= A2
N L P e

0 to ~80 In 90 Mminutes

a shallow intro to
deep networks

Yoav Goldberg

NLPL Winter School 2020

"l do think that most participants will know the basics
about embeddings, neural networks and loss functions
(although the depth of their knowledge will vary, of
course).”

"l do think that most participants will know the basics
about embeddings, neural networks and loss functions
(although the depth of their knowledge will vary, of
course).”

Neural Networks

f(@o00®

functions from vectors

to vectors

TTTTTTTTTTTTTT
IIIIIIIIIIIIIIIIIIIIIIII

TTTTTTTTTTTTTT
||||||||||||||||||||||||

Neural Networks

p(©00060])-= l-lll-l--l_-_--___ll_

functions from vectors
to probabilities

(these are still functions from vectors to vectors)

(0.9)

Z

\:
S

TTTTTTTTTTTTTT
||||||||||||||||||||||||

-9

Predicting from a vector

B | U
==
NLP

Predict from a vector
(Linear Layer)

/llll

Yy UL UL L]

Wx + Db

T

predict(x) = Wx + b

TTTTTTTTTTTTTT
||||||||||||||||||||||||||

B | U
==
NLP

Predict from a vector ¢
(Linear Layer)

/llll

Yy jin n mm |llll|||]

Wx + Db

T

predict(x) = Wx + b

predict(x) = arg max(Wx + b);

71 Predict from a vector ¢
(Linear Layer + softmax)

p(y =7|x)
y l-lll-l_ __________ Il-
softmax !
y’ '|||I|'n'||m|||||| predict(x) = softmax(Wx + b)
| Frmaz(x)) = ——s
softmax(x); = vy
-VVX—%t) g E:je 7]
!

X 00000

= Predict from a vector /2

(Linear Layer + softmax)

p(y =7|x)
y CIE| N Il-
softmax !
y’ l|lllllll'|llllll|lll predict(x) = softmax(Wx + b)
| Ftmaz(x) = s
softmax(x)i = .
Wx + b g D, eXl
T (can still take the argmax, will yield same result)

X 00000

71 Predict from a vector ¢
(Linear Layer + softmax)

p(y =7|x)
Y sl - I__ predict(x) = softmax(Wx + b)
softmax | ft (x) et
softmax(x); = vy
-VVX—%t) g E:je 7]

X 00000

LI Training: s
Learning as optimization

Data:
X1,y .-9 X
I Y13 ¥Yn (vi are vectors, why?)
T T
1 Desired:

softmax

Wx + b fo(xX) “that works well”

“I.. / - hypothesis class
9 — W.b - parameters
T ,

- a search problem

Training:
Learning as optimization

X1y .0y Xp
Y13 ¥Yn
Desired:

f@ (X) "that works well"

LY, Yy)

loss function

Yo = fo(x1), ..., fo(Xn)

TTTTTTTTTTTTTT
IIIIIIIIIIIIIIIIIIIIIIII

i Training: A
Learning as optimization

X109 Xp
Y1, ¥Yn
Desired:

f@ (X) "that works well"

L(Y,Yy) x> Lyi, fo(xi))

loss function 1=1 decomposed
over items

Yo = fo(x1), ..., fo(Xn)

i Training: A
Learning as optimization

A

arg min £(Y, Yy) ~ solved with
0 gradient based methods
Desired:

f@ (X) "that works well"

L(Y,Yy) x> Lyi, fo(xi))

loss function 1=1 decomposed
over items

Yo = fo(x1), - fo(Xn)

O Training: Az
cross-entropy loss

arg min L(Y,Yy) ;f(yi, fo(xi))

When prediction are "probabilities” S’[k] = P (y —]C|X)

gcross—ent — Z Y[k] log y[k]
k

for "nard" (0 or 1) labels: | Leross-ent = — 10g y[t]

LI Training: s
cross-entropy loss

other loss functions are available. but not today.

arg min £(Y, Yo) o >~ Uy, folx1)

1=1

A

When prediction are "probabilities” Yik] — P (y — k|X)

Zcross—ent — Z VA lOg y[k]
k

for "hard" (0 or 1) labels: | Lcross-ent = — 10g y[t]

=1 Hypothesis classes:
from (log) linear to MLP
A/ N I--
softmax 1
80§twlz;l-l--._T _______ I.- y’ l|lllllll.:lllllllll|
y’ l|lllllll'|llll|||ll| th_I_bz
1
'
Wx + b h lllll:.llllll
! Wix + bt
X 00000 T

X 00000

TTTTTTTTTTTTTT
||||||||||||||||||||||||||

.y Hypothesis classes: a2

TTTTTTTTTTTTTT
llllllllllllllllllllllllll

" from (log) Ilnear to MLP
| W I--
saftmaa? 1
y . I)f/ l|lllllll'|llll|||ll|
] S A
softmax] W2h -+ b2
)f/ l|lllllll |llll||lll| $
T non-linearity g(h) Humnnll mm £ &
et h lllllﬁ AE_E_N
Wx + b T. il
! Wix + bt
X 00000 T

X 00000

.y Hypothesis classes:

sof tmax

MLP (multi-layer
perceptron)

Is strictly more
powerful than

W?4h + b?

non-linearity g(h)

linear. (ReLU)

Can learn any borel- h
measurable function

(if large enough) Wix + bl

from (loQ) Ilnear to MLP

T

y’ |lllllll'|llll||| T

T

T

T

T

TTTTTTTTTTTTTT
|||||||||||||||||||||||||

B

| U

==

N L

1.0
0.5
0.0
-0.5
-1.0

sigmoid(x)

/

6 -4 -2 0

2

1.0
0.5
0.0
-0.5
-1.0

the common ones

tanh(z)

-6 -4 -2 O

2

1.0
0.5
0.0

- -0.5
- -1.0

-6

RelLU(x)

-4 -2 0

2

TTTTTTTTTTTTTT
||||||||||||||||||||||||

=y

S

TTTTTTTTTTTTTT
IIIIIIIIIIIIIIIIIIIIIIIIII

-9

Neural Network

y l-lll-l--l_-_--___ll_
softmax |

what is x? X 00000

(0.9)

c

A

-9

Predicting from words

TTTTTTTTTTTTTT
||||||||||||||||||||||||

Neural NLP Building Blocks

e Word Embeddings: translate a word to a vector.

