositionality

Distributed representations

Unsupervised pre-training

Auto-encoders

Word embeddings
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Hierarchical Compositionality

Vision:

pixels → edge → texton → motif → part → object → scene

Speech:

audio sample → spectral band → formant → motif → phone → word

Text:

character → word → phrase → sentence → story

(Slide inspired by Marc’Aurelio Ranzato and Yann LeCun)
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Hierarchical Compositionality
Feature visualization of convolutional net trained on ImageNet from Zeiler
and Fergus (2013):
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The Mammalian Visual Cortex is Hierarchical

(Slide inspired by Marc’Aurelio Ranzato and Yann LeCun)
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Distributed Representations (Hinton, 1984)

Compare one-hot representations (one dimension per object) with
distributed representations (one dimension per property):

(Slide inspired by Moontae Lee and Dhruv Batra)

Key idea: no single neuron “encodes” everything; groups of neurons
(e.g. in the same hidden layer) work together
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The Power of Distributed Representations

Distributed representations are more powerful, as they can generalize
to unseen objects in a meaningful way:

(Slide inspired by Moontae Lee and Dhruv Batra)
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Unsupervised Pre-Training (Erhan et al., 2010)
Training deep networks (with many hidden layers) can be challenging

This has been a major difficulty with neural networks for a long time

Solution: initialize hidden layers using unsupervised learning:

Force network to represent latent structure of input distribution

Encourage hidden layers to encode that structure

Examples: auto-encoders, restricted Boltzmann machines

(Image credit: Hugo Larochelle)
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Auto-Encoders

An auto-encoder is a feed-forward neural network trained to reproduce its
input at the output layer

Encoder:

h(x) = g(Wx + b)

Decoder:

x̂ = W>h(x) + c

Loss function (for real-valued inputs):

L(x̂ ; x) =
1

2
‖x̂ − x‖2

Generalizes PCA (recovered if activation function g is linear)!
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Some Variants of Auto-Encoders

Sparse auto-encoders: use many hidden units, and add a `1

regularization term to encourage sparse representations of the input

Denoising auto-encoders: regularize by adding noise to the input;
the goal is to learn a smooth representation function that allows to
output the denoised input (inspired by image denoising)

Stacked auto-encoders: stack several auto-encoders on top of each
other

Variational auto-encoders: a generative probabilistic model that
minimizes a variational bound (more later)
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Unsupervised Pre-Training (Erhan et al., 2010)

A greedy, layer-wise procedure:

train one layer at a time, from first to last, with unsupervised criterion
(e.g. an auto-encoder)

fix the parameters of previous hidden layers

previous layers viewed as feature extraction

Pre-training initializes the parameters in a region such that the near local
optima overfit less the data.
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Fine-Tuning

Once all layers are pre-trained:

add output layer

train the whole network using supervised learning

Supervised learning is performed as in a regular feed-forward network:

forward propagation, backpropagation and update

all parameters are “tuned” for the supervised task at hand

representation is adjusted to be more discriminative
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Word Representations (Embeddings)

Distributional similarity based representations: represent a word by means
of its neighbors

“You shall know a word by the company it keeps” (J. R. Firth, 1957)

One of the most successful ideas of modern statistical NLP

How do we obtain lower dimensional vector representations of words?

Method 1: Factorization of a co-occurrence word/context matrix
(latent semantic analysis, etc.)

Method 2: Directly learn low-dimensional vectors by training a
network to predict the context of a given word (word2vec)

Word2vec (Mikolov et al., 2013) follows previous ideas of Bengio et al.
(2003) and Collobert et al. (2011), but in a simpler and faster model
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Word Vectors

Word2vec comes with two variants:

Skip-gram (our focus): predict surrounding context words in a
window of length m of every word

Continuous bag-of-words (CBOW): predict the central word from
the context

Objective function of skip-gram: maximize the log probability of any
context word given the current center word:

J(θ) =
1

T

T∑
t=1

∑
−m≤j≤m, j 6=0

log p(wt+j | wt)

Define p(wt+j = o | wt = c) ∝ exp(uo · vc) (a log-linear model)

Every word has two vectors!
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Negative Sampling

With large vocabularies this objective function is not scalable and
would train too slowly (requires a softmax over the entire vocabulary)

Workaround: negative sampling: train binary logistic regressions for
a true pair (center word and word in its context window) and a couple
of random pairs (the center word with a random word)

Jt(θ) = log σ(uo · vc) +
k∑

i=1

log σ(−uji · vc), ji ∼ P(w)

André Martins (Unbabel/IT) Deep Learning NLPL WS, 29–31/01/18 109 / 206



Linear Relationships (Mikolov et al., 2013)

These representations are very good at encoding dimensions of
similarity!

