
0 to ~80 in 90 minutes

Yoav Goldberg

a shallow intro to
deep networks

NLPL Winter School 2020

"I do think that most participants will know the basics
about embeddings, neural networks and loss functions
(although the depth of their knowledge will vary, of
course)."

"I do think that most participants will know the basics
about embeddings, neural networks and loss functions
(although the depth of their knowledge will vary, of
course)."

Neural Networks

f() =

functions from vectors
to vectors

Neural Networks

p() =

functions from vectors
to probabilities

(these are still functions from vectors to vectors)

Predicting from a vector

Predict from a vector
(Linear Layer)

predict(x) = Wx+ b

Linear

x

Wx+ b

y0

Predict from a vector
(Linear Layer)

predict(x) = Wx+ b

Linear

x

Wx+ b

y0

predict(x) = argmax
i

(Wx+ b)[i]
<latexit sha1_base64="JN4Bgl0m/BN0xlIrDwnziN8DZzY=">AAACKHicbVDLSsNAFJ34rPUVdelmsAgtQklE0I1YdOOygn1AE8JkMmmHTh7MTKQl5HPc+CtuRBTp1i9x0kbR1gMDh3POZe49bsyokIYx0ZaWV1bX1ksb5c2t7Z1dfW+/LaKEY9LCEYt410WCMBqSlqSSkW7MCQpcRjru8Cb3Ow+ECxqF93IcEztA/ZD6FCOpJEe/UmmPYlm1AiQHrp+Oshq8hBbifaWMHAp/nM4oO/nmblZz0h61M0evGHVjCrhIzIJUQIGmo79aXoSTgIQSMyREzzRiaaeIS4oZycpWIkiM8BD1SU/REAVE2On00AweK8WDfsTVCyWcqr8nUhQIMQ5clcwXFfNeLv7n9RLpX9gpDeNEkhDPPvITBmUE89agRznBko0VQZhTtSvEA8QRlqrbsirBnD95kbRP66ZRN+/OKo3roo4SOARHoApMcA4a4BY0QQtg8AiewRt41560F+1Dm8yiS1oxcwD+QPv8ApL5puk=</latexit><latexit sha1_base64="JN4Bgl0m/BN0xlIrDwnziN8DZzY=">AAACKHicbVDLSsNAFJ34rPUVdelmsAgtQklE0I1YdOOygn1AE8JkMmmHTh7MTKQl5HPc+CtuRBTp1i9x0kbR1gMDh3POZe49bsyokIYx0ZaWV1bX1ksb5c2t7Z1dfW+/LaKEY9LCEYt410WCMBqSlqSSkW7MCQpcRjru8Cb3Ow+ECxqF93IcEztA/ZD6FCOpJEe/UmmPYlm1AiQHrp+Oshq8hBbifaWMHAp/nM4oO/nmblZz0h61M0evGHVjCrhIzIJUQIGmo79aXoSTgIQSMyREzzRiaaeIS4oZycpWIkiM8BD1SU/REAVE2On00AweK8WDfsTVCyWcqr8nUhQIMQ5clcwXFfNeLv7n9RLpX9gpDeNEkhDPPvITBmUE89agRznBko0VQZhTtSvEA8QRlqrbsirBnD95kbRP66ZRN+/OKo3roo4SOARHoApMcA4a4BY0QQtg8AiewRt41560F+1Dm8yiS1oxcwD+QPv8ApL5puk=</latexit><latexit sha1_base64="JN4Bgl0m/BN0xlIrDwnziN8DZzY=">AAACKHicbVDLSsNAFJ34rPUVdelmsAgtQklE0I1YdOOygn1AE8JkMmmHTh7MTKQl5HPc+CtuRBTp1i9x0kbR1gMDh3POZe49bsyokIYx0ZaWV1bX1ksb5c2t7Z1dfW+/LaKEY9LCEYt410WCMBqSlqSSkW7MCQpcRjru8Cb3Ow+ECxqF93IcEztA/ZD6FCOpJEe/UmmPYlm1AiQHrp+Oshq8hBbifaWMHAp/nM4oO/nmblZz0h61M0evGHVjCrhIzIJUQIGmo79aXoSTgIQSMyREzzRiaaeIS4oZycpWIkiM8BD1SU/REAVE2On00AweK8WDfsTVCyWcqr8nUhQIMQ5clcwXFfNeLv7n9RLpX9gpDeNEkhDPPvITBmUE89agRznBko0VQZhTtSvEA8QRlqrbsirBnD95kbRP66ZRN+/OKo3roo4SOARHoApMcA4a4BY0QQtg8AiewRt41560F+1Dm8yiS1oxcwD+QPv8ApL5puk=</latexit><latexit sha1_base64="JN4Bgl0m/BN0xlIrDwnziN8DZzY=">AAACKHicbVDLSsNAFJ34rPUVdelmsAgtQklE0I1YdOOygn1AE8JkMmmHTh7MTKQl5HPc+CtuRBTp1i9x0kbR1gMDh3POZe49bsyokIYx0ZaWV1bX1ksb5c2t7Z1dfW+/LaKEY9LCEYt410WCMBqSlqSSkW7MCQpcRjru8Cb3Ow+ECxqF93IcEztA/ZD6FCOpJEe/UmmPYlm1AiQHrp+Oshq8hBbifaWMHAp/nM4oO/nmblZz0h61M0evGHVjCrhIzIJUQIGmo79aXoSTgIQSMyREzzRiaaeIS4oZycpWIkiM8BD1SU/REAVE2On00AweK8WDfsTVCyWcqr8nUhQIMQ5clcwXFfNeLv7n9RLpX9gpDeNEkhDPPvITBmUE89agRznBko0VQZhTtSvEA8QRlqrbsirBnD95kbRP66ZRN+/OKo3roo4SOARHoApMcA4a4BY0QQtg8AiewRt41560F+1Dm8yiS1oxcwD+QPv8ApL5puk=</latexit>

predict(x) = softmax(Wx+ b)

Predict from a vector
(Linear Layer + softmax)

softmax(x)[i] =
ex[i]

P
j e

x[j]

p(y =?|x)

Linear

x

Wx+ b

softmax

y

y0

predict(x) = softmax(Wx+ b)

Predict from a vector
(Linear Layer + softmax)

softmax(x)[i] =
ex[i]

P
j e

x[j]

p(y =?|x)

Linear

x

Wx+ b

softmax

y

y0

(can still take the argmax, will yield same result)

predict(x) = softmax(Wx+ b)

softmax(x)[i] =
ex[i]

P
j e

x[j]

p(y =?|x)

Predict

x

Wx+ b
softmax

y

Predict from a vector
(Linear Layer + softmax)

Training:  
Learning as optimization

x1, ...,xn

y1, ...,yn

Data:

Desired:

PredictWx+ b
softmax

(yi are vectors, why?)

f✓(x)

✓ = W,b
<latexit sha1_base64="oxb/CSa7udALYoj2N8JnVZT6KlI=">AAACB3icbZDLSsNAFIYnXmu9RV0KMlgEF1ISEXQjFN24rGAv0IQymU7aoZNJmDkRSsjOja/ixoUibn0Fd76N0zaCtv4w8PGfc5hz/iARXIPjfFkLi0vLK6ultfL6xubWtr2z29Rxqihr0FjEqh0QzQSXrAEcBGsnipEoEKwVDK/H9dY9U5rH8g5GCfMj0pc85JSAsbr2gQcDBgRfYi8iMAjCrJWf/GCQd+2KU3UmwvPgFlBBhepd+9PrxTSNmAQqiNYd10nAz4gCTgXLy16qWULokPRZx6AkEdN+Nrkjx0fG6eEwVuZJwBP390RGIq1HUWA6xxvq2drY/K/WSSG88DMukxSYpNOPwlRgiPE4FNzjilEQIwOEKm52xXRAFKFgoiubENzZk+eheVp1nap7e1apXRVxlNA+OkTHyEXnqIZuUB01EEUP6Am9oFfr0Xq23qz3aeuCVczsoT+yPr4BuE+ZNw==</latexit><latexit sha1_base64="oxb/CSa7udALYoj2N8JnVZT6KlI=">AAACB3icbZDLSsNAFIYnXmu9RV0KMlgEF1ISEXQjFN24rGAv0IQymU7aoZNJmDkRSsjOja/ixoUibn0Fd76N0zaCtv4w8PGfc5hz/iARXIPjfFkLi0vLK6ultfL6xubWtr2z29Rxqihr0FjEqh0QzQSXrAEcBGsnipEoEKwVDK/H9dY9U5rH8g5GCfMj0pc85JSAsbr2gQcDBgRfYi8iMAjCrJWf/GCQd+2KU3UmwvPgFlBBhepd+9PrxTSNmAQqiNYd10nAz4gCTgXLy16qWULokPRZx6AkEdN+Nrkjx0fG6eEwVuZJwBP390RGIq1HUWA6xxvq2drY/K/WSSG88DMukxSYpNOPwlRgiPE4FNzjilEQIwOEKm52xXRAFKFgoiubENzZk+eheVp1nap7e1apXRVxlNA+OkTHyEXnqIZuUB01EEUP6Am9oFfr0Xq23qz3aeuCVczsoT+yPr4BuE+ZNw==</latexit><latexit sha1_base64="oxb/CSa7udALYoj2N8JnVZT6KlI=">AAACB3icbZDLSsNAFIYnXmu9RV0KMlgEF1ISEXQjFN24rGAv0IQymU7aoZNJmDkRSsjOja/ixoUibn0Fd76N0zaCtv4w8PGfc5hz/iARXIPjfFkLi0vLK6ultfL6xubWtr2z29Rxqihr0FjEqh0QzQSXrAEcBGsnipEoEKwVDK/H9dY9U5rH8g5GCfMj0pc85JSAsbr2gQcDBgRfYi8iMAjCrJWf/GCQd+2KU3UmwvPgFlBBhepd+9PrxTSNmAQqiNYd10nAz4gCTgXLy16qWULokPRZx6AkEdN+Nrkjx0fG6eEwVuZJwBP390RGIq1HUWA6xxvq2drY/K/WSSG88DMukxSYpNOPwlRgiPE4FNzjilEQIwOEKm52xXRAFKFgoiubENzZk+eheVp1nap7e1apXRVxlNA+OkTHyEXnqIZuUB01EEUP6Am9oFfr0Xq23qz3aeuCVczsoT+yPr4BuE+ZNw==</latexit><latexit sha1_base64="oxb/CSa7udALYoj2N8JnVZT6KlI=">AAACB3icbZDLSsNAFIYnXmu9RV0KMlgEF1ISEXQjFN24rGAv0IQymU7aoZNJmDkRSsjOja/ixoUibn0Fd76N0zaCtv4w8PGfc5hz/iARXIPjfFkLi0vLK6ultfL6xubWtr2z29Rxqihr0FjEqh0QzQSXrAEcBGsnipEoEKwVDK/H9dY9U5rH8g5GCfMj0pc85JSAsbr2gQcDBgRfYi8iMAjCrJWf/GCQd+2KU3UmwvPgFlBBhepd+9PrxTSNmAQqiNYd10nAz4gCTgXLy16qWULokPRZx6AkEdN+Nrkjx0fG6eEwVuZJwBP390RGIq1HUWA6xxvq2drY/K/WSSG88DMukxSYpNOPwlRgiPE4FNzjilEQIwOEKm52xXRAFKFgoiubENzZk+eheVp1nap7e1apXRVxlNA+OkTHyEXnqIZuUB01EEUP6Am9oFfr0Xq23qz3aeuCVczsoT+yPr4BuE+ZNw==</latexit>