e \Ways of combining vectors.

| as
- Word-Embeddings
melr everKne,]@st
't:er eac seve%”y FOOBE
: illion
SIS _—— white ne other " bhese who 2
5 | &S 's Tr. "old . what Where -~ o
suc whi
B F@derd.ltﬁé.ﬁﬁrﬁant hi vikaen but and
beerlmng g0 natiomaied this . bol ce
come 8&) play M b&th while .o if
best o piyabrlrlucly N
show 0 growRdH
from £ B9ck same form vc‘g center r:;igint thefhy
0~ make ot K&t dafted off h°meum§ % ceﬂﬂ_hgaé map well toggh sayy
getpuse ondown highw Wonddn‘R?u ey "‘ﬁmmﬁf\bt ago vyesterday
want stre life part N
found dous seaséﬂ g
aroundyy uring police gam - bus (e (ol " it times
ver before 0 court _him case ears ni
kn®@F to gcre%vneg " until Sincemarke(t)money M them gawgﬁ?alght
ipgttike OWAd fficials wa ,
-5 aboq};“?ﬁQ th%ro&gh placegomg nevecrompagrl\ilsd time _
nfg o used people -
of for o even tLey e
oy up ko e
¥
not still
nt dst i
at an she
-10 — _
daks
hade t
would
&higrdd
-15 | | | | |
-15 -10 -5 0 5 10 15

== A2

TTTTTTTTTTTTTT

" Word Embeddings

e Translate each word in the (fixed) vocabulary to a vector.
e Jypical dimensions: 100-300
e Jranslation is done using a lookup table.
e Can be "pre-trained" (word2vec, glove)

e Dealing with "infinite" vocabularies:

e {characters}, {word pieces, bpe}, {fastText}

== A2

TTTTTTTTTTTTTT

" Word Embeddings

e {characters}, {word pieces, bpe}, {fastText}

dinosaur=dinosaur

v
dinosaur = dino #sa #ur

v
dinosaur =

dinosa + inosau + nosaur +
dino + INnOS + hosa + osau + saur
+ din + 1IN0 + NOS + 0Sa + sau + aur

B | U ,
== X2

TTTTTTTTTTTTTT

" Word Embeddings

Vbook — E [bOOk]

20000 Vipook

"book"

(0.9)

c

3

-9

Combining Vectors

VIT

Viread T

\faT

Vbook T

T

book

VaboutT

T

about

TTTTTTTTTTTTTT
|||||||||||||||||||||||||

Combining Vectors

| read a book about

T

concatenate
Y
00000 00000 00000 00000 00000
V7 T VreadT VaT VbookT VaboutT

I read a book about

TTTTTTTTTTTTTT
||||||||||||||||||||||||||

A\

Combining Vectors

| read a book about

T

sum

Y

0000 + 00000 1+ 00000 + 00000 + 00000
V7 T V?“eadT VaT VbookT VaboutT

I read a book about

TTTTTTTTTTTTTT
|||||||||||||||||||||||||

A\

Combining Vectors

| read a book about

T

sum (or average)

Y

0000 + 00000 1+ 00000 + 00000 + 00000
V7 T V?“eadT VaT VbookT VaboutT

I read a book about

TTTTTTTTTTTTTT
||||||||||||||||||||||||||

A\

Combining Vectors

book a about read |

T

sum (or average)

Y

0000 + 00000 1+ 00000 + 00000 + 00000
V7 T V?“eadT VaT VbookT VaboutT

I read a book about

TTTTTTTTTTTTTT
||||||||||||||||||||||||||

Concatenate

| read

| read

a

| read

a book

| read a book about

more words = longer vectors

Combining Vectors

TTTTTTTTTTTTTT
llllllllllllllllllllllllll

Sum (or average)

| read

| read

d

| read

a book

"cbow"

| read a book about

| book a read about
book about read | a
| a about book read
a read about book |

order invariant

00000 , 00000 _, 00000 _ 00000 , @000

TTTTTTTTTTTTTT
Jor ARTIFICIAL INTELLIGENCE

Yy
l-lll-l--l_-_--___ll_
softmax A
y’ l|lllllll'|llll|||ll|
T
_—
T
g(h) lllll: 1NN
I h Illlll_llllll
1 r

Qll

_—1

Wi 1

\ T Viread T VaT VbookT VaboutT

X 00000

Lookup Lookup Lookup Lookup Lookup
Table Table Table Table Table
A A A A A

The Computation Graph

TTTTTTTTTTTTTT

for ARTIFICIAL INTELLIGENCE

N L P—~

aradient-pased training

 Computing the gradients:

 The network (and loss calculation) is a
mathematical function.

Uz, k) = —log(softmax(W?3g*(W?g' (W'z + b')+b?) + b?)[k])

* Calculus rules apply.

* (a bit hairy, but carefully follow the chain rule and
you'll get there)

B | U . klz
i+ The Computation Graph ~*
(CG)

* a DAG. (axb+1)*(a*xb+2)

Leafs are inputs (or parameters).
Nodes are operators (functions).
Edges are results (values).

Can be built for any function.

MLP,

1 x17

output layer — Gommed

1x17

o

2Nx17 x 17

hidden layer — o> (98 Lie

parameters

M L Pywith concrete input

iINnput

concat w1l
1 x 50i T\x 50 1 x 50

~.] T

“the”

1 x17

output layer — Cotma>

117

QDD

117

Qo
hidden layer — o> (42

1 x

1 50\1§0

x 20

“black”

“dog”

E

parameters

Embedding matrix

—

@
M L P;with concrete input T 0SS
and loss o

output layer — » «—— expected output

hidden layer — C\

parameters

Embedding matrix

X50/

E

* Create a graph for each
training example.

* Once graph is built, we have
two essential algorithms:

* Forward:
compute all values.

 Backward (backprop):
compute all gradients.