Word analogies can be solved quite well just by doing vector
subtraction in the embedding space

Syntactically:

xapple − xapples ≈ xcar − xcars ≈ xfamily − xfamilies

Semantically:

xshirt − xclothing ≈ xchair − xfurniture

xking − xman ≈ xqueen − xwoman

(Slide credit to Richard Socher)
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Word Analogies (Mikolov et al., 2013)

(Slide credit to Richard Socher)
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GloVe Visualizations: Company → CEO

(Slide credit to Richard Socher)
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GloVe Visualizations: Superlatives

(Slide credit to Richard Socher)
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Lunch Break

André Martins (Unbabel/IT) Deep Learning NLPL WS, 29–31/01/18 114 / 206



Outline

1 Linear Classifiers

2 Neural Networks

3 Training Neural Networks

4 Representation Learning

5 Convolutional Nets

6 Recurrent Neural Networks

7 Sequence-to-Sequence and Beyond

8 Generative Models
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Convolutional Neural Networks

Convolutional Neural Networks are neural networks with specialized
connectivity structure

Roadmap:

Parameter Tying

2D Convolutional Nets for Object Recognition

Pooling

ImageNet, AlexNet, GoogLeNet

1D Convolutional Nets in NLP

Visualization and Google DeepDream
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Convolutions and Parameter Tying

(Convolution: h[t] = (x ∗ w)[t] =
∑∞

a=−∞ x [a]w [t − a])

Basic idea: sparse connectivity + parameter tying

Leads to translation equivariance

Why do we want to tie (share) parameters?

Reduce the number of parameters to be learned

Deal with arbitrary long, variable-length, sequences
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Pooling Layers

Aggregate to achieve local invariance:

Subsampling to reduce temporal/spacial scale and computation:

(Slide credit to Yoshua Bengio)
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Multiple Convolutions: Feature Maps

Different filter weights for each channel, but keeping spatial
invariance:

(Slide credit to Yoshua Bengio)
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2D Convolutional Nets (LeCun et al., 1989)

Inspired by “Neocognitron” (Fukushima, 1980)

2D Convolutions: the same filter (e.g. 3x3) is applied to each
location of the image

The filter weights are learned (as tied parameters)

Multiple filters

Alternates convolutional and pooling layers
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ConvNet Successes

Handwritten text/digits:

MNIST (0.35% error (Ciresan et al., 2011b))

Arabic and Chinese (Ciresan et al., 2011a)

Simpler recognition benchmarks:

CIFAR-10 (9.3% error (Wan et al., 2013))

Traffic signs: 0.56% error vs 1.16% for humans (Cireşan et al., 2011)

But less good at more complex datasets, e.g. Caltech-101/256 (few
training examples)
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ImageNet Dataset

14 million labeled images, 20k classes

Images gathered from Internet

Human labels via Amazon Turk

(Slide credit to Rob Fergus)
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AlexNet (Krizhevsky et al., 2012)

54M parameters; 8 layers (5 conv, 3 fully-connected)

Trained on 1.4M ImageNet images

Trained on 2 GPUs for a week (50x speed-up over CPU)

Dropout regularization

Test error: 16.4% (second best team was 26.2%)
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GoogLeNet (Szegedy et al., 2015)

GoogLeNet inception module: very deep convolutional network, fewer
(5M) parameters
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Convolutional Nets in NLP

1D convolutions

Filters are applied to local windows around
each word

For word embeddings x1, . . . , xL, the filter
response for word i is:

hi = g(W[xi−h ⊕ . . .⊕ xi ⊕ . . . xi+h] + b),

where ⊕ denotes vector concatenation and W
are shared parameters

Can pad left and right with special symbols if
necessary

Kalchbrenner et al. (2014)
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Mini-Batching, Padding, and Masking

Mini-batching is necessary to speed up training (e.g. in GPUs)

But how to cope with different input sizes (e.g. different sentence
lengths)?