"that works well"

- hypothesis class
- parameters
- a search problem

Training:  
Learning as optimization

x1, ...,xn

y1, ...,yn

f✓(x) "that works well"

Y = y1, ...,yn

Ŷ✓ = f✓(x1), ..., f✓(xn)
L(Y, Ŷ✓)

Desired:

loss function

Training:  
Learning as optimization

x1, ...,xn

y1, ...,yn

examples / instances / items
labels

f✓(x) "that works well"

Y = y1, ...,yn

Ŷ✓ = f✓(x1), ..., f✓(xn)
L(Y, Ŷ✓)

Desired:

loss function

/
nX

i=1

`(yi, f✓(xi))

decomposed
over items

Training:  
Learning as optimization

f✓(x) "that works well"

Y = y1, ...,yn

Ŷ✓ = f✓(x1), ..., f✓(xn)
L(Y, Ŷ✓) /

nX

i=1

`(yi, f✓(xi))

Desired:

loss function decomposed
over items

argmin
✓

L(Y, Ŷ✓) solved with
gradient based methods

Training:  
cross-entropy loss

argmin
✓

L(Y, Ŷ✓)

`cross-ent = �
X

k

y[k] log ŷ[k]

/
nX

i=1

`(yi, f✓(xi))

When prediction are "probabilities" ŷ[k] = P (y = k|x)

`cross-ent = � log ŷ[t]for "hard" (0 or 1) labels:

Training:  
cross-entropy loss

argmin
✓

L(Y, Ŷ✓)

`cross-ent = �
X

k

y[k] log ŷ[k]

/
nX

i=1

`(yi, f✓(xi))

When prediction are "probabilities" ŷ[k] = P (y = k|x)

`cross-ent = � log ŷ[t]for "hard" (0 or 1) labels:

other loss functions are available. but not today.

Hypothesis classes:  
from (log) linear to MLP

Linear

x

Wx+ b

softmax

y

y0

Linear

x

softmax

y

y0

h
<latexit sha1_base64="1sz/CMsMnlOLut5+1WJNe1CJzzs=">AAAB8XicbVDLSsNAFL2pr1pfVZduBovgqiQi6LLoxmUF+8A2lMl00g6dTMLMjVBC/8KNC0Xc+jfu/BsnbRbaemDgcM69zLknSKQw6LrfTmltfWNzq7xd2dnd2z+oHh61TZxqxlsslrHuBtRwKRRvoUDJu4nmNAok7wST29zvPHFtRKwecJpwP6IjJULBKFrpsR9RHAdhNp4NqjW37s5BVolXkBoUaA6qX/1hzNKIK2SSGtPz3AT9jGoUTPJZpZ8anlA2oSPes1TRiBs/myeekTOrDEkYa/sUkrn6eyOjkTHTKLCTeUKz7OXif14vxfDaz4RKUuSKLT4KU0kwJvn5ZCg0ZyinllCmhc1K2JhqytCWVLEleMsnr5L2Rd1z6979Za1xU9RRhhM4hXPw4AoacAdNaAEDBc/wCm+OcV6cd+djMVpyip1j+APn8wfk6ZEM</latexit><latexit sha1_base64="1sz/CMsMnlOLut5+1WJNe1CJzzs=">AAAB8XicbVDLSsNAFL2pr1pfVZduBovgqiQi6LLoxmUF+8A2lMl00g6dTMLMjVBC/8KNC0Xc+jfu/BsnbRbaemDgcM69zLknSKQw6LrfTmltfWNzq7xd2dnd2z+oHh61TZxqxlsslrHuBtRwKRRvoUDJu4nmNAok7wST29zvPHFtRKwecJpwP6IjJULBKFrpsR9RHAdhNp4NqjW37s5BVolXkBoUaA6qX/1hzNKIK2SSGtPz3AT9jGoUTPJZpZ8anlA2oSPes1TRiBs/myeekTOrDEkYa/sUkrn6eyOjkTHTKLCTeUKz7OXif14vxfDaz4RKUuSKLT4KU0kwJvn5ZCg0ZyinllCmhc1K2JhqytCWVLEleMsnr5L2Rd1z6979Za1xU9RRhhM4hXPw4AoacAdNaAEDBc/wCm+OcV6cd+djMVpyip1j+APn8wfk6ZEM</latexit><latexit sha1_base64="1sz/CMsMnlOLut5+1WJNe1CJzzs=">AAAB8XicbVDLSsNAFL2pr1pfVZduBovgqiQi6LLoxmUF+8A2lMl00g6dTMLMjVBC/8KNC0Xc+jfu/BsnbRbaemDgcM69zLknSKQw6LrfTmltfWNzq7xd2dnd2z+oHh61TZxqxlsslrHuBtRwKRRvoUDJu4nmNAok7wST29zvPHFtRKwecJpwP6IjJULBKFrpsR9RHAdhNp4NqjW37s5BVolXkBoUaA6qX/1hzNKIK2SSGtPz3AT9jGoUTPJZpZ8anlA2oSPes1TRiBs/myeekTOrDEkYa/sUkrn6eyOjkTHTKLCTeUKz7OXif14vxfDaz4RKUuSKLT4KU0kwJvn5ZCg0ZyinllCmhc1K2JhqytCWVLEleMsnr5L2Rd1z6979Za1xU9RRhhM4hXPw4AoacAdNaAEDBc/wCm+OcV6cd+djMVpyip1j+APn8wfk6ZEM</latexit><latexit sha1_base64="1sz/CMsMnlOLut5+1WJNe1CJzzs=">AAAB8XicbVDLSsNAFL2pr1pfVZduBovgqiQi6LLoxmUF+8A2lMl00g6dTMLMjVBC/8KNC0Xc+jfu/BsnbRbaemDgcM69zLknSKQw6LrfTmltfWNzq7xd2dnd2z+oHh61TZxqxlsslrHuBtRwKRRvoUDJu4nmNAok7wST29zvPHFtRKwecJpwP6IjJULBKFrpsR9RHAdhNp4NqjW37s5BVolXkBoUaA6qX/1hzNKIK2SSGtPz3AT9jGoUTPJZpZ8anlA2oSPes1TRiBs/myeekTOrDEkYa/sUkrn6eyOjkTHTKLCTeUKz7OXif14vxfDaz4RKUuSKLT4KU0kwJvn5ZCg0ZyinllCmhc1K2JhqytCWVLEleMsnr5L2Rd1z6979Za1xU9RRhhM4hXPw4AoacAdNaAEDBc/wCm+OcV6cd+djMVpyip1j+APn8wfk6ZEM</latexit>

W1x+ b1
<latexit sha1_base64="mTXYDSID7VkI9Ly/T6PFkcEqO+g=">AAACA3icbVDLSsNAFL3xWesr6k43g0UQhJKIoMuiG5cV7APatEymk3boZBJmJmIJBTf+ihsXirj1J9z5N07aCNp6YODMOfdy7z1+zJnSjvNlLSwuLa+sFtaK6xubW9v2zm5dRYkktEYiHsmmjxXlTNCaZprTZiwpDn1OG/7wKvMbd1QqFolbPYqpF+K+YAEjWBupa++3Q6wHfpA2Ou79+OTn53fccdcuOWVnAjRP3JyUIEe1a3+2exFJQio04VipluvE2kux1IxwOi62E0VjTIa4T1uGChxS5aWTG8boyCg9FETSPKHRRP3dkeJQqVHom8psRzXrZeJ/XivRwYWXMhEnmgoyHRQkHOkIZYGgHpOUaD4yBBPJzK6IDLDERJvYiiYEd/bkeVI/LbtO2b05K1Uu8zgKcACHcAwunEMFrqEKNSDwAE/wAq/Wo/VsvVnv09IFK+/Zgz+wPr4B9lKXtQ==</latexit><latexit sha1_base64="mTXYDSID7VkI9Ly/T6PFkcEqO+g=">AAACA3icbVDLSsNAFL3xWesr6k43g0UQhJKIoMuiG5cV7APatEymk3boZBJmJmIJBTf+ihsXirj1J9z5N07aCNp6YODMOfdy7z1+zJnSjvNlLSwuLa+sFtaK6xubW9v2zm5dRYkktEYiHsmmjxXlTNCaZprTZiwpDn1OG/7wKvMbd1QqFolbPYqpF+K+YAEjWBupa++3Q6wHfpA2Ou79+OTn53fccdcuOWVnAjRP3JyUIEe1a3+2exFJQio04VipluvE2kux1IxwOi62E0VjTIa4T1uGChxS5aWTG8boyCg9FETSPKHRRP3dkeJQqVHom8psRzXrZeJ/XivRwYWXMhEnmgoyHRQkHOkIZYGgHpOUaD4yBBPJzK6IDLDERJvYiiYEd/bkeVI/LbtO2b05K1Uu8zgKcACHcAwunEMFrqEKNSDwAE/wAq/Wo/VsvVnv09IFK+/Zgz+wPr4B9lKXtQ==</latexit><latexit sha1_base64="mTXYDSID7VkI9Ly/T6PFkcEqO+g=">AAACA3icbVDLSsNAFL3xWesr6k43g0UQhJKIoMuiG5cV7APatEymk3boZBJmJmIJBTf+ihsXirj1J9z5N07aCNp6YODMOfdy7z1+zJnSjvNlLSwuLa+sFtaK6xubW9v2zm5dRYkktEYiHsmmjxXlTNCaZprTZiwpDn1OG/7wKvMbd1QqFolbPYqpF+K+YAEjWBupa++3Q6wHfpA2Ou79+OTn53fccdcuOWVnAjRP3JyUIEe1a3+2exFJQio04VipluvE2kux1IxwOi62E0VjTIa4T1uGChxS5aWTG8boyCg9FETSPKHRRP3dkeJQqVHom8psRzXrZeJ/XivRwYWXMhEnmgoyHRQkHOkIZYGgHpOUaD4yBBPJzK6IDLDERJvYiiYEd/bkeVI/LbtO2b05K1Uu8zgKcACHcAwunEMFrqEKNSDwAE/wAq/Wo/VsvVnv09IFK+/Zgz+wPr4B9lKXtQ==</latexit><latexit sha1_base64="mTXYDSID7VkI9Ly/T6PFkcEqO+g=">AAACA3icbVDLSsNAFL3xWesr6k43g0UQhJKIoMuiG5cV7APatEymk3boZBJmJmIJBTf+ihsXirj1J9z5N07aCNp6YODMOfdy7z1+zJnSjvNlLSwuLa+sFtaK6xubW9v2zm5dRYkktEYiHsmmjxXlTNCaZprTZiwpDn1OG/7wKvMbd1QqFolbPYqpF+K+YAEjWBupa++3Q6wHfpA2Ou79+OTn53fccdcuOWVnAjRP3JyUIEe1a3+2exFJQio04VipluvE2kux1IxwOi62E0VjTIa4T1uGChxS5aWTG8boyCg9FETSPKHRRP3dkeJQqVHom8psRzXrZeJ/XivRwYWXMhEnmgoyHRQkHOkIZYGgHpOUaD4yBBPJzK6IDLDERJvYiiYEd/bkeVI/LbtO2b05K1Uu8zgKcACHcAwunEMFrqEKNSDwAE/wAq/Wo/VsvVnv09IFK+/Zgz+wPr4B9lKXtQ==</latexit>