Computing the Gradlents

(backprop)

e Consider the chain-rule T
(example on blackboard) Con)
e Fach node needs to know B T
how to: T
Cann
 Compute forward. <>\
| Cone™>] D]
* Compute its local p Bedsae

gradient. | RN

"""The Python Neural Networks Toolkits

Landscape (partial)

theano y m
Tensortlow

‘ot ﬁy/md PYTORCH

Chainer

[he Python Neural Networks loolkits

Landscape (partial)
high-level

low-level

‘o 8>//n6t PYTORCH

Chainer

"""The Python Neural Networks loolkits

Landscape (partial)
high-level

theano #

TensorFlow
static graphs

dynamic graphs \
“o* ﬁy/ Nel pyTYRCH

Chainer

B 1 U

=
""The Python Neural Networks [oolKits

Landscape (partial)
high-level

theano M

Tensof W
static graphs

dynamic graphs \
ChQ @y/ Netl pPYTHRCH

dliner
\— fast also on CPU

- automatic batching

TTTTTTTTTTTTTT

N L P o AR NP Licsnee
Network Training algorithm:
1x1 @
 For each training example T LR
(or mini-batch): o) 3
» Create graph for computing loss. e
« Compute loss (forward). G [92] [57]
 Compute gradients (backwards).
G

 Update model parameters.

model initialization.
model = Model ()

mWl = model.add_parameters ((20,150))
mbl = model.add_parameters (20)
mW2 = model.add_parameters((17,20))

mb2 = model.add_parameters (17)
lookup = model.add_lookup_parameters ((100, 50))

Building the computation graph:
renew_cg () # create a new graph.

Wrap the model parameters as graph-nodes.
Wl = parameter (mWl)

bl = parameter (mbl)

W2 = parameter (mW2)

b2 = parameter (mb2)

def get_index(x): return 1

Generate the embeddings layer.
vthe = lookup[get_index ("the")]
vblack = lookup[get_index ("black")]
vdog = lookup[get_index ("dog")]

Connect the leaf nodes into a complete graph.
X = concatenate([vthe, vblack, wvdog])

output = softmax (W2* (tanh (Wlxx)+bl)+b2)

loss = —-log(pick (output, 5))

loss_value = loss.forward()

loss.backward () # the gradient 1is computed
and stored in the corresponding
parameters.

DyNet Example

“A(I:!
ALLEN INSTITUTE
IIIIIIIIIIIIIIIIIIIIIIII

model initialization.

model = Model ()

mWl = model.add_parameters ((20,150))
mbl = model.add_parameters (20)

mW2 = model.add_parameters((17,20))

mb2 = model.add_parameters (17)
lookup = model.add_lookup_parameters ((100, 50))

Building the computation graph:

renew_cg () # create a new graph.

Wrap the model parameters as graph-nodes.
Wl = parameter (mWl)

bl = parameter (mbl)

W2 = parameter (mW2)

b2 = parameter (mb2)

def get_index(x): return 1

Generate the embeddings layer.

vthe = lookup[get_index ("the")]

vblack = lookup[get_index ("black")]

vdog = lookup[get_index ("dog")]

Connect the leaf nodes into a complete graph.
X = concatenate([vthe, vblack, wvdog])
output = softmax (W2* (tanh (Wlxx)+bl)+b2)
loss = —-log(pick (output, 5))

loss _value = loss.forward/()

loss.backward () # the gradient 1is computed

and stored in the corresponding
parameters.

DyNet Example

“A(I:!
ALLEN INSTITUTE
IIIIIIIIIIIIIIIIIIIIIIII

model initialization.
model = Model ()

mWl = model.add_parameters ((20,150))
mbl = model.add_parameters (20)
mW2 = model.add_parameters((17,20))

mb2 = model.add_parameters (17)
lookup = model.add_lookup_parameters ((100, 50))

Building the computation graph:
renew_cg () # create a new graph.

Wrap the model parameters as graph-nodes.
Wl = parameter (mWl)

bl = parameter (mbl)

W2 = parameter (mW2)

b2 = parameter (mb2)

def get_index(x): return 1

Generate the embeddings layer.
vthe = lookup[get_index ("the")]
vblack = lookup[get_index ("black")]
vdog = lookup[get_index ("dog")]

Connect the leaf nodes into a complete graph.
X = concatenate([vthe, vblack, wvdog])

output = softmax (W2* (tanh (Wlxx)+bl)+b2)

loss = —-log(pick (output, 5))

loss_value = loss.forward()

loss.backward () # the gradient 1is computed
and stored in the corresponding
parameters.

DyNet Example

“A(I:!
ALLEN INSTITUTE
IIIIIIIIIIIIIIIIIIIIIIII

model initialization.
model = Model ()

mWl = model.add_parameters ((20,150))
mbl = model.add_parameters (20)
mW2 = model.add_parameters((17,20))

mb2 = model.add_parameters (17)
lookup = model.add_lookup_parameters ((100, 50))

Building the computation graph:
renew_cg () # create a new graph.

Wrap the model parameters as graph-nodes.
Wl = parameter (mWl)

bl = parameter (mbl)

W2 = parameter (mW2)

b2 = parameter (mb2)

def get_index(x): return 1

Generate the embeddings layer.
vthe = lookup[get_index ("the")]
vblack = lookup[get_index ("black")]
vdog = lookup[get_index ("dog")]

Connect the leaf nodes into a complete graph.
X = concatenate([vthe, vblack, wvdog])

output = softmax (W2* (tanh (Wlxx)+bl)+b2)

loss = —-log(pick (output, 5))

loss_value = loss.forward()

loss.backward () # the gradient 1is computed
and stored in the corresponding
parameters.

DyNet Example

“A(I:!
ALLEN INSTITUTE
IIIIIIIIIIIIIIIIIIIIIIII

model initialization.
model = Model ()

mWl = model.add_parameters ((20,150))
mbl = model.add_parameters (20)
mW2 = model.add_parameters((17,20))

mb2 = model.add_parameters (17)
lookup = model.add_lookup_parameters ((100, 50))

Building the computation graph:
renew_cg () # create a new graph.

Wrap the model parameters as graph-nodes.
Wl = parameter (mWl)

bl = parameter (mbl)

W2 = parameter (mW2)

b2 = parameter (mb2)

def get_index(x): return 1

Generate the embeddings layer.
vthe = lookup[get_index ("the")]
vblack = lookup[get_index ("black")]
vdog = lookup[get_index ("dog")]

Connect the leaf nodes into a complete graph.
X = concatenate([vthe, vblack, wvdog])

output = softmax (W2* (tanh (Wlxx)+bl)+b2)

loss = —-log(pick (output, 5))

loss_value = loss.forward()

loss.backward () # the gradient 1is computed
and stored in the corresponding
parameters.

