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"l do think that most participants will know the basics
about embeddings, neural networks and loss functions
(although the depth of their knowledge will vary, of
course).”



"l do think that most participants will know the basics
about embeddings, neural networks and loss functions
(although the depth of their knowledge will vary, of
course).”



Neural Networks
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functions from vectors

to vectors
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Neural Networks

p(©00060])-= l-lll-l--l_-_--___ll_

functions from vectors
to probabilities

(these are still functions from vectors to vectors)
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Predicting from a vector
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==
NLP

Predict from a vector
(Linear Layer)

/llll

Yy UL UL L]

Wx + Db

T

predict(x) = Wx + b
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NLP

Predict from a vector ¢
(Linear Layer)
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Yy jin n mm |llll||| ]

Wx + Db

T

predict(x) = Wx + b

predict(x) = arg max(Wx + b);



71 Predict from a vector ¢
(Linear Layer + softmax)

p(y =7|x)
y l-lll-l_ __________ Il-
softmax !
y’ '|||I|'n'||m|||||| predict(x) = softmax(Wx + b)
| Frmaz(x)) = ——s
softmax(x); = vy
-VVX—%t) g E:je 7]
!

X 00000




= Predict from a vector /2

(Linear Layer + softmax)

p(y =7|x)
y CIE| N Il-
softmax !
y’ l|lllllll'|llllll|lll predict(x) = softmax(Wx + b)
| Ftmaz(x) = s
softmax(x)i = .
Wx + b g D, eXl
T (can still take the argmax, will yield same result)

X 00000




71 Predict from a vector ¢
(Linear Layer + softmax)

p(y =7|x)
Y sl - I__ predict(x) = softmax(Wx + b)
softmax | ft (x) et
softmax(x); = vy
-VVX—%t) g E:je 7]
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LI Training: s
Learning as optimization

Data:
X1,y .-9 X
I Y13 ¥Yn (vi are vectors, why?)
T T
1 Desired:

softmax

Wx + b fo(xX) “that works well”

“I.. / - hypothesis class
9 — W.b - parameters
T ,

- a search problem



Training:
Learning as optimization

X1y .0y Xp
Y13 ¥Yn
Desired:

f@ (X) "that works well"

LY, Yy)

loss function

Yo = fo(x1), ..., fo(Xn)
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i Training: A
Learning as optimization

X109 Xp
Y1, ¥Yn
Desired:

f@ (X) "that works well"

L(Y,Yy) x> Lyi, fo(xi))

loss function 1=1 decomposed
over items

Yo = fo(x1), ..., fo(Xn)



i Training: A
Learning as optimization

A

arg min £(Y, Yy) ~ solved with
0 gradient based methods
Desired:

f@ (X) "that works well"

L(Y,Yy) x> Lyi, fo(xi))

loss function 1=1 decomposed
over items

Yo = fo(x1), - fo(Xn)



O Training: Az
cross-entropy loss

arg min L(Y,Yy) ;f(yi, fo(xi))

When prediction are "probabilities” S’[k] = P (y — ]C|X)

gcross—ent — Z Y[k] log y[k]
k

for "nard" (0 or 1) labels: | Leross-ent = — 10g y[t]



LI Training: s
cross-entropy loss

other loss functions are available. but not today.

arg min £(Y, Yo) o >~ Uy, folx1)

1=1

A

When prediction are "probabilities” Yik] — P (y — k|X)

Zcross—ent — Z VA lOg y[k]
k

for "hard" (0 or 1) labels: | Lcross-ent = — 10g y[t]




=1  Hypothesis classes:
from (log) linear to MLP
A/ N I--
softmax 1
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.y Hypothesis classes: a2
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" from (log) Ilnear to MLP
| W I--
saftmaa? 1
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softmax ] W2h -+ b2
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.y Hypothesis classes:

sof tmax

MLP (multi-layer
perceptron)

Is strictly more
powerful than

W?4h + b?

non-linearity g(h)

linear. (ReLU)

Can learn any borel- h
measurable function

(if large enough) Wix + bl

from (loQ) Ilnear to MLP

T
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T

T

T

T
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1.0
0.5
0.0
-0.5
-1.0

sigmoid(x)