LinearW2h+ b2
<latexit sha1_base64="4yGejj08LGgNjMg6IYcbVlNJn70=">AAAB+nicbVDLSsNAFL2pr1pfqS7dDBZBEEpSBF0W3bisYB/QpmUynbRDJ5MwM1FK7Ke4caGIW7/EnX/jpM1CWw8MHM65l3vm+DFnSjvOt1VYW9/Y3Cpul3Z29/YP7PJhS0WJJLRJIh7Jjo8V5UzQpmaa004sKQ59Ttv+5Cbz2w9UKhaJez2NqRfikWABI1gbaWCXeyHWYz9I2/3a+Nzv12YDu+JUnTnQKnFzUoEcjYH91RtGJAmp0IRjpbquE2svxVIzwums1EsUjTGZ4BHtGipwSJWXzqPP0KlRhiiIpHlCo7n6eyPFoVLT0DeTWVC17GXif1430cGVlzIRJ5oKsjgUJBzpCGU9oCGTlGg+NQQTyUxWRMZYYqJNWyVTgrv85VXSqlVdp+reXVTq13kdRTiGEzgDFy6hDrfQgCYQeIRneIU368l6sd6tj8Vowcp3juAPrM8fj/CThw==</latexit><latexit sha1_base64="4yGejj08LGgNjMg6IYcbVlNJn70=">AAAB+nicbVDLSsNAFL2pr1pfqS7dDBZBEEpSBF0W3bisYB/QpmUynbRDJ5MwM1FK7Ke4caGIW7/EnX/jpM1CWw8MHM65l3vm+DFnSjvOt1VYW9/Y3Cpul3Z29/YP7PJhS0WJJLRJIh7Jjo8V5UzQpmaa004sKQ59Ttv+5Cbz2w9UKhaJez2NqRfikWABI1gbaWCXeyHWYz9I2/3a+Nzv12YDu+JUnTnQKnFzUoEcjYH91RtGJAmp0IRjpbquE2svxVIzwums1EsUjTGZ4BHtGipwSJWXzqPP0KlRhiiIpHlCo7n6eyPFoVLT0DeTWVC17GXif1430cGVlzIRJ5oKsjgUJBzpCGU9oCGTlGg+NQQTyUxWRMZYYqJNWyVTgrv85VXSqlVdp+reXVTq13kdRTiGEzgDFy6hDrfQgCYQeIRneIU368l6sd6tj8Vowcp3juAPrM8fj/CThw==</latexit><latexit sha1_base64="4yGejj08LGgNjMg6IYcbVlNJn70=">AAAB+nicbVDLSsNAFL2pr1pfqS7dDBZBEEpSBF0W3bisYB/QpmUynbRDJ5MwM1FK7Ke4caGIW7/EnX/jpM1CWw8MHM65l3vm+DFnSjvOt1VYW9/Y3Cpul3Z29/YP7PJhS0WJJLRJIh7Jjo8V5UzQpmaa004sKQ59Ttv+5Cbz2w9UKhaJez2NqRfikWABI1gbaWCXeyHWYz9I2/3a+Nzv12YDu+JUnTnQKnFzUoEcjYH91RtGJAmp0IRjpbquE2svxVIzwums1EsUjTGZ4BHtGipwSJWXzqPP0KlRhiiIpHlCo7n6eyPFoVLT0DeTWVC17GXif1430cGVlzIRJ5oKsjgUJBzpCGU9oCGTlGg+NQQTyUxWRMZYYqJNWyVTgrv85VXSqlVdp+reXVTq13kdRTiGEzgDFy6hDrfQgCYQeIRneIU368l6sd6tj8Vowcp3juAPrM8fj/CThw==</latexit><latexit sha1_base64="4yGejj08LGgNjMg6IYcbVlNJn70=">AAAB+nicbVDLSsNAFL2pr1pfqS7dDBZBEEpSBF0W3bisYB/QpmUynbRDJ5MwM1FK7Ke4caGIW7/EnX/jpM1CWw8MHM65l3vm+DFnSjvOt1VYW9/Y3Cpul3Z29/YP7PJhS0WJJLRJIh7Jjo8V5UzQpmaa004sKQ59Ttv+5Cbz2w9UKhaJez2NqRfikWABI1gbaWCXeyHWYz9I2/3a+Nzv12YDu+JUnTnQKnFzUoEcjYH91RtGJAmp0IRjpbquE2svxVIzwums1EsUjTGZ4BHtGipwSJWXzqPP0KlRhiiIpHlCo7n6eyPFoVLT0DeTWVC17GXif1430cGVlzIRJ5oKsjgUJBzpCGU9oCGTlGg+NQQTyUxWRMZYYqJNWyVTgrv85VXSqlVdp+reXVTq13kdRTiGEzgDFy6hDrfQgCYQeIRneIU368l6sd6tj8Vowcp3juAPrM8fj/CThw==</latexit>

Hypothesis classes:  
from (log) linear to MLP

Linear

x

Wx+ b

softmax

y

y0

Linear

x

softmax

y

y0

h
<latexit sha1_base64="1sz/CMsMnlOLut5+1WJNe1CJzzs=">AAAB8XicbVDLSsNAFL2pr1pfVZduBovgqiQi6LLoxmUF+8A2lMl00g6dTMLMjVBC/8KNC0Xc+jfu/BsnbRbaemDgcM69zLknSKQw6LrfTmltfWNzq7xd2dnd2z+oHh61TZxqxlsslrHuBtRwKRRvoUDJu4nmNAok7wST29zvPHFtRKwecJpwP6IjJULBKFrpsR9RHAdhNp4NqjW37s5BVolXkBoUaA6qX/1hzNKIK2SSGtPz3AT9jGoUTPJZpZ8anlA2oSPes1TRiBs/myeekTOrDEkYa/sUkrn6eyOjkTHTKLCTeUKz7OXif14vxfDaz4RKUuSKLT4KU0kwJvn5ZCg0ZyinllCmhc1K2JhqytCWVLEleMsnr5L2Rd1z6979Za1xU9RRhhM4hXPw4AoacAdNaAEDBc/wCm+OcV6cd+djMVpyip1j+APn8wfk6ZEM</latexit><latexit sha1_base64="1sz/CMsMnlOLut5+1WJNe1CJzzs=">AAAB8XicbVDLSsNAFL2pr1pfVZduBovgqiQi6LLoxmUF+8A2lMl00g6dTMLMjVBC/8KNC0Xc+jfu/BsnbRbaemDgcM69zLknSKQw6LrfTmltfWNzq7xd2dnd2z+oHh61TZxqxlsslrHuBtRwKRRvoUDJu4nmNAok7wST29zvPHFtRKwecJpwP6IjJULBKFrpsR9RHAdhNp4NqjW37s5BVolXkBoUaA6qX/1hzNKIK2SSGtPz3AT9jGoUTPJZpZ8anlA2oSPes1TRiBs/myeekTOrDEkYa/sUkrn6eyOjkTHTKLCTeUKz7OXif14vxfDaz4RKUuSKLT4KU0kwJvn5ZCg0ZyinllCmhc1K2JhqytCWVLEleMsnr5L2Rd1z6979Za1xU9RRhhM4hXPw4AoacAdNaAEDBc/wCm+OcV6cd+djMVpyip1j+APn8wfk6ZEM</latexit><latexit sha1_base64="1sz/CMsMnlOLut5+1WJNe1CJzzs=">AAAB8XicbVDLSsNAFL2pr1pfVZduBovgqiQi6LLoxmUF+8A2lMl00g6dTMLMjVBC/8KNC0Xc+jfu/BsnbRbaemDgcM69zLknSKQw6LrfTmltfWNzq7xd2dnd2z+oHh61TZxqxlsslrHuBtRwKRRvoUDJu4nmNAok7wST29zvPHFtRKwecJpwP6IjJULBKFrpsR9RHAdhNp4NqjW37s5BVolXkBoUaA6qX/1hzNKIK2SSGtPz3AT9jGoUTPJZpZ8anlA2oSPes1TRiBs/myeekTOrDEkYa/sUkrn6eyOjkTHTKLCTeUKz7OXif14vxfDaz4RKUuSKLT4KU0kwJvn5ZCg0ZyinllCmhc1K2JhqytCWVLEleMsnr5L2Rd1z6979Za1xU9RRhhM4hXPw4AoacAdNaAEDBc/wCm+OcV6cd+djMVpyip1j+APn8wfk6ZEM</latexit><latexit sha1_base64="1sz/CMsMnlOLut5+1WJNe1CJzzs=">AAAB8XicbVDLSsNAFL2pr1pfVZduBovgqiQi6LLoxmUF+8A2lMl00g6dTMLMjVBC/8KNC0Xc+jfu/BsnbRbaemDgcM69zLknSKQw6LrfTmltfWNzq7xd2dnd2z+oHh61TZxqxlsslrHuBtRwKRRvoUDJu4nmNAok7wST29zvPHFtRKwecJpwP6IjJULBKFrpsR9RHAdhNp4NqjW37s5BVolXkBoUaA6qX/1hzNKIK2SSGtPz3AT9jGoUTPJZpZ8anlA2oSPes1TRiBs/myeekTOrDEkYa/sUkrn6eyOjkTHTKLCTeUKz7OXif14vxfDaz4RKUuSKLT4KU0kwJvn5ZCg0ZyinllCmhc1K2JhqytCWVLEleMsnr5L2Rd1z6979Za1xU9RRhhM4hXPw4AoacAdNaAEDBc/wCm+OcV6cd+djMVpyip1j+APn8wfk6ZEM</latexit>