Solution: Minimize waste by sorting by sentence length before forming
mini-batches, then padding:

(Image credit: Thang Luong, Kyunghyun Cho, Chris Manning)
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What Representations Are We Learning?

Which neurons fire for recognizing a particular object?

What parts of the network are activated?

To understand this, we need a way of visualizing what’s happening inside
the network.
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Visualization

Idea: Optimize input to maximize particular output

Depends on the initialization

Google DeepDream, maximizing “banana” output:

(from https://research.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html)

Can also specify a particular layer and tune the input to maximize the
layer’s activations—useful to see what kind of features each layer is
representing

Specifying a higher layer produces more complex representations...
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Google DeepDream

(from https://research.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html)
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Recurrent Neural Networks

Lots of interesting data is sequential in nature: words in sentences, DNA,
stock market returns

How do we represent an arbitrarily long history?

Roadmap:

Feedforward vs recurrent

Backpropagation through time

Vanishing/exploding gradient problem

Long short-term memories and gated recurrent units

Bidirectional RNNs
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Feed-forward vs Recurrent Networks

Feed-forward neural networks:

h = g(Vx + c)

ŷ = Wh + b

Recurrent neural networks (Elman, 1990):

ht = g(Vxt + Uht−1 + c)

ŷt = Wht + b

(Slide credit: Chris Dyer)
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How do We Train the RNN Parameters?

(Slide credit: Chris Dyer)

The unrolled graph is a well-formed (DAG) computation graph—we
can run the gradient backpropagation algorithm as usual

Parameters tied accross “time”, derivatives aggregated across time
steps

This instantiation is called backpropagation through time (BPTT)
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Parameter Tying

(Slide credit: Chris Dyer)

∂F

∂U
=

4∑
t=1

∂ht

∂U

∂F

∂ht

Same idea as when learning the filters in convolutional neural networks
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Example: Language Modeling

Assume we want to generate text, and yt is a
word in the vocabulary

Typically, large vocabulary size: |V | = 100, 000

z = Wh + b

p(yt = i) =
exp(zi )∑
j exp(zj)

= softmaxi (z)

(Slide credit: Chris Dyer)
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Example: Language Modeling

(Slide credit: Chris Dyer)

p(x1, . . . , xL) = p(x1)× p(x2 | x1)× . . .× p(xL | x1, . . . , xL−1)

= softmax(Wh1 + b)× softmax(Wh2 + b)× . . .
× softmax(WhL + b)
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Language Modeling Training

(Slide credit: Chris Dyer)
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Language Modeling Training

Unlike Markov (n-gram) models, RNNs never forget!

However we will see they might have trouble learning to use their
memories (more soon...)

Algorithms:

Sample a sequence from the probability distribution defined by the
RNN

Train the RNN to minimize cross entropy (aka MLE)

What about: what is the most probable sequence?
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Backpropagation Through Time

What happens to the gradients as we go back in time?

(Slide credit: Chris Dyer)
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Backpropagation Through Time

What happens to the gradients as we go back in time?

∂F

∂h1
=

∂h2

∂h1

∂h3

∂h2

∂h4

∂h3︸ ︷︷ ︸∏4
t=2

∂ht
∂ht−1

∂ŷ
∂h4

∂F

∂ŷ

where ∏
t

∂ht

∂ht−1
=
∏
t

∂ht

∂zt
∂zt
∂ht−1

=
∏
t

Diag(g ′(zt))U

Three cases:

largest eigenvalue of U exactly 1: gradient propagation is stable

largest eigenvalue of U < 1: gradient vanishes (exponential decay)

largest eigenvalue of U > 1: gradient explodes (exponential growth)
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Vanishing and Exploding Gradients

Exploding gradients can be dealt with by gradient clipping (truncating
the gradient if it exceeds some magnitude)

Vanishing gradients are more frequent and harder to deal with

In practice: long-range dependencies are difficult to learn

Solutions:

Better optimizers (second order methods)

Normalization to keep the gradient norms stable across time

Clever initialization so that you at least start with good spectra (e.g.,
start with random orthonormal matrices)

Alternative parameterizations: LSTMs and GRUs
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Gradient Clipping

Norm clipping:

∇̃ ↔
{ c
‖∇‖∇ if ‖∇‖ ≥ c

∇ otherwise.