/

6 -4 -2 0

2

1.0
0.5
0.0
-0.5
-1.0

the common ones

tanh(z)

-6 -4 -2 O

2

1.0
0.5
0.0

- -0.5
- -1.0

-6

RelLU(x)

-4 -2 0

2
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Neural Network

y l-lll-l--l_-_--___ll_
softmax |

what is x? X 00000
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Predicting from words
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Neural NLP Building Blocks

e Word Embeddings: translate a word to a vector.

e \Ways of combining vectors.
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" Word Embeddings

e Translate each word in the (fixed) vocabulary to a vector.
e Jypical dimensions: 100-300
e Jranslation is done using a lookup table.
e Can be "pre-trained" (word2vec, glove)

e Dealing with "infinite" vocabularies:

e {characters}, {word pieces, bpe}, {fastText}



== A2
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" Word Embeddings

e {characters}, {word pieces, bpe}, {fastText}

dinosaur=dinosaur

v
dinosaur = dino #sa #ur

v
dinosaur =

dinosa + inosau + nosaur +
dino + INnOS + hosa + osau + saur
+ din + 1IN0 + NOS + 0Sa + sau + aur
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" Word Embeddings

Vbook — E [bOOk]

20000 Vipook

"book"
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Combining Vectors

VIT

Viread T

\faT

Vbook T

T

book

VaboutT

T

about
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Combining Vectors

| read a book about

T

concatenate
Y
00000 00000 00000 00000 00000
V7 T VreadT VaT VbookT VaboutT

I read a book about
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Combining Vectors

| read a book about

T

sum

Y

0000 + 00000 1+ 00000 + 00000 + 00000
V7 T V?“eadT VaT VbookT VaboutT

I read a book about
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Combining Vectors

| read a book about

T

sum (or average)

Y

0000 + 00000 1+ 00000 + 00000 + 00000
V7 T V?“eadT VaT VbookT VaboutT

I read a book about
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Combining Vectors

book a about read |

T

sum (or average)

Y

0000 + 00000 1+ 00000 + 00000 + 00000
V7 T V?“eadT VaT VbookT VaboutT

I read a book about
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Concatenate

| read

| read

a

| read

a book

| read a book about

more words = longer vectors

Combining Vectors
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Sum (or average)

| read

| read

d

| read

a book

"cbow"

| read a book about

| book a read about
book about read | a
| a about book read
a read about book |

order invariant
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The Computation Graph
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for ARTIFICIAL INTELLIGENCE
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aradient-pased training

 Computing the gradients:

 The network (and loss calculation) is a
mathematical function.

Uz, k) = —log(softmax(W?3g*(W?g' (W'z + b')+b?) + b?)[k])

* Calculus rules apply.

* (a bit hairy, but carefully follow the chain rule and
you'll get there)



B | U . klz
i+ The Computation Graph ~*
(CG)

* a DAG. (axb+1)*(a*xb+2)

Leafs are inputs (or parameters).
Nodes are operators (functions).
Edges are results (values).

Can be built for any function.




MLP,

1 x17

output layer — Gommed

1x17

o

2Nx17 x 17

hidden layer — o> (98 Lie

parameters




M L Pywith concrete input

iINnput

concat w1l
1 x 50i T\x 50 1 x 50

~.] T

“the”

1 x17

output layer — Cotma>

117

QDD

117

Qo
hidden layer — o> (42

1 x

1 50\1§0

x 20

“black”

“dog”

E

parameters

Embedding matrix

—



@
M L P;with concrete input T 0SS
and loss o

output layer — » «—— expected output

hidden layer — C\

parameters

Embedding matrix

X50/

E




* Create a graph for each
training example.

* Once graph is built, we have
two essential algorithms:

* Forward:
compute all values.

 Backward (backprop):
compute all gradients.