DyNet Example

“A(I:!
ALLEN INSTITUTE
IIIIIIIIIIIIIIIIIIIIIIII

m
ALLEN INSTITUTE
llllllllllllllllllllllllll

(0.9)

c

A

-9

Back to Combining Vectors

TTTTTTTTTTTTTT
||||||||||||||||||||||||

ConvNets

* "bags of ngrams’.

o Useful!

(we'll probably skip them today)

TTTTTTTTTTTTTT
IIIIIIIIIIIIIIIIIIIIIIII

B I U :
L s
2000 2000 2000 2000 2000 2000 GO0
the actual service was not very good

NLP
00000000
dot
2000 2000 @000 2000 00D 0O @20
the actual service was not very good

B I U :
= v
o
|
00000000
dot
2000 2000 @000 2000 00D 0O @20
the actual service was not very good

dot

TTTTTTTTTTTTTT
for ARTIFICIAL INTELLIGENCE

the

actual

service

Was

NOt

very

good

B I U :
=] v
> I
@6\0 \COQ}
N @6&
o o
|
0200000000
dot
2000 2000 @000 2000 00D 0O @20
the actual service was not very good

B I U :
= \ . - e
((}6\\\;0 g Q}q\ P O
@ (bé\\;o éa@
o o o
|
00000000
dot
2000 2000 @000 2000 00D 0O @20
the actual service was not very good

B I U :
= \ . - e
foé’\\\;b \fo@é\ .\o®$® @QO\
\\S\Q) (0(’}\\;0 %éA $@
o o o o
|
00000000
dot
2000 2000 @000 2000 00D 0O @20
the actual service was not very good

dot

TTTTTTTTTTTTTT
llllllllllllllllllllllllll

the

actual

service

Was

NOt

very

good

TTTTTTTTTTTTTT
llllllllllllllllllllllllll

dot

the

actual

service was

NOt

very

good

dot

TTTTTTTTTTTTTT
for ARTIFICIAL INTELLIGENCE

the

actual

service

Was

NOt

very

good

dot

TTTTTTTTTTTTTT
for ARTIFICIAL INTELLIGENCE

the

actual

service

Was

NOt

very

good

B I U :
L v
‘06\0(2}
\‘Q@
O
®
®
|
200000090
00000000
000000090
dot
2000 @002 2000 2000 OGO OGO OBOA
the actual service was not very good

B I U :
=] v
> I
@6\0 \COQ}
¥ (bg,@(b
O O
® @
® o
|
0200000000
00000000
02000000090
dot
2000 2000 @000 2000 00D 0O @20
the actual service was not very good

dot

very good

NOt

service was

actual

the

TTTTTTTTTTTTTT
llllllllllllllllllllllllll

the

actual
service
was
NOt

very

(another way to represent text convolutions)

conv

the

actual
service
was
NOt

very

(another way to represent text convolutions)

conv

the

actual
service
was
NOt

very

(another way to represent text convolutions)

conv

TTTTTTTTTTTTTT
llllllllllllllllllllllllll

TTTTTTTTTTTTTT
IIIIIIIIIIIIIIIIIIIIIIIIII

B I U
=
NLP . @ .
N Q}A\ N (\O\ Q}\\ OO€>
003
O O O O @ ®
@ o o @ ® o
O O O O @) @
1
090000000
0000000600
20000000
dot

the actual service was not very good

(we'll focus on the 1-d view here,
but remember they are equivalent)

(usually also add non linearity)

B I U :
NLP N & . o
Q}c’)\\\’(b \@Q’é , Q@$ %06\ \AQ}\\ QOO
’\‘Q@ @C’}\}(b %Q@\ N Y A@é
O @ O O O ©
tanh ' tanh ‘ tanh . tanh ' tanh ' tanh ‘
(8) n(®) wn(8) tan(®) tan(8) eum(®)
I
090000000
0000000600
200000000
dot
D00 2009 20D DD PO PO BB
the actual service was not very good

(can have larger filters)

B I U :
= e
R
@Q’Q}O
O
tanh '
(3)
200000000
00000000
020000000
dot
2000 2000 @000 2000 00D 0O @20
the actual service was not very good

(can have larger filters)

B I U :
= & v
&
9
&
* @
tanh .
(3)
|
2000000000000
000000000000
000000000000
dot
2000 2000 @000 2000 00D 0O @20
the actual service was not very good

° S
®6\0® g Q)@\ .\OQ)&Q) X 06\ \'QQ}\\ QOOG
\\0@ c’}\}(b y Q)\A \gb {\O AQ}\\
e " o ® @ @ ®
O o © @ @ o
O O O O) o

TTTTTTTTTTTTTT
llllllllllllllllllllllllll

the actual service was not very

we have the ngram vectors. now what?

good

TTTTTTTTTTTTTT
IIIIIIIIIIIIIIIIIIIIIIIIII

the

actual

service was NOt

can do "pooling”

very

good

Combine K vectors into a single vector

TTTTTTTTTTTTTT
IIIIIIIIIIIIIIIIIIIIIIII

Combine K vectors into a single vector

This vector is a summary of the K vectors,
and can be used for prediction.

TTTTTTTTTTTTTT
||||||||||||||||||||||||

TTTTTTTTTTTTTT
IIIIIIIIIIIIIIIIIIIIIIIIII

the

actual

service was

NOt

very

good

TTTTTTTTTTTTTT
llllllllllllllllllllllllll

the

actual

service was

NOt

very

good

TTTTTTTTTTTTTT
IIIIIIIIIIIIIIIIIIIIIIIIII

- -~ ®0-- @ --@- - @ > @
—max ® max-O-max® max-o- = O
- - - @- - - -- -6 - 0

the

actual

service

Was

NOt

max over each dimension

very

good

“y =
softmax(LJ)
MLP !
U
t
tanh(WU + b)
O o O O O O T
® 4+ © 4+ ® 4+ O 4+ O 4+ O = oo
O O o O - O
000 000 OO0 OO OO0 DO OGO
the actual service was Not very good

train end-to-end for some task

(train the MLP, the filter matrix, and the embeddings together)