Elementwise clipping:

∇̃i ↔ min{c , |∇i |} × sign(∇i ), ∀i
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Alternative RNNs

I’ll next describe:

Gated recurrent units (GRUs; Cho et al. (2014))

Long short-term memories (LSTMs; Hochreiter and Schmidhuber
(1997))

Intuition: instead of multiplying across time (which leads to exponential
growth), we want the error to be approximately constant

They solve the vanishing gradient problem, but still have exploding
gradients (gradient clipping still helps)
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Gated Recurrent Units (Cho et al., 2014)

Recall the problem: the error must backpropagate through all the
intermediate nodes:

Idea: Maybe we can create some kind of shortcut connections:

(Image credit: Thang Luong, Kyunghyun Cho, Chris Manning)

Create adaptive shortcuts controlled by special gates
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Gated Recurrent Units (Cho et al., 2014)

(Image credit: Thang Luong, Kyunghyun Cho, Chris Manning)

ht = ut � h̃t + (1− ut)� ht−1

Candidate update: h̃t = g(Vxt + U(rt � ht−1) + b)

Reset gate: rt = σ(Vrxt + Urht−1 + br )

Update gate: ut = σ(Vuxt + Uuht−1 + bu)
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Long Short-Term Memories
(Hochreiter and Schmidhuber, 1997)

Key idea: use memory cells ct
To avoid the multiplicative effect, flow information additively through
these cells

Control the flow with special input, forget, and output gates

(Image credit: Chris Dyer)
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Long Short-Term Memories

(Image credit: Chris Dyer)

ct = ft � ct−1 + it � (Vxt + Uht−1 + b), ht = ot � g(ct)

Forget gate: ft = σ(Vf xt + Uf ht−1 + bf )

Input gate: it = σ(Vixt + Uiht−1 + bi )

Output gate: ot = σ(Voxt + Uoht−1 + bo)
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Long Short-Term Memories

(Slide credit: Christopher Olah)
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Summary

Better gradient propagation is possible if we use additive rather than
multiplicative/highly non-linear recurrent dynamics

Recurrent architectures are an active area of research (but LSTMs are
hard to beat)

Other variants of LSTMs exist which tie/simplify some of the gates

Extensions exist for non-sequential structured inputs/outputs (e.g.
trees): recursive neural networks (Socher et al., 2011), PixelRNN
(Oord et al., 2016)
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RNNs for Generating Images

Input-to-state and state-to-state mappings for PixelCNN an two
PixelRNN models (Oord et al., 2016):
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RNNs for Generating Images

(Oord et al., 2016)
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More Tricks of the Trade

Depth

Dropout

Implementation Tricks
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Deep RNNs/LSTMs/GRUs

Depth in recurrent layers helps in practice (2–8 layers seem to be
standard)

Input connections may or may not be used

(Slide credit: Chris Dyer)
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Dropout in Deep RNNs/LSTMs/GRUs

Apply dropout between layers, but not on the recurrent connections

... Or use the same mask for all recurrent connections (Gal and
Ghahramani, 2015)

(Slide credit: Chris Dyer)
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Implementation Tricks

For speed:

Use diagonal matrices instead of full matrices (esp. for gates)

Concatenate parameter matrices for all gates and do a single
matrix-vector multiplication

Use optimized implementations (from NVIDIA)

Use GRUs or reduced-gate variant of LSTMs

For learning speed and performance:

Initialize so that the bias on the forget gate is large (intuitively: at
the beginning of training, the signal from the past is unreliable)

Use random orthogonal matrices to initialize the square matrices
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Mini-Batching

RNNs, LSTMs, GRUs all consist of lots of elementwise operations
(addition, multiplication, nonlinearities), and lots of matrix-vector
products

Mini-batching: convert many matrix-vector products into a single
matrix-matrix multiplication

Batch across instances, not across time

The challenge with working with mini batches of sequences is...
sequences are of different lengths (we’ve seen this when talking about
convolutional nets)

This usually means you bucket training instances based on similar
lengths, and pad with zeros

Be careful when padding not to back propagate a non-zero value!

André Martins (Unbabel/IT) Deep Learning NLPL WS, 29–31/01/18 156 / 206



Bidirectional RNNs

We can read a sequence from left to
right to obtain a representation

Or we can read it from right to left

Or we can read it from both and
combine the representations

More later...