Computing the Gradlents

(backprop)

e Consider the chain-rule T
(example on blackboard) Con)
e Fach node needs to know B T
how to: T
Cann
 Compute forward. <>\
| Cone™> ] D]
* Compute its local p Bedsae

gradient. | RN




"""The Python Neural Networks Toolkits

Landscape (partial)

theano y m
Tensortlow

‘ot ﬁy/md PYTORCH

Chainer



[he Python Neural Networks loolkits

Landscape (partial)
high-level

low-level

‘o 8>//n6t PYTORCH

Chainer



"""The Python Neural Networks loolkits

Landscape (partial)
high-level

theano #

TensorFlow
static graphs
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""The Python Neural Networks [oolKits

Landscape (partial)
high-level

theano M

Tensof W
static graphs

dynamic graphs \
ChQ @y/ Netl pPYTHRCH

dliner
\— fast also on CPU

- automatic batching
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N L P o AR NP Licsnee
Network Training algorithm:
1x1 @
 For each training example T LR
(or mini-batch): o) 3
» Create graph for computing loss. e
« Compute loss (forward). G [92]  [57]
 Compute gradients (backwards).
G

 Update model parameters.




# model initialization.
model = Model ()

mWl = model.add_parameters ((20,150))
mbl = model.add_parameters (20)
mW2 = model.add_parameters((17,20))

mb2 = model.add_parameters (17)
lookup = model.add_lookup_parameters ((100, 50))

# Building the computation graph:
renew_cg () # create a new graph.

# Wrap the model parameters as graph-nodes.
Wl = parameter (mWl)

bl = parameter (mbl)

W2 = parameter (mW2)

b2 = parameter (mb2)

def get_index(x): return 1

# Generate the embeddings layer.
vthe = lookup[get_index ("the") ]
vblack = lookup[get_index ("black") ]
vdog = lookup[get_index ("dog") ]

# Connect the leaf nodes into a complete graph.
X = concatenate([vthe, vblack, wvdog])

output = softmax (W2* (tanh (Wlxx)+bl)+b2)

loss = —-log(pick (output, 5))

loss_value = loss.forward()

loss.backward () # the gradient 1is computed
# and stored in the corresponding
# parameters.

DyNet Example
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ALLEN INSTITUTE
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DyNet Example
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# model initialization.
model = Model ()
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Back to Combining Vectors
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ConvNets

* "bags of ngrams’.

o Useful!

(we'll probably skip them today)
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(another way to represent text convolutions)

conv
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(another way to represent text convolutions)
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was
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(another way to represent text convolutions)
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the actual service was not very  good

(we'll focus on the 1-d view here,
but remember they are equivalent)



(usually also add non linearity)
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(can have larger filters)
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(can have larger filters)
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the actual service was  not very

we have the ngram vectors. now what?

good
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Combine K vectors into a single vector
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Combine K vectors into a single vector

This vector is a summary of the K vectors,
and can be used for prediction.
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the

actual

service

Was
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max over each dimension

very

good



“y =
softmax(LJ)
MLP !
U
t
tanh(WU + b)
O o O O O O T
® 4+ © 4+ ® 4+ O 4+ O 4+ O = oo
O O o O - O
000 000 OO0 OO OO0 DO OGO
the actual service was Not very  good

train end-to-end for some task

(train the MLP, the filter matrix, and the embeddings together)






Combining Vectors

Recurrent Neural Network: RNN

VIT

Viread T
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Vbook T

T

book

90000
VaboutT
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Combining Vectors

R tN | Net k: RNN
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RsrnN(si—1,Xi) = tanh(W?

Recurrent Neural Network: RNN
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Recurrent Neural Network: RNN

Rrstam(sj—1,%;) =|[cj; hy]
Cj =Cj—1 Of+goi
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TLSTM: differential gates

Rrstm(sj—1,%;) =|[cj; hy]
c;=cj_1 Of+g0oi
h; =tanh(c;) ® o
i =0c(W* . x;+ W™ . h;_;)
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g =tanh(W*8 . x; + WP . h;_,)

better controlled memory access



LSTM: differential gates

for ARTIFICIAL INTELLIGENCE

 The main idea behind the LSTM is that you want to
somehow control the "memory access’.