Combining Vectors

Recurrent Neural Network: RNN

VIT

Viread T

\faT

Vbook T

T

book

90000
VaboutT

T

about

TTTTTTTTTTTTTT
IIIIIIIIIIIIIIIIIIIIIIIIII

TTTTTTTTTTTTTT
llllllllllllllllllllllllll

Combining Vectors

R tN | Net k: RNN
ecurrent Neural iNetwor | read a book about

90000
RNN . RNN . RNN . RNN . RNN
cell cell cell cell cell
t t t t t
90000 90000 90000 90000 90000
V7 T Vread T VaT VbookT VaboutT

I read a book about

TTTTTTTTTTTTTT
llllllllllllllllllllllllll

NLP - -
Combining Vectors
| read a book about

00000
~ I - I - I - el -

t t t t t
00000 00000 00000 00000 00000

\ T Viread T VaT VbookT VaboutT

I read a book about

B | U
==
NLP

Combining Vectors

Sq
00000

|

RNN
)
cell

T

VIT

Viread T

\faT

TTTTTTTTTTTTTT
||||||||||||||||||||||||||

S — RNN(Si_l, Xi)

Vbook T

T

book

VaboutT

T

about

B | U

Combining Vectors

N

e
N LP
S1
00000
00000
SO cell
T
00000
Vy T

S92
00000

T

90000
Vread T

\faT

TTTTTTTTTTTTTT
llllllllllllllllllllllllll

S — RNN(Si_l, Xi)

Vbook T

T

book

VaboutT

T

about

Comblnlng Vectors

IIIIIIIIIIIIIIIIIIIIIIIIII

Sq S4q S5
...Q. ...Q. 0.... 0.... ..Q..
RNN RNN RNN RNN RNN
ceH cell cell cell cell
.Q.QQ .Q.QQ CQ... CQ... CQ...
\ D T Vread T VaT Vibook T VaboutT

I read a book about

Combining Vectors

| read

ceII

RNN RNN

cell

VIT

Viread T

| read a

| read a book

T\T\T
t t t

TTTTTTTTTTTTTT
llllllllllllllllllllllllll

| read a book about

VaT

Vbook T

T

book

VaboutT

T

about

Combining Vectors

Recurrent Neural Network: RNN

| read

00000

|

RNN

ceII

RNN

cell

VIT

Viread T

|l read a

— RNN(Si_l, Xi)

| read a book

T\T\T
t t t

TTTTTTTTTTTTTT
llllllllllllllllllllllllll

| read a book about

VaT

Vbook T

VaboutT

Combining Vectors

RsrnN(si—1,Xi) = tanh(W?

Recurrent Neural Network: RNN

| read

00000

|

RNN

ceII

RNN

cell

VIT

Viread T

|l read a

| read a book

81+ W™

T\T\T
t t t

TTTTTTTTTTTTTT
llllllllllllllllllllllllll

Xi)

| read a book about

VaT

Vbook T

VaboutT

Combining Vectors

Recurrent Neural Network: RNN

Rrstam(sj—1,%;) =|[cj; hy]
Cj =Cj—1 Of+goi

| read

00000 —>

T

V[T

Viread T

h; =tanh(c;) ©® o

1 ZU(WXi - X5+ whi . hj_1>
f :O'(WXf © X -+ th . hj_l)
(o) :O'(WXO X5+ Whe. hj_l)

g =tanh(W™® . x; + whe . h;_1)

|l read a

| read a book

T\T\T
t t t

TTTTTTTTTTTTTT
llllllllllllllllllllllllll

| read a book about

VaT

Vbook T

VaboutT

TTTTTTTTTTTTTT

for ARTIFICIAL INTELLIGENCE

TLSTM: differential gates

Rrstm(sj—1,%;) =|[cj; hy]
c;=cj_1 Of+g0oi
h; =tanh(c;) ® o
i =0c(W* . x;+ W™ . h;_;)
f =o(W*' . x; + W' . h;_4)
0 =0(W*° . x; + W"° . h;_4)
g =tanh(W*8 . x; + WP . h;_,)

better controlled memory access

LSTM: differential gates

for ARTIFICIAL INTELLIGENCE

 The main idea behind the LSTM is that you want to
somehow control the "memory access’.

* InaSimpleRNN:

RSRNN(Si—la Xi) — tanh(WS - Sj—1 T+ W*. Xi)

e N\

read previous state memory write new Input

* All the memory gets overwritten

Vector Gates

 We'd like to:
* Selectively read from some memory “cells”.
* Selectively write to some memory “cells’.

TTTTTTTTTTTTTT
IIIIIIIIIIIIIIIIIIIIIIII

e \WWe'd like to:

TTTTTTTTTTTTTT
IIIIIIIIIIIIIIIIIIIIIIII

Vector "Gates’

* Selectively read from some memory “cells”.
* Selectively write to some memory “cells’.

* A gate function:

:Pd c oo - CD:

: e

gate controls access

o

15

11
12
13
14

X

(element-wise multiplication)

N

vector of values

Vector "Gates’

e \WWe'd like to:

* Selectively read from some memory “cells’.
* Selectively write to some memory “cells’.

* A gate function:
Si_1 O g g € {0,1}¢

RN

vector of values gate controls access

TTTTTTTTTTTTTT
||||||||||||||||||||||||

A\

Vector "Gates’

e Using the gate function to control access:

S —Si—108 +x08"7 gE{O,l}d

e N\

which cells to read which cells to write

TTTTTTTTTTTTTT
|||||||||||||||||||||||||

Vector "Gates’

e Using the gate function to control access:

S —Si—108 +x08"7 gE{O,l}d

e N\

which cells to read which cells to write

» (can also tie them: g" =1 —g")

TTTTTTTTTTTTTT
||||||||||||||||||||||||

Vector "Gates’

==
N LP

11

D~

15

2 Ai2

" Differentiable "Gates"

IIIIIIIIIIIIIIIIIIIIIIII

 Problem with the gates:
* they are fixed.
* they don't depend on the input or the output.

" Differentiable "Gates"

LLLLLLLLLLLLLLLLLLLLLLLL

 Problem with the gates:

* they are fixed.
* they don't depend on the input or the output.

e Solution: make them smooth, input dependent, and

trainable.
gr — O'(W - X —|—U Sl—].)
almost O"/ \ |
or function of input and state

‘almost 1°

TTTTTTTTTTTTTT
||||||||||||||||||||||||

(Long short-term Memory)

* The LSTM is a specific combination of gates.