W1x+ b1
<latexit sha1_base64="mTXYDSID7VkI9Ly/T6PFkcEqO+g=">AAACA3icbVDLSsNAFL3xWesr6k43g0UQhJKIoMuiG5cV7APatEymk3boZBJmJmIJBTf+ihsXirj1J9z5N07aCNp6YODMOfdy7z1+zJnSjvNlLSwuLa+sFtaK6xubW9v2zm5dRYkktEYiHsmmjxXlTNCaZprTZiwpDn1OG/7wKvMbd1QqFolbPYqpF+K+YAEjWBupa++3Q6wHfpA2Ou79+OTn53fccdcuOWVnAjRP3JyUIEe1a3+2exFJQio04VipluvE2kux1IxwOi62E0VjTIa4T1uGChxS5aWTG8boyCg9FETSPKHRRP3dkeJQqVHom8psRzXrZeJ/XivRwYWXMhEnmgoyHRQkHOkIZYGgHpOUaD4yBBPJzK6IDLDERJvYiiYEd/bkeVI/LbtO2b05K1Uu8zgKcACHcAwunEMFrqEKNSDwAE/wAq/Wo/VsvVnv09IFK+/Zgz+wPr4B9lKXtQ==</latexit><latexit sha1_base64="mTXYDSID7VkI9Ly/T6PFkcEqO+g=">AAACA3icbVDLSsNAFL3xWesr6k43g0UQhJKIoMuiG5cV7APatEymk3boZBJmJmIJBTf+ihsXirj1J9z5N07aCNp6YODMOfdy7z1+zJnSjvNlLSwuLa+sFtaK6xubW9v2zm5dRYkktEYiHsmmjxXlTNCaZprTZiwpDn1OG/7wKvMbd1QqFolbPYqpF+K+YAEjWBupa++3Q6wHfpA2Ou79+OTn53fccdcuOWVnAjRP3JyUIEe1a3+2exFJQio04VipluvE2kux1IxwOi62E0VjTIa4T1uGChxS5aWTG8boyCg9FETSPKHRRP3dkeJQqVHom8psRzXrZeJ/XivRwYWXMhEnmgoyHRQkHOkIZYGgHpOUaD4yBBPJzK6IDLDERJvYiiYEd/bkeVI/LbtO2b05K1Uu8zgKcACHcAwunEMFrqEKNSDwAE/wAq/Wo/VsvVnv09IFK+/Zgz+wPr4B9lKXtQ==</latexit><latexit sha1_base64="mTXYDSID7VkI9Ly/T6PFkcEqO+g=">AAACA3icbVDLSsNAFL3xWesr6k43g0UQhJKIoMuiG5cV7APatEymk3boZBJmJmIJBTf+ihsXirj1J9z5N07aCNp6YODMOfdy7z1+zJnSjvNlLSwuLa+sFtaK6xubW9v2zm5dRYkktEYiHsmmjxXlTNCaZprTZiwpDn1OG/7wKvMbd1QqFolbPYqpF+K+YAEjWBupa++3Q6wHfpA2Ou79+OTn53fccdcuOWVnAjRP3JyUIEe1a3+2exFJQio04VipluvE2kux1IxwOi62E0VjTIa4T1uGChxS5aWTG8boyCg9FETSPKHRRP3dkeJQqVHom8psRzXrZeJ/XivRwYWXMhEnmgoyHRQkHOkIZYGgHpOUaD4yBBPJzK6IDLDERJvYiiYEd/bkeVI/LbtO2b05K1Uu8zgKcACHcAwunEMFrqEKNSDwAE/wAq/Wo/VsvVnv09IFK+/Zgz+wPr4B9lKXtQ==</latexit><latexit sha1_base64="mTXYDSID7VkI9Ly/T6PFkcEqO+g=">AAACA3icbVDLSsNAFL3xWesr6k43g0UQhJKIoMuiG5cV7APatEymk3boZBJmJmIJBTf+ihsXirj1J9z5N07aCNp6YODMOfdy7z1+zJnSjvNlLSwuLa+sFtaK6xubW9v2zm5dRYkktEYiHsmmjxXlTNCaZprTZiwpDn1OG/7wKvMbd1QqFolbPYqpF+K+YAEjWBupa++3Q6wHfpA2Ou79+OTn53fccdcuOWVnAjRP3JyUIEe1a3+2exFJQio04VipluvE2kux1IxwOi62E0VjTIa4T1uGChxS5aWTG8boyCg9FETSPKHRRP3dkeJQqVHom8psRzXrZeJ/XivRwYWXMhEnmgoyHRQkHOkIZYGgHpOUaD4yBBPJzK6IDLDERJvYiiYEd/bkeVI/LbtO2b05K1Uu8zgKcACHcAwunEMFrqEKNSDwAE/wAq/Wo/VsvVnv09IFK+/Zgz+wPr4B9lKXtQ==</latexit>

Linear

g(h)
<latexit sha1_base64="0IzQalxvJSF1tWLr6+9Qg+gr6Qs=">AAAB9HicbVDLSgMxFL3js9ZX1aWbYBHqpsyIoMuiG5cV7APaoWTSO21oJjMmmUIZ+h1uXCji1o9x59+YabvQ1gOBwzn3ck9OkAiujet+O2vrG5tb24Wd4u7e/sFh6ei4qeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLRXe63xqg0j+WjmSToR3QgecgZNVbyB5VuRM0wCLPh9KJXKrtVdwaySrwFKcMC9V7pq9uPWRqhNExQrTuemxg/o8pwJnBa7KYaE8pGdIAdSyWNUPvZLPSUnFulT8JY2ScNmam/NzIaaT2JAjuZR9TLXi7+53VSE974GZdJalCy+aEwFcTEJG+A9LlCZsTEEsoUt1kJG1JFmbE9FW0J3vKXV0nzsuq5Ve/hqly7XdRRgFM4gwp4cA01uIc6NIDBEzzDK7w5Y+fFeXc+5qNrzmLnBP7A+fwBdYmR4g==</latexit><latexit sha1_base64="0IzQalxvJSF1tWLr6+9Qg+gr6Qs=">AAAB9HicbVDLSgMxFL3js9ZX1aWbYBHqpsyIoMuiG5cV7APaoWTSO21oJjMmmUIZ+h1uXCji1o9x59+YabvQ1gOBwzn3ck9OkAiujet+O2vrG5tb24Wd4u7e/sFh6ei4qeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLRXe63xqg0j+WjmSToR3QgecgZNVbyB5VuRM0wCLPh9KJXKrtVdwaySrwFKcMC9V7pq9uPWRqhNExQrTuemxg/o8pwJnBa7KYaE8pGdIAdSyWNUPvZLPSUnFulT8JY2ScNmam/NzIaaT2JAjuZR9TLXi7+53VSE974GZdJalCy+aEwFcTEJG+A9LlCZsTEEsoUt1kJG1JFmbE9FW0J3vKXV0nzsuq5Ve/hqly7XdRRgFM4gwp4cA01uIc6NIDBEzzDK7w5Y+fFeXc+5qNrzmLnBP7A+fwBdYmR4g==</latexit><latexit sha1_base64="0IzQalxvJSF1tWLr6+9Qg+gr6Qs=">AAAB9HicbVDLSgMxFL3js9ZX1aWbYBHqpsyIoMuiG5cV7APaoWTSO21oJjMmmUIZ+h1uXCji1o9x59+YabvQ1gOBwzn3ck9OkAiujet+O2vrG5tb24Wd4u7e/sFh6ei4qeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLRXe63xqg0j+WjmSToR3QgecgZNVbyB5VuRM0wCLPh9KJXKrtVdwaySrwFKcMC9V7pq9uPWRqhNExQrTuemxg/o8pwJnBa7KYaE8pGdIAdSyWNUPvZLPSUnFulT8JY2ScNmam/NzIaaT2JAjuZR9TLXi7+53VSE974GZdJalCy+aEwFcTEJG+A9LlCZsTEEsoUt1kJG1JFmbE9FW0J3vKXV0nzsuq5Ve/hqly7XdRRgFM4gwp4cA01uIc6NIDBEzzDK7w5Y+fFeXc+5qNrzmLnBP7A+fwBdYmR4g==</latexit><latexit sha1_base64="0IzQalxvJSF1tWLr6+9Qg+gr6Qs=">AAAB9HicbVDLSgMxFL3js9ZX1aWbYBHqpsyIoMuiG5cV7APaoWTSO21oJjMmmUIZ+h1uXCji1o9x59+YabvQ1gOBwzn3ck9OkAiujet+O2vrG5tb24Wd4u7e/sFh6ei4qeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLRXe63xqg0j+WjmSToR3QgecgZNVbyB5VuRM0wCLPh9KJXKrtVdwaySrwFKcMC9V7pq9uPWRqhNExQrTuemxg/o8pwJnBa7KYaE8pGdIAdSyWNUPvZLPSUnFulT8JY2ScNmam/NzIaaT2JAjuZR9TLXi7+53VSE974GZdJalCy+aEwFcTEJG+A9LlCZsTEEsoUt1kJG1JFmbE9FW0J3vKXV0nzsuq5Ve/hqly7XdRRgFM4gwp4cA01uIc6NIDBEzzDK7w5Y+fFeXc+5qNrzmLnBP7A+fwBdYmR4g==</latexit>

non-linearity
(ReLU)