(Slide credit: Chris Dyer)
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Coffee Break
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Sequence-to-Sequence Learning
(Cho et al., 2014; Sutskever et al., 2014)

Roadmap:

Sequence vector representation

Encoder-decoder architecture

Sequence matrix representation

Attention mechanisms

Encoder-decoder with attention

Applications: machine translation, caption generation
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Encode a Sequence as a Vector

(Slide credit: Chris Dyer)

What is a vector representation of a sequence x?

c = RNN(x)

What is the probability of a sequence y | x?

y | x ∼ RNNLM(c)
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Encoder-Decoder Architecture

(Slide credit: Chris Dyer)
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Some Additional Tricks

From Sutskever et al. (2014):

Deep LSTMs

Reversing the source
sentence

At run time:

Beam search

Ensembling: combine N independently trained models and obtaining
a “consensus” (always helps!)
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End-to-End Neural Machine Translation

Previous statistical machine translation models were complicated
pipelines (word alignments → phrase table extraction → language
model → decoding a phrase lattice)

As an alternative, can do end-to-end NMT using a simple
encoder-decoder

Doesn’t quite work yet, but gets close to top performance

André Martins (Unbabel/IT) Deep Learning NLPL WS, 29–31/01/18 164 / 206



Progress in Machine Translation

Slide credit: Rico Sennrich
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Encode Everything as a Vector
Works for image inputs too!

(Slide credit: Chris Dyer)
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Limitations

A possible conceptual problem:

Sentences have unbounded lengths

Vectors have finite capacity

“You can’t cram the meaning of a whole %&$# sentence into a
single $&# vector!” (Ray Mooney)

A possible practical problem:

Distance between “translations” and their sources are distant—can
LSTMs learn this?
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Encode Sentences as Matrices, Not Vectors

Problem with the fixed-size vector model

Sentences are of different sizes but vectors are of the same size

Solution: use matrices instead

Fixed number of rows, but number of columns depends on the
number of words

Then, before generating each word in the decoder, use an attention
mechanism to condition on the relevant source words only
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How to Encode a Sentence as a Matrix?

Define the sentence words’ vectors as the columns (probably not very
effective, since the word vectors carry no contextual information)

(Image credit: Chris Dyer)

Convolutional neural networks (Kalchbrenner et al., 2014): can
capture context

Typical choice: Bidirectional LSTMs (Bahdanau et al., 2015)
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Bidirectional LSTM Decoder

(Slide credit: Chris Dyer)
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Generation from Matrices

We now have a matrix F representing the input. How to generate from it?

Answer: use attention (Bahdanau et al., 2015)

Generate the output sentence word by word using an RNN

At each output position t, the RNN receives two inputs:

a fixed-size vector embedding of the previous output symbol yt−1

a fixed-size vector encoding a “view” of the input matrix F, via a
weighted sum of its columns (i.e., words): Fat

The weighting of the input columns at each time-step (at) is called the
attention distribution
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Attention Mechanism (Bahdanau et al., 2015)

Let s1, s2, . . . be the states produced by the decoder RNN

When predicting the tth target word:

1 Compute “similarity” with each of the source words:

zt,i = v · g(Whi + Ust−1 + b), ∀i ∈ [L]

where hi is the ith column of F (representation of the ith source
word), and v , W, U, b are parameters of the model

2 Form vector zt = (zt,1, . . . , zt,i , . . . , zt,L) and compute attention
at = softmax(zt)

3 Use attention to compute input conditioning state ct = Fat
4 Update RNN state st based on st−1, yt−1, ct
5 Predict yt ∼ p(yt | st)
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Encoder-Decoder with Attention

(Slide credit: Chris Dyer)
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Putting It All Together

obtain input matrix F with a bidirectional LSTM
t = 0, y0 = start (the start symbol)
s0 = w (learned initial state)
repeat
t = t + 1
et = v · g(WF + Ust−1 + b)
compute attention at = softmax(et)
compute input conditioning state ct = Fat
st = RNN(st−1, [E(yt−1), ct ])
yt |y<t , x ∼ softmax(Pst + b)

until yt 6= stop
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Attention Mechanisms

Attention is closely related to “pooling” operations in convnets (and other
architectures)

Attention in MT plays a similar role as alignment, but leads to “soft”
alignment instead of “hard” alignment

Bahdanau et al. (2015)’s model has no bias in favor of diagonals,
short jumps, fertility, etc.