Rrsrm(sj—1,%;) =[cj; hy]
c; =Ci_1Of+g0O1
h; =tanh(c;) ® o
i =c(W* .x; + W™ . h;_;)
f =c(W*' . x; + W™ . h;_;)
0 =0(W*°.x; + W"° . h;_;)
g =tanh(W*8 . x; + W"€ . h;_;)

OLSTM(SJ') — OLSTM([CJ5 hj]) = h;

Combining Vectors

Recurrent Neural Network: RNN

Rrstam(sj—1,%;) =|[cj; hy]
Cj =Cj—1 Of+goi

| read

00000 —>

T

V[T

Viread T

h; =tanh(c;) ©® o

1 ZU(WXi - X5+ whi . hj_1>
f :O'(WXf © X -+ th . hj_l)
(o) :O'(WXO X5+ Whe. hj_l)

g =tanh(W™® . x; + whe . h;_1)

|l read a

| read a book

T\T\T
t t t

TTTTTTTTTTTTTT
llllllllllllllllllllllllll

| read a book about

VaT

Vbook T

VaboutT

Combining Vectors

Recurrent Neural Network: RNN

| read

00000

|

RNN

ceII

RNN

cell

VIT

Viread T

|l read a

| read a book

T\T\T
t t t

TTTTTTTTTTTTTT
llllllllllllllllllllllllll

| read a book about

VaT

Vbook T

VaboutT

Combining Vectors

multi-layer RNN

| read

ceII

cell

ceII

cell

VIT

Viread T

| read a

T\T\T
t t t

cell

VaT

| read a book

TTTTTTTTTTTTTT
||||||||||||||||||||||||||

| read a book about

T\T
t t

Vbook T

VaboutT

Leyo
000

| | | | |
T T ¢ ¢ ¢

Leyo el
000

Leyo

el

Bi-RNN

keep intermediate vectors

Leyo el libro
00

libro

Leyo el libro en Leyo el libro en cama

en

cama

TTTTTTTTTTTTTT
IIIIIIIIIIIIIIIIIIIIIIIIII

A\

B " kiz
TTTTTTTTTTTTTT
||||||||||||||||||||||||||

Z
—
-

add right-to-left RNN
(bi-RNN)

BIU - m
Q/I/I TTTTTTTTTTTTTT
..........................

add right-to-left RNN
(bi-RNN)

BIU - m
Q/KI TTTTTTTTTTTTTT
..........................

add right-to-left RNN
(bi-RNN)

Leyo el libro en cama

== Bi-RNN

a representation of a word In context.

add right-to-left RNN
(bi-RNN)

Leyo el libro en cama Leyd el libro en cama
000 'Y Y)

4 H ~ 1 A Vé -
|_eyo el libro en carha Leyo el libro en cama Leyé el libro en cama

| | |
-0 000

Leyo el libro en cama

TTTTTTTTTTTTTT
llllllllllllllllllllllllll

—

—

T

T

T

RNN
cell

T

RNN
cell

T

00000
Vs>

—

—

Training

read

T

4
00000
4

RNN
cell

T

RNN
cell

T

00000
Vi

—

—

a

T

4
[J

T

RNN

cell

T

RNN
cell

T

90000
Vread

—

—

book

T

4
[J

T

RNN

cell

T

RNN
cell

T

00000
Va

—

—

4
00000
4

RNN
cell

T

RNN
cell

T

090000
Vbook

TTTTTTTTTTTTTT
for ARTIFICIAL INTELLIGENCE

—

—

<S>

T

T

T

-
-

Vs>

Training

TR
T
00100

)
m

bi-RNN

read

T

T

R
e

90000
Vread

a

T

T

TTTTTTTTTTTTTT
llllllllllllllllllllllllll

see a problem?

book

T

T

Vbook

190000

TTTTTTTTTTTTTT
NLP ralnlng IIIIIIIIIIIIIIIIIIIIIIIIII

bi-RNN

solution 1:
don't predict words.
predict tags. use as part fo larger network.

T T T T T

B A
seses . %%ﬂ seses

Vs> V7 Vread Va Vbook

TTTTTTTTTTTTTT
N L P ralnlng IIIIIIIIIIIIIIIIIIIIIIIIII

bi-RNN

solution 2:
single layer. skip word

Va Vbook

TTTTTTTTTTTTTT
N L P '7Ellr]llrh£J IIIIIIIIIIIIIIIIIIIIIIIIII

bi-RNN

solution 2:
single layer. skip word

-t T
,0.00 00000
Lt 1

+—90000

0000 0000
Vread Va Vbook

Vs>

—

—

T

T

e
=

Vs>

—
4—
—
4—

Training

T

T

T

e
=

[MASK]

bi-RNN

solution 3:
masking.

T

Bau
Ban

90000
Vread

T

T

TTTTTTTTTTTTTT
llllllllllllllllllllllllll

Va

Vbook

—

—

T

T

-
-

Vs>

Training

T

bi-RNN

solution 3:
masking.

)
m

T

T

book

T

T

Vread

R
-

TTTTTTTTTTTTTT
llllllllllllllllllllllllll

190000

Va

[MASK]

—

—

T

T

-
-

Vs>

Training

T

bi-RNN

solution 3:
masking.

)
m

read

T

T

T

T

[MASK]

R
-

TTTTTTTTTTTTTT
llllllllllllllllllllllllll

190000

Va

Vbook

00000

He

Vs>

Generation

from RNN

TTTTTTTTTTTTTT
llllllllllllllllllllllllll

Generation

from RNN

00000

TTTTTTTTTTTTTT
IIIIIIIIIIIIIIIIIIIIIIIIII

00000

Generation

from RNN

the

T

Vs>

Vread

—
—

TTTTTTTTTTTTTT
||||||||||||||||||||||||||

- e e T T TE ee
e Generation “

from RNN

the

00000

Generation

from RNN

00000

TTTTTTTTTTTTTT
llllllllllllllllllllllllll

Conditioned Generation

from RNN

Conditioned Generation

00000

condition
vector

Conditioned Generation

condition

Conditioned Generation

Table

Name Triton 52
EcoRating A+

Family L7

Encode
condition
_ vector
o00

Conditioned Generation

Text

Leyo el libro en cama

Encode

B | U

A

RNN RNN RNN RNN RNN
— — — —
T T ? ? ?