W2h+ b2
<latexit sha1_base64="4yGejj08LGgNjMg6IYcbVlNJn70=">AAAB+nicbVDLSsNAFL2pr1pfqS7dDBZBEEpSBF0W3bisYB/QpmUynbRDJ5MwM1FK7Ke4caGIW7/EnX/jpM1CWw8MHM65l3vm+DFnSjvOt1VYW9/Y3Cpul3Z29/YP7PJhS0WJJLRJIh7Jjo8V5UzQpmaa004sKQ59Ttv+5Cbz2w9UKhaJez2NqRfikWABI1gbaWCXeyHWYz9I2/3a+Nzv12YDu+JUnTnQKnFzUoEcjYH91RtGJAmp0IRjpbquE2svxVIzwums1EsUjTGZ4BHtGipwSJWXzqPP0KlRhiiIpHlCo7n6eyPFoVLT0DeTWVC17GXif1430cGVlzIRJ5oKsjgUJBzpCGU9oCGTlGg+NQQTyUxWRMZYYqJNWyVTgrv85VXSqlVdp+reXVTq13kdRTiGEzgDFy6hDrfQgCYQeIRneIU368l6sd6tj8Vowcp3juAPrM8fj/CThw==</latexit><latexit sha1_base64="4yGejj08LGgNjMg6IYcbVlNJn70=">AAAB+nicbVDLSsNAFL2pr1pfqS7dDBZBEEpSBF0W3bisYB/QpmUynbRDJ5MwM1FK7Ke4caGIW7/EnX/jpM1CWw8MHM65l3vm+DFnSjvOt1VYW9/Y3Cpul3Z29/YP7PJhS0WJJLRJIh7Jjo8V5UzQpmaa004sKQ59Ttv+5Cbz2w9UKhaJez2NqRfikWABI1gbaWCXeyHWYz9I2/3a+Nzv12YDu+JUnTnQKnFzUoEcjYH91RtGJAmp0IRjpbquE2svxVIzwums1EsUjTGZ4BHtGipwSJWXzqPP0KlRhiiIpHlCo7n6eyPFoVLT0DeTWVC17GXif1430cGVlzIRJ5oKsjgUJBzpCGU9oCGTlGg+NQQTyUxWRMZYYqJNWyVTgrv85VXSqlVdp+reXVTq13kdRTiGEzgDFy6hDrfQgCYQeIRneIU368l6sd6tj8Vowcp3juAPrM8fj/CThw==</latexit><latexit sha1_base64="4yGejj08LGgNjMg6IYcbVlNJn70=">AAAB+nicbVDLSsNAFL2pr1pfqS7dDBZBEEpSBF0W3bisYB/QpmUynbRDJ5MwM1FK7Ke4caGIW7/EnX/jpM1CWw8MHM65l3vm+DFnSjvOt1VYW9/Y3Cpul3Z29/YP7PJhS0WJJLRJIh7Jjo8V5UzQpmaa004sKQ59Ttv+5Cbz2w9UKhaJez2NqRfikWABI1gbaWCXeyHWYz9I2/3a+Nzv12YDu+JUnTnQKnFzUoEcjYH91RtGJAmp0IRjpbquE2svxVIzwums1EsUjTGZ4BHtGipwSJWXzqPP0KlRhiiIpHlCo7n6eyPFoVLT0DeTWVC17GXif1430cGVlzIRJ5oKsjgUJBzpCGU9oCGTlGg+NQQTyUxWRMZYYqJNWyVTgrv85VXSqlVdp+reXVTq13kdRTiGEzgDFy6hDrfQgCYQeIRneIU368l6sd6tj8Vowcp3juAPrM8fj/CThw==</latexit><latexit sha1_base64="4yGejj08LGgNjMg6IYcbVlNJn70=">AAAB+nicbVDLSsNAFL2pr1pfqS7dDBZBEEpSBF0W3bisYB/QpmUynbRDJ5MwM1FK7Ke4caGIW7/EnX/jpM1CWw8MHM65l3vm+DFnSjvOt1VYW9/Y3Cpul3Z29/YP7PJhS0WJJLRJIh7Jjo8V5UzQpmaa004sKQ59Ttv+5Cbz2w9UKhaJez2NqRfikWABI1gbaWCXeyHWYz9I2/3a+Nzv12YDu+JUnTnQKnFzUoEcjYH91RtGJAmp0IRjpbquE2svxVIzwums1EsUjTGZ4BHtGipwSJWXzqPP0KlRhiiIpHlCo7n6eyPFoVLT0DeTWVC17GXif1430cGVlzIRJ5oKsjgUJBzpCGU9oCGTlGg+NQQTyUxWRMZYYqJNWyVTgrv85VXSqlVdp+reXVTq13kdRTiGEzgDFy6hDrfQgCYQeIRneIU368l6sd6tj8Vowcp3juAPrM8fj/CThw==</latexit>

Hypothesis classes:  
from (log) linear to MLP

Linear

x

softmax

y

y0

h
<latexit sha1_base64="1sz/CMsMnlOLut5+1WJNe1CJzzs=">AAAB8XicbVDLSsNAFL2pr1pfVZduBovgqiQi6LLoxmUF+8A2lMl00g6dTMLMjVBC/8KNC0Xc+jfu/BsnbRbaemDgcM69zLknSKQw6LrfTmltfWNzq7xd2dnd2z+oHh61TZxqxlsslrHuBtRwKRRvoUDJu4nmNAok7wST29zvPHFtRKwecJpwP6IjJULBKFrpsR9RHAdhNp4NqjW37s5BVolXkBoUaA6qX/1hzNKIK2SSGtPz3AT9jGoUTPJZpZ8anlA2oSPes1TRiBs/myeekTOrDEkYa/sUkrn6eyOjkTHTKLCTeUKz7OXif14vxfDaz4RKUuSKLT4KU0kwJvn5ZCg0ZyinllCmhc1K2JhqytCWVLEleMsnr5L2Rd1z6979Za1xU9RRhhM4hXPw4AoacAdNaAEDBc/wCm+OcV6cd+djMVpyip1j+APn8wfk6ZEM</latexit><latexit sha1_base64="1sz/CMsMnlOLut5+1WJNe1CJzzs=">AAAB8XicbVDLSsNAFL2pr1pfVZduBovgqiQi6LLoxmUF+8A2lMl00g6dTMLMjVBC/8KNC0Xc+jfu/BsnbRbaemDgcM69zLknSKQw6LrfTmltfWNzq7xd2dnd2z+oHh61TZxqxlsslrHuBtRwKRRvoUDJu4nmNAok7wST29zvPHFtRKwecJpwP6IjJULBKFrpsR9RHAdhNp4NqjW37s5BVolXkBoUaA6qX/1hzNKIK2SSGtPz3AT9jGoUTPJZpZ8anlA2oSPes1TRiBs/myeekTOrDEkYa/sUkrn6eyOjkTHTKLCTeUKz7OXif14vxfDaz4RKUuSKLT4KU0kwJvn5ZCg0ZyinllCmhc1K2JhqytCWVLEleMsnr5L2Rd1z6979Za1xU9RRhhM4hXPw4AoacAdNaAEDBc/wCm+OcV6cd+djMVpyip1j+APn8wfk6ZEM</latexit><latexit sha1_base64="1sz/CMsMnlOLut5+1WJNe1CJzzs=">AAAB8XicbVDLSsNAFL2pr1pfVZduBovgqiQi6LLoxmUF+8A2lMl00g6dTMLMjVBC/8KNC0Xc+jfu/BsnbRbaemDgcM69zLknSKQw6LrfTmltfWNzq7xd2dnd2z+oHh61TZxqxlsslrHuBtRwKRRvoUDJu4nmNAok7wST29zvPHFtRKwecJpwP6IjJULBKFrpsR9RHAdhNp4NqjW37s5BVolXkBoUaA6qX/1hzNKIK2SSGtPz3AT9jGoUTPJZpZ8anlA2oSPes1TRiBs/myeekTOrDEkYa/sUkrn6eyOjkTHTKLCTeUKz7OXif14vxfDaz4RKUuSKLT4KU0kwJvn5ZCg0ZyinllCmhc1K2JhqytCWVLEleMsnr5L2Rd1z6979Za1xU9RRhhM4hXPw4AoacAdNaAEDBc/wCm+OcV6cd+djMVpyip1j+APn8wfk6ZEM</latexit><latexit sha1_base64="1sz/CMsMnlOLut5+1WJNe1CJzzs=">AAAB8XicbVDLSsNAFL2pr1pfVZduBovgqiQi6LLoxmUF+8A2lMl00g6dTMLMjVBC/8KNC0Xc+jfu/BsnbRbaemDgcM69zLknSKQw6LrfTmltfWNzq7xd2dnd2z+oHh61TZxqxlsslrHuBtRwKRRvoUDJu4nmNAok7wST29zvPHFtRKwecJpwP6IjJULBKFrpsR9RHAdhNp4NqjW37s5BVolXkBoUaA6qX/1hzNKIK2SSGtPz3AT9jGoUTPJZpZ8anlA2oSPes1TRiBs/myeekTOrDEkYa/sUkrn6eyOjkTHTKLCTeUKz7OXif14vxfDaz4RKUuSKLT4KU0kwJvn5ZCg0ZyinllCmhc1K2JhqytCWVLEleMsnr5L2Rd1z6979Za1xU9RRhhM4hXPw4AoacAdNaAEDBc/wCm+OcV6cd+djMVpyip1j+APn8wfk6ZEM</latexit>

W1x+ b1
<latexit sha1_base64="mTXYDSID7VkI9Ly/T6PFkcEqO+g=">AAACA3icbVDLSsNAFL3xWesr6k43g0UQhJKIoMuiG5cV7APatEymk3boZBJmJmIJBTf+ihsXirj1J9z5N07aCNp6YODMOfdy7z1+zJnSjvNlLSwuLa+sFtaK6xubW9v2zm5dRYkktEYiHsmmjxXlTNCaZprTZiwpDn1OG/7wKvMbd1QqFolbPYqpF+K+YAEjWBupa++3Q6wHfpA2Ou79+OTn53fccdcuOWVnAjRP3JyUIEe1a3+2exFJQio04VipluvE2kux1IxwOi62E0VjTIa4T1uGChxS5aWTG8boyCg9FETSPKHRRP3dkeJQqVHom8psRzXrZeJ/XivRwYWXMhEnmgoyHRQkHOkIZYGgHpOUaD4yBBPJzK6IDLDERJvYiiYEd/bkeVI/LbtO2b05K1Uu8zgKcACHcAwunEMFrqEKNSDwAE/wAq/Wo/VsvVnv09IFK+/Zgz+wPr4B9lKXtQ==</latexit><latexit sha1_base64="mTXYDSID7VkI9Ly/T6PFkcEqO+g=">AAACA3icbVDLSsNAFL3xWesr6k43g0UQhJKIoMuiG5cV7APatEymk3boZBJmJmIJBTf+ihsXirj1J9z5N07aCNp6YODMOfdy7z1+zJnSjvNlLSwuLa+sFtaK6xubW9v2zm5dRYkktEYiHsmmjxXlTNCaZprTZiwpDn1OG/7wKvMbd1QqFolbPYqpF+K+YAEjWBupa++3Q6wHfpA2Ou79+OTn53fccdcuOWVnAjRP3JyUIEe1a3+2exFJQio04VipluvE2kux1IxwOi62E0VjTIa4T1uGChxS5aWTG8boyCg9FETSPKHRRP3dkeJQqVHom8psRzXrZeJ/XivRwYWXMhEnmgoyHRQkHOkIZYGgHpOUaD4yBBPJzK6IDLDERJvYiiYEd/bkeVI/LbtO2b05K1Uu8zgKcACHcAwunEMFrqEKNSDwAE/wAq/Wo/VsvVnv09IFK+/Zgz+wPr4B9lKXtQ==</latexit><latexit sha1_base64="mTXYDSID7VkI9Ly/T6PFkcEqO+g=">AAACA3icbVDLSsNAFL3xWesr6k43g0UQhJKIoMuiG5cV7APatEymk3boZBJmJmIJBTf+ihsXirj1J9z5N07aCNp6YODMOfdy7z1+zJnSjvNlLSwuLa+sFtaK6xubW9v2zm5dRYkktEYiHsmmjxXlTNCaZprTZiwpDn1OG/7wKvMbd1QqFolbPYqpF+K+YAEjWBupa++3Q6wHfpA2Ou79+OTn53fccdcuOWVnAjRP3JyUIEe1a3+2exFJQio04VipluvE2kux1IxwOi62E0VjTIa4T1uGChxS5aWTG8boyCg9FETSPKHRRP3dkeJQqVHom8psRzXrZeJ/XivRwYWXMhEnmgoyHRQkHOkIZYGgHpOUaD4yBBPJzK6IDLDERJvYiiYEd/bkeVI/LbtO2b05K1Uu8zgKcACHcAwunEMFrqEKNSDwAE/wAq/Wo/VsvVnv09IFK+/Zgz+wPr4B9lKXtQ==</latexit><latexit sha1_base64="mTXYDSID7VkI9Ly/T6PFkcEqO+g=">AAACA3icbVDLSsNAFL3xWesr6k43g0UQhJKIoMuiG5cV7APatEymk3boZBJmJmIJBTf+ihsXirj1J9z5N07aCNp6YODMOfdy7z1+zJnSjvNlLSwuLa+sFtaK6xubW9v2zm5dRYkktEYiHsmmjxXlTNCaZprTZiwpDn1OG/7wKvMbd1QqFolbPYqpF+K+YAEjWBupa++3Q6wHfpA2Ou79+OTn53fccdcuOWVnAjRP3JyUIEe1a3+2exFJQio04VipluvE2kux1IxwOi62E0VjTIa4T1uGChxS5aWTG8boyCg9FETSPKHRRP3dkeJQqVHom8psRzXrZeJ/XivRwYWXMhEnmgoyHRQkHOkIZYGgHpOUaD4yBBPJzK6IDLDERJvYiiYEd/bkeVI/LbtO2b05K1Uu8zgKcACHcAwunEMFrqEKNSDwAE/wAq/Wo/VsvVnv09IFK+/Zgz+wPr4B9lKXtQ==</latexit>