* InaSimpleRNN:

RSRNN(Si—la Xi) — tanh(WS - Sj—1 T+ W*. Xi)

e N\

read previous state memory write new Input

* All the memory gets overwritten



Vector Gates

 We'd like to:
* Selectively read from some memory “cells”.
* Selectively write to some memory “cells’.
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Vector "Gates’

* Selectively read from some memory “cells”.
* Selectively write to some memory “cells’.

* A gate function:

:Pd c oo - CD:

: e

gate controls access

o

_15_

11
12
13
14

X

(element-wise multiplication)

N

vector of values



Vector "Gates’

e \WWe'd like to:

* Selectively read from some memory “cells’.
* Selectively write to some memory “cells’.

* A gate function:
Si_1 O g g € {0,1}¢

RN

vector of values gate controls access
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Vector "Gates’

e Using the gate function to control access:

S —Si—108 +x08"7 gE{O,l}d

e N\

which cells to read which cells to write
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Vector "Gates’

e Using the gate function to control access:

S —Si—108 +x08"7 gE{O,l}d

e N\

which cells to read which cells to write

» (can also tie them: g" =1 —g")
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" Differentiable "Gates"
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 Problem with the gates:
* they are fixed.
* they don't depend on the input or the output.



" Differentiable "Gates"

LLLLLLLLLLLLLLLLLLLLLLLL

 Problem with the gates:

* they are fixed.
* they don't depend on the input or the output.

e Solution: make them smooth, input dependent, and

trainable.
gr — O'(W - X —|—U Sl—].)
almost O"/ \ |
or function of input and state

‘almost 1°
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(Long short-term Memory)

* The LSTM is a specific combination of gates.

Rrsrm(sj—1,%;) =[cj; hy]
c; =Ci_1Of+g0O1
h; =tanh(c;) ® o
i =c(W* .x; + W™ . h;_;)
f =c(W*' . x; + W™ . h;_;)
0 =0(W*°.x; + W"° . h;_;)
g =tanh(W*8 . x; + W"€ . h;_;)

OLSTM(SJ') — OLSTM([CJ5 hj]) = h;
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Recurrent Neural Network: RNN

Rrstam(sj—1,%;) =|[cj; hy]
Cj =Cj—1 Of+goi
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Recurrent Neural Network: RNN
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multi-layer RNN
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add right-to-left RNN
(bi-RNN)
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== Bi-RNN

a representation of a word In context.

add right-to-left RNN
(bi-RNN)
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bi-RNN

solution 1:
don't predict words.
predict tags. use as part fo larger network.

T T T T T

B A
seses . %%ﬂ seses

Vs> V7 Vread Va Vbook
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bi-RNN

solution 2:
single layer. skip word

Va Vbook




TTTTTTTTTTTTTT
N L P '7Ellr]llrh£J IIIIIIIIIIIIIIIIIIIIIIIIII

bi-RNN

solution 2:
single layer. skip word
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Conditioned Generation
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Transformer

Attention Is All You Need

Google Brain
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Transformer

replace RNN with attention-based mechanism

* Main concepts to know:
e Self-attention
e Multi-head attention

* Also think about: why do this” what is the motivation”
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Transformer

Self attention

each token attends to all tokens in previous layer

hiddens 2

hiddens 1 hiddens 3 hiddens 4

‘ word 4 \ Nl
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Transformer

Self attention

hiddens 1 hiddens 2 hiddens 3 hiddens 4
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Transformer

multi-head attention

one attention pattern

hiddens 1 hiddens 2
L

‘ word 4 \ Wil
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Transformer

multi-head attention

another attention pattern

hiddens 2

hiddens 1 hiddens 3

‘ word 4 \




A\

Transformer

multi-head attention

why chose it we can just have several?

hiddens 1 I iddens 2 I
y 4
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Transformer

Skip connections
hiddens 1 hiddens 2 hidiens 3 hiddens 4
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‘ word 1 | | word 2 I ‘ word 3 \ ‘ word 4 \
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Cost vs Opportunity

@ Consider a standard d layer RNN from Lecture 13 with k hidden

units, training on a sequence of length t.
k

A

hiddens 1 ——— hiddens 2 —{ hiddens 3 +—®{ hiddens 4

0 S s R

hiddens 1 |=——=p»{ hiddens 2 #| hiddens 3 —| hiddens 4

d T T T ¥

hiddens 1 [===—Pp| hiddens 2 (=——=Pp' hiddens 3 —| hiddens 4

\ word 1 word 2 word 3 word 4

l

@ There are k? connections for each hidden-to-hidden connection. A

total of t X k? x d connections.
@ We need to store all t X k x d hidden units during training.