Leyo

el

libro

en

cama

TTTTTTTTTTTTTT
||||||||||||||||||||||||||

Leyo el libro en cama

TTTTTTTTTTTTTT
||||||||||||||||||||||||||

2,
@
O
.
2,
@
O

S

— [@@® Leyo el libro en cama

RNN RNN RNN RNN RNN
— — — —
T T ? ? ?

Leyo el libro en cama

RNN RNN RNN RNN RNN
— — — —
T T ? ? ?

Leyo

el

libro

en

cama

TTTTTTTTTTTTTT
||||||||||||||||||||||||||

Leyo el libro en cama

B | U

A

RNN
ceH

ooooo Qoooo
Vs>
000 Hecco

read

ceH

RNN

T
RNN [
II;II\
T

RNN RNN RNN RNN RNN
— — — —
T T ? ? ?

Leyo

el

libro

I e

‘\~\\\\\\\\\

en

cama

TTTTTTTTTTTTTT
||||||||||||||||||||||||||

Leyo el libro en cama

B I U :
) Seq2Seq o
NLP
He read the book in bed
T T T T ¢ ¢
T T ¢ ¢ ¢ T
cell cell cell cell cell cell
¢ ¢ ¢ ¢ ¢ T
00000 00000 00000 00000 00000 00000
Vs> VHe Viread Vithe Vbook Vin
(X X (X X (X X 000 y 000
@00 Leyo el libro en cama

RNN RNN RNN RNN RNN
— — — —
T T ? ? ?

Leyo

el

libro

en

cama

Leyo
000

| | | | |
¢ ¢ ¢ ¢ ¢

Leyo el
000

Leyo

el

keep intermediate vectors

Leyo el libro
00

libro

Leyo el libro en Leyo el libro en cama

en

cama

as Bi-RNN

libro

en

cama

TTTTTTTTTTTTTT
||||||||||||||||||||||||||

weighted sum

ST

I
CA- B - - T

Leyo

el

libro

en

cama

TTTTTTTTTTTTTT
||||||||||||||||||||||||||

weighted sum

T

T
-
QQIOOI
00 v\'..

Leyo el libro en cama

weighted sum

=000

Leyo el libro en cama

| | | ! I weighted sum
il i

Leyo el libro en cama

v:;'T
e e e e o
T T T T T welghted sum

Leyo el libro en cama

weighted sum

=000

Leyo el libro en cama

weighted sum

Leyo el libro en cama

Transformer

Attention Is All You Need

Google Brain

Ashish Vaswani” Noam Shazeer” Niki Parmar”* Jakob Uszkoreit*
Google Brain Google Research Google Research
avaswani@google.com noam@google.com nikip@google.com usz@google.com

Llion Jones* Aidan N. Gomez* 1 Fukasz Kaiser*
Google Research University of Toronto Google Brain
llion@google.com aidan@cs.toronto.edu lukaszkaiser@google.com

Ilia Polosukhin* *
illia.polosukhin@gmail.com

TTTTTTTTTTTTTT
lllllllllllllllllllllllllll

TTTTTTTTTTTTTT
||||||||||||||||||||||||

Transformer

replace RNN with attention-based mechanism

* Main concepts to know:
e Self-attention
e Multi-head attention

* Also think about: why do this” what is the motivation”

A\

Transformer

Self attention

each token attends to all tokens in previous layer

hiddens 2

hiddens 1 hiddens 3 hiddens 4

‘ word 4 \ Nl

TTTTTTTTTTTTTT
IIIIIIIIIIIIIIIIIIIIIIII

Transformer

B | U
==
NLP

Self attention

TTTTTTTTTTTTTT
IIIIIIIIIIIIIIIIIIIIIIII

Transformer

Self attention

hiddens 1 hiddens 2 hiddens 3 hiddens 4
\‘s
< —F———
% ST
hiddens 1 hiddens 2
: N ~—
S o
/] [
hiddens 2
‘“»\’\!b

—
//“'

s

TTTTTTTTTTTTTT
|||||||||||||||||||||||||

Transformer

multi-head attention

one attention pattern

hiddens 1 hiddens 2
L

‘ word 4 \ Wil

s

TTTTTTTTTTTTTT
||||||||||||||||||||||||||

Transformer

multi-head attention

another attention pattern

hiddens 2

hiddens 1 hiddens 3

‘ word 4 \

A\

Transformer

multi-head attention

why chose it we can just have several?

hiddens 1 I iddens 2 I
y 4

TTTTTTTTTTTTTT
||||||||||||||||||||||||||

Transformer

Skip connections
hiddens 1 hiddens 2 hidiens 3 hiddens 4
I__‘ LP_‘ L_‘__lf Lﬂ__l_
-
ez izzii=n

=

‘ word 1 | | word 2 I ‘ word 3 \ ‘ word 4 \

TTTTTTTTTTTTTT
IIIIIIIIIIIIIIIIIIIIIIII

TTTTTTTTTTTTTT
IIIIIIIIIIIIIIIIIIIIIIIIII

Cost vs Opportunity

@ Consider a standard d layer RNN from Lecture 13 with k hidden

units, training on a sequence of length t.
k

A

hiddens 1 ——— hiddens 2 —{ hiddens 3 +—®{ hiddens 4

0 S s R

hiddens 1 |=——=p»{ hiddens 2 #| hiddens 3 —| hiddens 4

d T T T ¥

hiddens 1 [===—Pp| hiddens 2 (=——=Pp' hiddens 3 —| hiddens 4

\ word 1 word 2 word 3 word 4

l

@ There are k? connections for each hidden-to-hidden connection. A

total of t X k? x d connections.
@ We need to store all t X k x d hidden units during training.