Linear

g(h)
<latexit sha1_base64="0IzQalxvJSF1tWLr6+9Qg+gr6Qs=">AAAB9HicbVDLSgMxFL3js9ZX1aWbYBHqpsyIoMuiG5cV7APaoWTSO21oJjMmmUIZ+h1uXCji1o9x59+YabvQ1gOBwzn3ck9OkAiujet+O2vrG5tb24Wd4u7e/sFh6ei4qeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLRXe63xqg0j+WjmSToR3QgecgZNVbyB5VuRM0wCLPh9KJXKrtVdwaySrwFKcMC9V7pq9uPWRqhNExQrTuemxg/o8pwJnBa7KYaE8pGdIAdSyWNUPvZLPSUnFulT8JY2ScNmam/NzIaaT2JAjuZR9TLXi7+53VSE974GZdJalCy+aEwFcTEJG+A9LlCZsTEEsoUt1kJG1JFmbE9FW0J3vKXV0nzsuq5Ve/hqly7XdRRgFM4gwp4cA01uIc6NIDBEzzDK7w5Y+fFeXc+5qNrzmLnBP7A+fwBdYmR4g==</latexit><latexit sha1_base64="0IzQalxvJSF1tWLr6+9Qg+gr6Qs=">AAAB9HicbVDLSgMxFL3js9ZX1aWbYBHqpsyIoMuiG5cV7APaoWTSO21oJjMmmUIZ+h1uXCji1o9x59+YabvQ1gOBwzn3ck9OkAiujet+O2vrG5tb24Wd4u7e/sFh6ei4qeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLRXe63xqg0j+WjmSToR3QgecgZNVbyB5VuRM0wCLPh9KJXKrtVdwaySrwFKcMC9V7pq9uPWRqhNExQrTuemxg/o8pwJnBa7KYaE8pGdIAdSyWNUPvZLPSUnFulT8JY2ScNmam/NzIaaT2JAjuZR9TLXi7+53VSE974GZdJalCy+aEwFcTEJG+A9LlCZsTEEsoUt1kJG1JFmbE9FW0J3vKXV0nzsuq5Ve/hqly7XdRRgFM4gwp4cA01uIc6NIDBEzzDK7w5Y+fFeXc+5qNrzmLnBP7A+fwBdYmR4g==</latexit><latexit sha1_base64="0IzQalxvJSF1tWLr6+9Qg+gr6Qs=">AAAB9HicbVDLSgMxFL3js9ZX1aWbYBHqpsyIoMuiG5cV7APaoWTSO21oJjMmmUIZ+h1uXCji1o9x59+YabvQ1gOBwzn3ck9OkAiujet+O2vrG5tb24Wd4u7e/sFh6ei4qeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLRXe63xqg0j+WjmSToR3QgecgZNVbyB5VuRM0wCLPh9KJXKrtVdwaySrwFKcMC9V7pq9uPWRqhNExQrTuemxg/o8pwJnBa7KYaE8pGdIAdSyWNUPvZLPSUnFulT8JY2ScNmam/NzIaaT2JAjuZR9TLXi7+53VSE974GZdJalCy+aEwFcTEJG+A9LlCZsTEEsoUt1kJG1JFmbE9FW0J3vKXV0nzsuq5Ve/hqly7XdRRgFM4gwp4cA01uIc6NIDBEzzDK7w5Y+fFeXc+5qNrzmLnBP7A+fwBdYmR4g==</latexit><latexit sha1_base64="0IzQalxvJSF1tWLr6+9Qg+gr6Qs=">AAAB9HicbVDLSgMxFL3js9ZX1aWbYBHqpsyIoMuiG5cV7APaoWTSO21oJjMmmUIZ+h1uXCji1o9x59+YabvQ1gOBwzn3ck9OkAiujet+O2vrG5tb24Wd4u7e/sFh6ei4qeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLRXe63xqg0j+WjmSToR3QgecgZNVbyB5VuRM0wCLPh9KJXKrtVdwaySrwFKcMC9V7pq9uPWRqhNExQrTuemxg/o8pwJnBa7KYaE8pGdIAdSyWNUPvZLPSUnFulT8JY2ScNmam/NzIaaT2JAjuZR9TLXi7+53VSE974GZdJalCy+aEwFcTEJG+A9LlCZsTEEsoUt1kJG1JFmbE9FW0J3vKXV0nzsuq5Ve/hqly7XdRRgFM4gwp4cA01uIc6NIDBEzzDK7w5Y+fFeXc+5qNrzmLnBP7A+fwBdYmR4g==</latexit>

non-linearity
(ReLU)

MLP (multi-layer
perceptron)
is strictly more
powerful than
linear.
Can learn any borel-
measurable function
(if large enough)

W2h+ b2
<latexit sha1_base64="4yGejj08LGgNjMg6IYcbVlNJn70=">AAAB+nicbVDLSsNAFL2pr1pfqS7dDBZBEEpSBF0W3bisYB/QpmUynbRDJ5MwM1FK7Ke4caGIW7/EnX/jpM1CWw8MHM65l3vm+DFnSjvOt1VYW9/Y3Cpul3Z29/YP7PJhS0WJJLRJIh7Jjo8V5UzQpmaa004sKQ59Ttv+5Cbz2w9UKhaJez2NqRfikWABI1gbaWCXeyHWYz9I2/3a+Nzv12YDu+JUnTnQKnFzUoEcjYH91RtGJAmp0IRjpbquE2svxVIzwums1EsUjTGZ4BHtGipwSJWXzqPP0KlRhiiIpHlCo7n6eyPFoVLT0DeTWVC17GXif1430cGVlzIRJ5oKsjgUJBzpCGU9oCGTlGg+NQQTyUxWRMZYYqJNWyVTgrv85VXSqlVdp+reXVTq13kdRTiGEzgDFy6hDrfQgCYQeIRneIU368l6sd6tj8Vowcp3juAPrM8fj/CThw==</latexit><latexit sha1_base64="4yGejj08LGgNjMg6IYcbVlNJn70=">AAAB+nicbVDLSsNAFL2pr1pfqS7dDBZBEEpSBF0W3bisYB/QpmUynbRDJ5MwM1FK7Ke4caGIW7/EnX/jpM1CWw8MHM65l3vm+DFnSjvOt1VYW9/Y3Cpul3Z29/YP7PJhS0WJJLRJIh7Jjo8V5UzQpmaa004sKQ59Ttv+5Cbz2w9UKhaJez2NqRfikWABI1gbaWCXeyHWYz9I2/3a+Nzv12YDu+JUnTnQKnFzUoEcjYH91RtGJAmp0IRjpbquE2svxVIzwums1EsUjTGZ4BHtGipwSJWXzqPP0KlRhiiIpHlCo7n6eyPFoVLT0DeTWVC17GXif1430cGVlzIRJ5oKsjgUJBzpCGU9oCGTlGg+NQQTyUxWRMZYYqJNWyVTgrv85VXSqlVdp+reXVTq13kdRTiGEzgDFy6hDrfQgCYQeIRneIU368l6sd6tj8Vowcp3juAPrM8fj/CThw==</latexit><latexit sha1_base64="4yGejj08LGgNjMg6IYcbVlNJn70=">AAAB+nicbVDLSsNAFL2pr1pfqS7dDBZBEEpSBF0W3bisYB/QpmUynbRDJ5MwM1FK7Ke4caGIW7/EnX/jpM1CWw8MHM65l3vm+DFnSjvOt1VYW9/Y3Cpul3Z29/YP7PJhS0WJJLRJIh7Jjo8V5UzQpmaa004sKQ59Ttv+5Cbz2w9UKhaJez2NqRfikWABI1gbaWCXeyHWYz9I2/3a+Nzv12YDu+JUnTnQKnFzUoEcjYH91RtGJAmp0IRjpbquE2svxVIzwums1EsUjTGZ4BHtGipwSJWXzqPP0KlRhiiIpHlCo7n6eyPFoVLT0DeTWVC17GXif1430cGVlzIRJ5oKsjgUJBzpCGU9oCGTlGg+NQQTyUxWRMZYYqJNWyVTgrv85VXSqlVdp+reXVTq13kdRTiGEzgDFy6hDrfQgCYQeIRneIU368l6sd6tj8Vowcp3juAPrM8fj/CThw==</latexit><latexit sha1_base64="4yGejj08LGgNjMg6IYcbVlNJn70=">AAAB+nicbVDLSsNAFL2pr1pfqS7dDBZBEEpSBF0W3bisYB/QpmUynbRDJ5MwM1FK7Ke4caGIW7/EnX/jpM1CWw8MHM65l3vm+DFnSjvOt1VYW9/Y3Cpul3Z29/YP7PJhS0WJJLRJIh7Jjo8V5UzQpmaa004sKQ59Ttv+5Cbz2w9UKhaJez2NqRfikWABI1gbaWCXeyHWYz9I2/3a+Nzv12YDu+JUnTnQKnFzUoEcjYH91RtGJAmp0IRjpbquE2svxVIzwums1EsUjTGZ4BHtGipwSJWXzqPP0KlRhiiIpHlCo7n6eyPFoVLT0DeTWVC17GXif1430cGVlzIRJ5oKsjgUJBzpCGU9oCGTlGg+NQQTyUxWRMZYYqJNWyVTgrv85VXSqlVdp+reXVTq13kdRTiGEzgDFy6hDrfQgCYQeIRneIU368l6sd6tj8Vowcp3juAPrM8fj/CThw==</latexit>

Non-linearities / Activations

4.6. REGULARIZATION AND DROPOUT 43

Figure 4.3: Activation functions (top) and their derivatives (bottom).

the network’s output ŷ given the true expected output y. The loss functions discussed for
linear models in 2.7.1 are relevant and widely used also for neural networks. For further
discussion on loss functions in the context of neural networks see [Bengio et al., 2016, LeCun
and Huang, 2005, LeCun et al., 2006].