Some recent work adds some “structural” biases (Luong et al., 2015;
Cohn et al., 2016)
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Attention Mechanisms

Attention is used in other problems, sometimes under different names:

image caption generation (Xu et al., 2015)

speech recognition (Chorowski et al., 2015)

memory networks for reading comprehension (Sukhbaatar et al., 2015;
Hermann et al., 2015)

neural Turing machines and other “differentiable computers” (Graves
et al., 2014; Grefenstette et al., 2015)

Also: Sparse attention via sparsemax (Martins and Astudillo, 2016)
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Sparse Attention (Martins and Astudillo, 2016)

Recall the similarities/differences between softmax and sparsemax:

André Martins (Unbabel/IT) Deep Learning NLPL WS, 29–31/01/18 177 / 206



Example: Sparse Attention for Natural Language
Inference

SNLI corpus (Bowman et al., 2015): 570K sentence pairs (a premise
and an hypothesis), labeled as entailment, contradiction, or neutral

We used an attention-based architecture as Rocktäschel et al. (2015)

André Martins (Unbabel/IT) Deep Learning NLPL WS, 29–31/01/18 178 / 206



Example: Sparse Attention for Natural Language
Inference

In blue, the premise words selected by the sparse attention mechanism

In red, the hypothesis

Only a few words are selected, which are key for the system’s decision

The sparsemax activation yields a compact and more interpretable
selection, which can be particularly useful in long sentences

A boy rides on a camel in a crowded area while talking on his cellphone.
—— A boy is riding an animal. [entailment]
A young girl wearing a pink coat plays with a yellow toy golf club.
—— A girl is wearing a blue jacket. [contradiction]
Two black dogs are frolicking around the grass together.
—— Two dogs swim in the lake. [contradiction]
A man wearing a yellow striped shirt laughs while seated next to another man who
is wearing a light blue shirt and clasping his hands together.
—— Two mimes sit in complete silence. [contradiction]
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Example: Machine Translation
Some positive examples where NMT has impressive performance:

(From Wu et al. (2016))
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Example: Machine Translation

... But also some negative examples:

Dropping source words (lack of attention)

Repeated source words (too much attention)

Source: 1922 in Wien geboren, studierte Mang während und nach dem Zweiten
Weltkrieg Architektur an der Technischen Hochschule in Wien bei
Friedrich Lehmann.

Human: Born in Vienna in 1922, Meng studied architecture at the Technical Uni-
versity in Vienna under Friedrich Lehmann during and after the second
World War.

NMT: *Born in Vienna in 1922, Mang studied architecture at the Technical
College in Vienna with Friedrich Lehmann.

Source: Es ist schon komisch, wie dies immer wieder zu dieser Jahreszeit auf-
taucht.

Human: It’s funny how this always comes up at this time of year.
NMT: *It’s funny how this time to come back to this time of year.
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Example: Machine Translation

... And an example where neural MT failed miserably:

(Credit: Barry Haddow)
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Example: Caption Generation

Attention over images:

(Slide credit to Yoshua Bengio)
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A More Extreme Example...

(Slide credit to Dhruv Batra)
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Generative Modeling

Modeling complex high-dimensional data is an open problem

Deep generative models are currently making progress on this

Roadmap:

Boltzmann machines

Restricted Boltzmann machines

Deep belief networks

Variational auto-encoders

Generative adversarial networks
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The Big Picture
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Boltzmann Machine

Energy-based model to learn arbitrary
probability distributions over binary vectors
(Ackley et al., 1985)

Defined over a binary random vector
x = (v ,h) ∈ {0, 1}N×M :

p(v ,h) =
exp(−E (v ,h))

Z

Some variables are observed (v), others are latent (h)

Energy function:

E (v ,h) = −v>Rv − v>Wh − h>Sh − b>v − c>h
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Boltzmann Machine

The Boltzmann machine is a universal approximator of probability mass
functions over discrete variables (Le Roux and Bengio, 2008)

In general:

Sampling is hard

Inference is hard

Learning is hard

All Boltzmann machines have an intractable partition function Z , so for
learning the gradient must be approximated:

contrastive divergence

pseudo-likelihood

noise-contrastive estimation

annealed importance sampling
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Restricted Boltzmann Machines

Also called harmonium (Smolensky, 1986)

RBMs are undirected probabilistic graphical models containing a layer
of observable variables and a single layer of latent variables

A bipartite graph, without intra-layer connections

Energy becomes: E (v ,h) = −v>Wh − b>v − c>h
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Restricted Boltzmann Machines

The partition function Z is still intractable

... however, the conditional distributions p(h | v) and p(v | h) are
tractable!

easy to compute!

easy to sample!

can do MCMC with Gibbs sampling

Why are the conditionals tractable?