@ Only k x d hidden units need to be stored at test time.

http://www.cs.toronto.edu/~rgrosse/courses/csc421 2019/slides/lec16.pdf
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Cost vs Opportunitv

@ Consider a standard d layer RNN from Lecture 13 with k hidden
units, training on a sequence of length t.

d

—
hiddens 1 hiddens 2 » hiddens 3 —»{ hiddens 4
T T T _ A
hiddens 1 hiddens 2 »| hiddens 3 ——{ hiddens 4
T T T — “
hiddens 1 hiddens 2 =P hiddens 3 +——{ hiddens 4
word 1 word 2 word 3 word 4
-

@ Which hidden layers can be computed in parallel in this RNN?

http://www.cs.toronto.edu/~rgrosse/courses/csc421 2019/slides/lec16.pdf
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Cost vs Opportunitv

@ Consider a standard d layer RNN from Lecture 13 with k hidden
units, training on a sequence of length t.
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@ Which hidden layers can be computed in parallel in this RNN?

http://www.cs.toronto.edu/~rgrosse/courses/csc421 2019/slides/lec16.pdf
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Cost vs Opportunity

@ Consider a standard d layer RNN from Lecture 13 with k hidden

units, training on a sequence of length t.

@ Both the input embeddings and the outputs of an RNN can be

computed in parallel.

@ The blue hidden units are independent given the red.
@ The numer of sequential operation is still propotional to t.

—
hiddens 1 hiddens 2 —{ hiddens 3 hiddens 4
A 7 TN A
hiddens 1 hiddens 2 »| hiddens 3 hiddens 4
A A
hiddens 1 hiddens 2 hiddens 3 hiddens 4
word 1 word 2 word 3 word 4
-
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http://www.cs.toronto.edu/~rgrosse/courses/csc421 2019/slides/lec16.pdf
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Cost vs Opportunity

RNN to Self-attention
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Cost vs Opportunity

RNN to Self-attention
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Cost vs Opportunity

RNN to Self-attention
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Cost vs Opportunity

RNN to Self-attention
A.

AN TG, |

4
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P —=— across all sequence
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Cost vs Opportunity

RNN to Self-attention

hiddens 1 hiddens 2 hnddens 3 hiddens 4
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Transformer

Information flow

how do we pass information between the blue arrows?

hiddens 1 hiddens 2 hiddens 3 hiddens 4 «
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Transformer

Information flow

how do we pass information between the blue arrows?

hiddens 1 ——# hiddens 2 ——| hiddens 3 —®| hiddens 4
RSN A RN
hiddens 1 | == hiddens 2 ——| hiddens 3— »| hiddens 4
AN
hiddens 1 [=——=Pp| hiddens 2 =——=Pp{ hiddens 3 — hiddens 4
A
word 1 word 2 word 3 word 4

TTTTTTTTTTTTTT
llllllllllllllllllllllllll

VS
RNN case

e




Transformer

Positional information

hiddens 1 hiddens 2 hiddens 3 hiddens 4
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Transformer

Positional information
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Neural Network
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" The basic abstraction
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" The basic abstraction
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NLP

symbol =

n vectors =l

n vectors =l

Encode

Encode

Encode

—  yector

i yector

m—l n vectors

Encoder abstarctions

"embeddings"

Sum
CNN + pooling
RNN

RNN (~)
Bi-RNN
Transformer
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Decoders

at single vector one prediction
Linear, MLP (predict)

at each position input length
RNN
RNN + Attention arbitrary length

(Attention) Transformer
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