4.6 REGULARIZATION AND DROPOUT

Multi-layer networks can be large and have many parameters, making them especially prone
to overfitting. Model regularization is just as important in deep neural networks as it is in
linear models, and perhaps even more so. The regularizers discussed in 2.7.2, namely L2, L1

and the elastic-net, are also relevant for neural networks. In particular, L2 regularization,
also called weight decay is essential for achieving good generalization performance in many
cases, and tuning the regularization strength � is advisable.

Another e↵ective technique for preventing neural networks from overfitting the train-
ing data is dropout training [Hinton, 2014, Hinton et al., 2012]. The dropout method is
designed to prevent the network from learning to rely on specific weights. It works by ran-
domly dropping (setting to 0) half of the neurons in the network (or in a specific layer)
in each training example in the stochastic-gradient training. For example, consider the
multilayer perceptron with two hidden layers (MLP2):

4.6. REGULARIZATION AND DROPOUT 43

Figure 4.3: Activation functions (top) and their derivatives (bottom).

the network’s output ŷ given the true expected output y. The loss functions discussed for
linear models in 2.7.1 are relevant and widely used also for neural networks. For further
discussion on loss functions in the context of neural networks see [Bengio et al., 2016, LeCun
and Huang, 2005, LeCun et al., 2006].

4.6 REGULARIZATION AND DROPOUT

Multi-layer networks can be large and have many parameters, making them especially prone
to overfitting. Model regularization is just as important in deep neural networks as it is in
linear models, and perhaps even more so. The regularizers discussed in 2.7.2, namely L2, L1

and the elastic-net, are also relevant for neural networks. In particular, L2 regularization,
also called weight decay is essential for achieving good generalization performance in many
cases, and tuning the regularization strength � is advisable.

Another e↵ective technique for preventing neural networks from overfitting the train-
ing data is dropout training [Hinton, 2014, Hinton et al., 2012]. The dropout method is
designed to prevent the network from learning to rely on specific weights. It works by ran-
domly dropping (setting to 0) half of the neurons in the network (or in a specific layer)
in each training example in the stochastic-gradient training. For example, consider the
multilayer perceptron with two hidden layers (MLP2):

4.6. REGULARIZATION AND DROPOUT 43

Figure 4.3: Activation functions (top) and their derivatives (bottom).

the network’s output ŷ given the true expected output y. The loss functions discussed for
linear models in 2.7.1 are relevant and widely used also for neural networks. For further
discussion on loss functions in the context of neural networks see [Bengio et al., 2016, LeCun
and Huang, 2005, LeCun et al., 2006].

4.6 REGULARIZATION AND DROPOUT

Multi-layer networks can be large and have many parameters, making them especially prone
to overfitting. Model regularization is just as important in deep neural networks as it is in
linear models, and perhaps even more so. The regularizers discussed in 2.7.2, namely L2, L1

and the elastic-net, are also relevant for neural networks. In particular, L2 regularization,
also called weight decay is essential for achieving good generalization performance in many
cases, and tuning the regularization strength � is advisable.

Another e↵ective technique for preventing neural networks from overfitting the train-
ing data is dropout training [Hinton, 2014, Hinton et al., 2012]. The dropout method is
designed to prevent the network from learning to rely on specific weights. It works by ran-
domly dropping (setting to 0) half of the neurons in the network (or in a specific layer)
in each training example in the stochastic-gradient training. For example, consider the
multilayer perceptron with two hidden layers (MLP2):

the common ones

function

x

softmax

y

Neural Network

what is x?

Predicting from words

Neural NLP Building Blocks

• Word Embeddings: translate a word to a vector.

• Ways of combining vectors.

• Consider the columns of W3.

• Consider the rows of E.

Word Embeddings

Word Embeddings
• Translate each word in the (fixed) vocabulary to a vector.

• Typical dimensions: 100-300

• Translation is done using a lookup table.

• Can be "pre-trained" (word2vec, glove)

• Dealing with "infinite" vocabularies:

• {characters}, {word pieces, bpe}, {fastText}

Word Embeddings

• {characters}, {word pieces, bpe}, {fastText}

dinosaur = d i n o s a u r

dinosaur = dino #sa #ur

dinosaur =
dinosa + inosau + nosaur +

dino + inos + nosa + osau + saur
+ din + ino + nos + osa + sau + aur

vbook = E[book]

Lookup
Table

"book"

vbook

Word Embeddings

Lookup
Table

a

Combining Vectors

Lookup
Table

I

Lookup
Table

read

Lookup
Table

book

Lookup
Table

about

vI vread va vbook vabout

Lookup
Table

a

Combining Vectors

Lookup
Table

I

Lookup
Table

read

Lookup
Table

book

Lookup
Table

about

concatenate

vI vread va vbook vabout

I read a book about

Lookup
Table

a

Combining Vectors

Lookup
Table

I

Lookup
Table

read

Lookup
Table

book

Lookup
Table

about

sum

+ + + +
vI vread va vbook vabout

I read a book about

Lookup
Table

a

Combining Vectors

Lookup
Table

I

Lookup
Table

read

Lookup
Table

book

Lookup
Table

about

sum

+ + + +

(or average)

vI vread va vbook vabout

I read a book about

Lookup
Table

a

Combining Vectors

Lookup
Table

I

Lookup
Table

read

Lookup
Table

book

Lookup
Table

about

sum

+ + + +

(or average)

vI vread va vbook vabout

book a about read I

Combining Vectors
Sum (or average)Concatenate

I read a book about

I read a book

I read a

I read

I read a book about

I read a book

I read a

I read

I book a read about
book about read I a
I a about book read
a read about book I

...

more words = longer vectors order invariant

"cbow"

Linear

x

softmax

y

y0

h
<latexit sha1_base64="1sz/CMsMnlOLut5+1WJNe1CJzzs=">AAAB8XicbVDLSsNAFL2pr1pfVZduBovgqiQi6LLoxmUF+8A2lMl00g6dTMLMjVBC/8KNC0Xc+jfu/BsnbRbaemDgcM69zLknSKQw6LrfTmltfWNzq7xd2dnd2z+oHh61TZxqxlsslrHuBtRwKRRvoUDJu4nmNAok7wST29zvPHFtRKwecJpwP6IjJULBKFrpsR9RHAdhNp4NqjW37s5BVolXkBoUaA6qX/1hzNKIK2SSGtPz3AT9jGoUTPJZpZ8anlA2oSPes1TRiBs/myeekTOrDEkYa/sUkrn6eyOjkTHTKLCTeUKz7OXif14vxfDaz4RKUuSKLT4KU0kwJvn5ZCg0ZyinllCmhc1K2JhqytCWVLEleMsnr5L2Rd1z6979Za1xU9RRhhM4hXPw4AoacAdNaAEDBc/wCm+OcV6cd+djMVpyip1j+APn8wfk6ZEM</latexit><latexit sha1_base64="1sz/CMsMnlOLut5+1WJNe1CJzzs=">AAAB8XicbVDLSsNAFL2pr1pfVZduBovgqiQi6LLoxmUF+8A2lMl00g6dTMLMjVBC/8KNC0Xc+jfu/BsnbRbaemDgcM69zLknSKQw6LrfTmltfWNzq7xd2dnd2z+oHh61TZxqxlsslrHuBtRwKRRvoUDJu4nmNAok7wST29zvPHFtRKwecJpwP6IjJULBKFrpsR9RHAdhNp4NqjW37s5BVolXkBoUaA6qX/1hzNKIK2SSGtPz3AT9jGoUTPJZpZ8anlA2oSPes1TRiBs/myeekTOrDEkYa/sUkrn6eyOjkTHTKLCTeUKz7OXif14vxfDaz4RKUuSKLT4KU0kwJvn5ZCg0ZyinllCmhc1K2JhqytCWVLEleMsnr5L2Rd1z6979Za1xU9RRhhM4hXPw4AoacAdNaAEDBc/wCm+OcV6cd+djMVpyip1j+APn8wfk6ZEM</latexit><latexit sha1_base64="1sz/CMsMnlOLut5+1WJNe1CJzzs=">AAAB8XicbVDLSsNAFL2pr1pfVZduBovgqiQi6LLoxmUF+8A2lMl00g6dTMLMjVBC/8KNC0Xc+jfu/BsnbRbaemDgcM69zLknSKQw6LrfTmltfWNzq7xd2dnd2z+oHh61TZxqxlsslrHuBtRwKRRvoUDJu4nmNAok7wST29zvPHFtRKwecJpwP6IjJULBKFrpsR9RHAdhNp4NqjW37s5BVolXkBoUaA6qX/1hzNKIK2SSGtPz3AT9jGoUTPJZpZ8anlA2oSPes1TRiBs/myeekTOrDEkYa/sUkrn6eyOjkTHTKLCTeUKz7OXif14vxfDaz4RKUuSKLT4KU0kwJvn5ZCg0ZyinllCmhc1K2JhqytCWVLEleMsnr5L2Rd1z6979Za1xU9RRhhM4hXPw4AoacAdNaAEDBc/wCm+OcV6cd+djMVpyip1j+APn8wfk6ZEM</latexit><latexit sha1_base64="1sz/CMsMnlOLut5+1WJNe1CJzzs=">AAAB8XicbVDLSsNAFL2pr1pfVZduBovgqiQi6LLoxmUF+8A2lMl00g6dTMLMjVBC/8KNC0Xc+jfu/BsnbRbaemDgcM69zLknSKQw6LrfTmltfWNzq7xd2dnd2z+oHh61TZxqxlsslrHuBtRwKRRvoUDJu4nmNAok7wST29zvPHFtRKwecJpwP6IjJULBKFrpsR9RHAdhNp4NqjW37s5BVolXkBoUaA6qX/1hzNKIK2SSGtPz3AT9jGoUTPJZpZ8anlA2oSPes1TRiBs/myeekTOrDEkYa/sUkrn6eyOjkTHTKLCTeUKz7OXif14vxfDaz4RKUuSKLT4KU0kwJvn5ZCg0ZyinllCmhc1K2JhqytCWVLEleMsnr5L2Rd1z6979Za1xU9RRhhM4hXPw4AoacAdNaAEDBc/wCm+OcV6cd+djMVpyip1j+APn8wfk6ZEM</latexit>