Because without intra-layer connections h1, . . . , hN are conditionally
independent given v , hence p(h | v) factors (and similarly for
p(v | h))

RBMs are relatively straightforward to train (by approximating Z )

RBMs may be stacked (one on top of the other) to form deeper models
(e.g. DBNs, DBMs)
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Some RBM’s Friends

(Image from Goodfellow et al. (2016))

(a) Restricted Boltzmann machine (RBM)

(b) Deep belief network (DBN): hybrid directed/undirected GM with
multiple latent layers

(c) Deep Boltzmann machine (DBM): undirected GM with several layers
of latent variables
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Deep Belief Networks (Hinton et al., 2006)

Began the deep learning renaissance!

Before DBNs: deep models were considered
too difficult to optimize

Today, DBNs mostly fell out of favor

Idea: several layers of latent variables, again
no intra-layer connections

The connections between the top two layers are undirected:

p(h(`),h(`−1)) ∝ exp(−h(`−1)>W(`)h(`)−(b(`−1))>h(`−1)−b(`)>h(`))

The connections between all other layers are directed:

p(hki = 1 | h(k+1)) = σ(b
(k)
i + W

(k+1)
:,i

>
h(k+1))

p(vi = 1 | h(1)) = σ(b
(0)
i + W

(1)
:,i

>
h(1))
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Deep Belief Networks

Inference in a deep belief network is intractable:

“explaining away” effect within each directed layer

interaction between the two hidden layers with undirected connections

Evaluating or maximizing the standard evidence lower bound on the
log-likelihood is also intractable

How to train a DBN?
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Deep Belief Networks

How to train a DBN?

Layerwise training: begin by training a RBM for the first layer; then
train a second RBM to model the distribution defined by sampling the
hidden units of the first RBM, etc.

Most interest in DBNs arose from their ability to improve classification:

take DBN’s weights and define a MLP (discriminative fine-tuning)
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Other Deep Generative Models

Deep Boltzmann Machines

Gaussian-Bernoulli RBMs

Convolutional Boltzmann Machines

Sigmoid Belief Nets

Variational Auto-Encoders

Generative Adversarial Networks

Convolutional Generative Networks

Auto-Regressive Networks

Generative Stochastic Networks
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Other Deep Generative Models

Deep Boltzmann Machines

Gaussian-Bernoulli RBMs

Convolutional Boltzmann Machines

Sigmoid Belief Nets

Variational Auto-Encoders

Generative Adversarial Networks

Convolutional Generative Networks

Auto-Regressive Networks

Generative Stochastic Networks
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Variational Auto-Encoders (Kingma and Ba, 2014)

http://kvfrans.com/variational-autoencoders-explained

Decoder computes p(z) and pθ(x | z)

Encoder computes qϕ(z | x) = N(z ;µz(x),σz(x)) with variational
parameters ϕ

Loss function: lower variational bound of the log-likelihood
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DRAW: Deep Recurrent Attentive Writer
(Gregor et al., 2015)
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Generative Adversarial Networks (GANs)
(Goodfellow et al., 2014)
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Images Generated by GANs

(https://tryolabs.com/blog/2016/12/06/major-advancements-deep-learning-2016/)
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Conclusions

Deep learning achieved a lot of recent breakthroughs

It’s getting mainstream and will have a increasingly impact in our lives

Part of the success is that neural networks learn good representations, are
excellent function approximators, and now we have enough data to make
them generalize well (and enough computation power to train them)

Many architectures for different input/output formats: feedforward,
convolutional, recurrent

Most successes are for supervised learning—unsupervised is pretty much
unsolved

Things we didn’t talk about:

Neural Turing machines and differentiable computers

Deep reinforcement learning (lots of exciting recent results)

...
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Thank you!

Questions?
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