@ Only k x d hidden units need to be stored at test time.

http://www.cs.toronto.edu/~rgrosse/courses/csc421 2019/slides/lec16.pdf

http://www.cs.toronto.edu/~rgrosse/courses/csc421_2019/slides/lec16.pdf

TTTTTTTTTTTTTT
||||||||||||||||||||||||||

Cost vs Opportunitv

@ Consider a standard d layer RNN from Lecture 13 with k hidden
units, training on a sequence of length t.

d

—
hiddens 1 hiddens 2 » hiddens 3 —»{ hiddens 4
T T T _ A
hiddens 1 hiddens 2 »| hiddens 3 ——{ hiddens 4
T T T — “
hiddens 1 hiddens 2 =P hiddens 3 +——{ hiddens 4
word 1 word 2 word 3 word 4
-

@ Which hidden layers can be computed in parallel in this RNN?

http://www.cs.toronto.edu/~rgrosse/courses/csc421 2019/slides/lec16.pdf

http://www.cs.toronto.edu/~rgrosse/courses/csc421_2019/slides/lec16.pdf

TTTTTTTTTTTTTT
||||||||||||||||||||||||||

Cost vs Opportunitv

@ Consider a standard d layer RNN from Lecture 13 with k hidden
units, training on a sequence of length t.

—
hiddens 1 ——{ hiddens 2 » hiddens 3 —| hiddens 4
A T T _ A
hiddens 1 hiddens 2 »| hiddens 3 ——{ hiddens 4
d T - Iy
hiddens 1 hiddens 2 hiddens 3 ——»{ hiddens 4
\ word 1 word 2 word 3 word 4
- o

l

@ Which hidden layers can be computed in parallel in this RNN?

http://www.cs.toronto.edu/~rgrosse/courses/csc421 2019/slides/lec16.pdf

http://www.cs.toronto.edu/~rgrosse/courses/csc421_2019/slides/lec16.pdf

Cost vs Opportunity

@ Consider a standard d layer RNN from Lecture 13 with k hidden

units, training on a sequence of length t.

@ Both the input embeddings and the outputs of an RNN can be

computed in parallel.

@ The blue hidden units are independent given the red.
@ The numer of sequential operation is still propotional to t.

—
hiddens 1 hiddens 2 —{ hiddens 3 hiddens 4
A 7 TN A
hiddens 1 hiddens 2 »| hiddens 3 hiddens 4
A A
hiddens 1 hiddens 2 hiddens 3 hiddens 4
word 1 word 2 word 3 word 4
-

TTTTTTTTTTTTTT
||||||||||||||||||||||||||

http://www.cs.toronto.edu/~rgrosse/courses/csc421 2019/slides/lec16.pdf

http://www.cs.toronto.edu/~rgrosse/courses/csc421_2019/slides/lec16.pdf

k

—P e,

o .
‘ hiddens 1 I—b hiddens 2 —%{ hiddens 3 —¥{ hiddens 4
A A T — T
hiddens 1 »{ hiddens 2 hiddens 3 —#{ hiddens 4
B A A
hiddens 1 »| hiddens 2 »{ hiddens 3 hiddens 4
A A A A
word 1 word 2 word 3 word 4
-

Cost vs Opportunity

RNN to Self-attention

TTTTTTTTTTTTTT
llllllllllllllllllllllllll

TTTTTTTTTTTTTT
IIIIIIIIIIIIIIIIIIIIIIIIII

Cost vs Opportunity

RNN to Self-attention

hiddens 2 hiddens 3
A
| . . _ drop
hiddens 1 hiddens 2 hiddens 3 hiddens 4 |
time dependence

hiddens 1 hiddens 2 hiddens 3
il
g i

f

A.

LA
s .

d

=

TTTTTTTTTTTTTT
IIIIIIIIIIIIIIIIIIIIIIII

Cost vs Opportunity

RNN to Self-attention

w .

' ol in |
A
— \\d
";"(’"«
S [
i
/ attention
(— \\
s S ey
i N
— AT S AT
P =
'
e =

d

TTTTTTTTTTTTTT
||||||||||||||||||||||||||

Cost vs Opportunity

RNN to Self-attention
A.

AN TG, |

4
»\’\ « can parallelize
P —=— across all sequence

[y
>

hiddens 1 hiddens 2 hiddens 3 hiddens 4
v
R

d

Il

—

TTTTTTTTTTTTTT
llllllllllllllllllllllllll

Cost vs Opportunity

RNN to Self-attention

hiddens 1 hiddens 2 hnddens 3 hiddens 4
A

». = dk ‘ lleli
\‘t’, i il can paraiielize
sl D \V* across all sequence

Transformer

Information flow

how do we pass information between the blue arrows?

hiddens 1 hiddens 2 hiddens 3 hiddens 4 «

TTTTTTTTTTTTTT
|||||||||||||||||||||||||

Transformer

Information flow

how do we pass information between the blue arrows?

hiddens 1 ——# hiddens 2 ——| hiddens 3 —®| hiddens 4
RSN A RN
hiddens 1 | == hiddens 2 ——| hiddens 3— »| hiddens 4
AN
hiddens 1 [=——=Pp| hiddens 2 =——=Pp{ hiddens 3 — hiddens 4
A
word 1 word 2 word 3 word 4

TTTTTTTTTTTTTT
llllllllllllllllllllllllll

VS
RNN case

e

Transformer

Positional information

hiddens 1 hiddens 2 hiddens 3 hiddens 4

TTTTTTTTTTTTTT
IIIIIIIIIIIIIIIIIIIIIIII

Transformer

Positional information

hiddens 2 hiddens 3 hiddens 4

hiddens 1

hiddens 1
hiddens 1

o
o
-
@
O o
o =
c

Neural Network

TTTTTTTTTTTTTT
||||||||||||||||||||||||||

B | U klz
" The basic abstraction

IIIIIIIIIIIIIIIIIIIIIIIIII

Input ==l F0 m—p N[s Output

B | U klz
" The basic abstraction

IIIIIIIIIIIIIIIIIIIIIIIIII

LT 2 Encode

e Decode BErr S elT (o)1)

BIU

NLP

symbol =

n vectors =l

n vectors =l

Encode

Encode

Encode

— yector

i yector

m—l n vectors

Encoder abstarctions

"embeddings"

Sum
CNN + pooling
RNN

RNN (~)
Bi-RNN
Transformer

TTTTTTTTTTTTTT
IIIIIIIIIIIIIIIIIIIIIIIIII

Decoders

at single vector one prediction
Linear, MLP (predict)

at each position input length
RNN
RNN + Attention arbitrary length

(Attention) Transformer

TTTTTTTTTTTTTT
llllllllllllllllllllllllll

m
ALLEN INSTITUTE
llllllllllllllllllllllllll