W1x+ b1
<latexit sha1_base64="mTXYDSID7VkI9Ly/T6PFkcEqO+g=">AAACA3icbVDLSsNAFL3xWesr6k43g0UQhJKIoMuiG5cV7APatEymk3boZBJmJmIJBTf+ihsXirj1J9z5N07aCNp6YODMOfdy7z1+zJnSjvNlLSwuLa+sFtaK6xubW9v2zm5dRYkktEYiHsmmjxXlTNCaZprTZiwpDn1OG/7wKvMbd1QqFolbPYqpF+K+YAEjWBupa++3Q6wHfpA2Ou79+OTn53fccdcuOWVnAjRP3JyUIEe1a3+2exFJQio04VipluvE2kux1IxwOi62E0VjTIa4T1uGChxS5aWTG8boyCg9FETSPKHRRP3dkeJQqVHom8psRzXrZeJ/XivRwYWXMhEnmgoyHRQkHOkIZYGgHpOUaD4yBBPJzK6IDLDERJvYiiYEd/bkeVI/LbtO2b05K1Uu8zgKcACHcAwunEMFrqEKNSDwAE/wAq/Wo/VsvVnv09IFK+/Zgz+wPr4B9lKXtQ==</latexit><latexit sha1_base64="mTXYDSID7VkI9Ly/T6PFkcEqO+g=">AAACA3icbVDLSsNAFL3xWesr6k43g0UQhJKIoMuiG5cV7APatEymk3boZBJmJmIJBTf+ihsXirj1J9z5N07aCNp6YODMOfdy7z1+zJnSjvNlLSwuLa+sFtaK6xubW9v2zm5dRYkktEYiHsmmjxXlTNCaZprTZiwpDn1OG/7wKvMbd1QqFolbPYqpF+K+YAEjWBupa++3Q6wHfpA2Ou79+OTn53fccdcuOWVnAjRP3JyUIEe1a3+2exFJQio04VipluvE2kux1IxwOi62E0VjTIa4T1uGChxS5aWTG8boyCg9FETSPKHRRP3dkeJQqVHom8psRzXrZeJ/XivRwYWXMhEnmgoyHRQkHOkIZYGgHpOUaD4yBBPJzK6IDLDERJvYiiYEd/bkeVI/LbtO2b05K1Uu8zgKcACHcAwunEMFrqEKNSDwAE/wAq/Wo/VsvVnv09IFK+/Zgz+wPr4B9lKXtQ==</latexit><latexit sha1_base64="mTXYDSID7VkI9Ly/T6PFkcEqO+g=">AAACA3icbVDLSsNAFL3xWesr6k43g0UQhJKIoMuiG5cV7APatEymk3boZBJmJmIJBTf+ihsXirj1J9z5N07aCNp6YODMOfdy7z1+zJnSjvNlLSwuLa+sFtaK6xubW9v2zm5dRYkktEYiHsmmjxXlTNCaZprTZiwpDn1OG/7wKvMbd1QqFolbPYqpF+K+YAEjWBupa++3Q6wHfpA2Ou79+OTn53fccdcuOWVnAjRP3JyUIEe1a3+2exFJQio04VipluvE2kux1IxwOi62E0VjTIa4T1uGChxS5aWTG8boyCg9FETSPKHRRP3dkeJQqVHom8psRzXrZeJ/XivRwYWXMhEnmgoyHRQkHOkIZYGgHpOUaD4yBBPJzK6IDLDERJvYiiYEd/bkeVI/LbtO2b05K1Uu8zgKcACHcAwunEMFrqEKNSDwAE/wAq/Wo/VsvVnv09IFK+/Zgz+wPr4B9lKXtQ==</latexit><latexit sha1_base64="mTXYDSID7VkI9Ly/T6PFkcEqO+g=">AAACA3icbVDLSsNAFL3xWesr6k43g0UQhJKIoMuiG5cV7APatEymk3boZBJmJmIJBTf+ihsXirj1J9z5N07aCNp6YODMOfdy7z1+zJnSjvNlLSwuLa+sFtaK6xubW9v2zm5dRYkktEYiHsmmjxXlTNCaZprTZiwpDn1OG/7wKvMbd1QqFolbPYqpF+K+YAEjWBupa++3Q6wHfpA2Ou79+OTn53fccdcuOWVnAjRP3JyUIEe1a3+2exFJQio04VipluvE2kux1IxwOi62E0VjTIa4T1uGChxS5aWTG8boyCg9FETSPKHRRP3dkeJQqVHom8psRzXrZeJ/XivRwYWXMhEnmgoyHRQkHOkIZYGgHpOUaD4yBBPJzK6IDLDERJvYiiYEd/bkeVI/LbtO2b05K1Uu8zgKcACHcAwunEMFrqEKNSDwAE/wAq/Wo/VsvVnv09IFK+/Zgz+wPr4B9lKXtQ==</latexit>

W2x+ b2
<latexit sha1_base64="QZNVswR19+1hDdjFGfcD+lVYOpg=">AAACA3icbVDLSsNAFL2pr1pfUXe6GSyCIJSkCLosunFZwT6gTctkOmmHTh7MTMQSAm78FTcuFHHrT7jzb5y0EbT1wMCZc+7l3nvciDOpLOvLKCwtr6yuFddLG5tb2zvm7l5ThrEgtEFCHoq2iyXlLKANxRSn7UhQ7LucttzxVea37qiQLAxu1SSijo+HAfMYwUpLffOg62M1cr2k1avep6c/P7dXTftm2apYU6BFYuekDDnqffOzOwhJ7NNAEY6l7NhWpJwEC8UIp2mpG0saYTLGQ9rRNMA+lU4yvSFFx1oZIC8U+gUKTdXfHQn2pZz4rq7MdpTzXib+53Vi5V04CQuiWNGAzAZ5MUcqRFkgaMAEJYpPNMFEML0rIiMsMFE6tpIOwZ4/eZE0qxXbqtg3Z+XaZR5HEQ7hCE7AhnOowTXUoQEEHuAJXuDVeDSejTfjfVZaMPKeffgD4+Mb+WqXtw==</latexit><latexit sha1_base64="QZNVswR19+1hDdjFGfcD+lVYOpg=">AAACA3icbVDLSsNAFL2pr1pfUXe6GSyCIJSkCLosunFZwT6gTctkOmmHTh7MTMQSAm78FTcuFHHrT7jzb5y0EbT1wMCZc+7l3nvciDOpLOvLKCwtr6yuFddLG5tb2zvm7l5ThrEgtEFCHoq2iyXlLKANxRSn7UhQ7LucttzxVea37qiQLAxu1SSijo+HAfMYwUpLffOg62M1cr2k1avep6c/P7dXTftm2apYU6BFYuekDDnqffOzOwhJ7NNAEY6l7NhWpJwEC8UIp2mpG0saYTLGQ9rRNMA+lU4yvSFFx1oZIC8U+gUKTdXfHQn2pZz4rq7MdpTzXib+53Vi5V04CQuiWNGAzAZ5MUcqRFkgaMAEJYpPNMFEML0rIiMsMFE6tpIOwZ4/eZE0qxXbqtg3Z+XaZR5HEQ7hCE7AhnOowTXUoQEEHuAJXuDVeDSejTfjfVZaMPKeffgD4+Mb+WqXtw==</latexit><latexit sha1_base64="QZNVswR19+1hDdjFGfcD+lVYOpg=">AAACA3icbVDLSsNAFL2pr1pfUXe6GSyCIJSkCLosunFZwT6gTctkOmmHTh7MTMQSAm78FTcuFHHrT7jzb5y0EbT1wMCZc+7l3nvciDOpLOvLKCwtr6yuFddLG5tb2zvm7l5ThrEgtEFCHoq2iyXlLKANxRSn7UhQ7LucttzxVea37qiQLAxu1SSijo+HAfMYwUpLffOg62M1cr2k1avep6c/P7dXTftm2apYU6BFYuekDDnqffOzOwhJ7NNAEY6l7NhWpJwEC8UIp2mpG0saYTLGQ9rRNMA+lU4yvSFFx1oZIC8U+gUKTdXfHQn2pZz4rq7MdpTzXib+53Vi5V04CQuiWNGAzAZ5MUcqRFkgaMAEJYpPNMFEML0rIiMsMFE6tpIOwZ4/eZE0qxXbqtg3Z+XaZR5HEQ7hCE7AhnOowTXUoQEEHuAJXuDVeDSejTfjfVZaMPKeffgD4+Mb+WqXtw==</latexit><latexit sha1_base64="QZNVswR19+1hDdjFGfcD+lVYOpg=">AAACA3icbVDLSsNAFL2pr1pfUXe6GSyCIJSkCLosunFZwT6gTctkOmmHTh7MTMQSAm78FTcuFHHrT7jzb5y0EbT1wMCZc+7l3nvciDOpLOvLKCwtr6yuFddLG5tb2zvm7l5ThrEgtEFCHoq2iyXlLKANxRSn7UhQ7LucttzxVea37qiQLAxu1SSijo+HAfMYwUpLffOg62M1cr2k1avep6c/P7dXTftm2apYU6BFYuekDDnqffOzOwhJ7NNAEY6l7NhWpJwEC8UIp2mpG0saYTLGQ9rRNMA+lU4yvSFFx1oZIC8U+gUKTdXfHQn2pZz4rq7MdpTzXib+53Vi5V04CQuiWNGAzAZ5MUcqRFkgaMAEJYpPNMFEML0rIiMsMFE6tpIOwZ4/eZE0qxXbqtg3Z+XaZR5HEQ7hCE7AhnOowTXUoQEEHuAJXuDVeDSejTfjfVZaMPKeffgD4+Mb+WqXtw==</latexit>

Linear

g(h)
<latexit sha1_base64="0IzQalxvJSF1tWLr6+9Qg+gr6Qs=">AAAB9HicbVDLSgMxFL3js9ZX1aWbYBHqpsyIoMuiG5cV7APaoWTSO21oJjMmmUIZ+h1uXCji1o9x59+YabvQ1gOBwzn3ck9OkAiujet+O2vrG5tb24Wd4u7e/sFh6ei4qeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLRXe63xqg0j+WjmSToR3QgecgZNVbyB5VuRM0wCLPh9KJXKrtVdwaySrwFKcMC9V7pq9uPWRqhNExQrTuemxg/o8pwJnBa7KYaE8pGdIAdSyWNUPvZLPSUnFulT8JY2ScNmam/NzIaaT2JAjuZR9TLXi7+53VSE974GZdJalCy+aEwFcTEJG+A9LlCZsTEEsoUt1kJG1JFmbE9FW0J3vKXV0nzsuq5Ve/hqly7XdRRgFM4gwp4cA01uIc6NIDBEzzDK7w5Y+fFeXc+5qNrzmLnBP7A+fwBdYmR4g==</latexit><latexit sha1_base64="0IzQalxvJSF1tWLr6+9Qg+gr6Qs=">AAAB9HicbVDLSgMxFL3js9ZX1aWbYBHqpsyIoMuiG5cV7APaoWTSO21oJjMmmUIZ+h1uXCji1o9x59+YabvQ1gOBwzn3ck9OkAiujet+O2vrG5tb24Wd4u7e/sFh6ei4qeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLRXe63xqg0j+WjmSToR3QgecgZNVbyB5VuRM0wCLPh9KJXKrtVdwaySrwFKcMC9V7pq9uPWRqhNExQrTuemxg/o8pwJnBa7KYaE8pGdIAdSyWNUPvZLPSUnFulT8JY2ScNmam/NzIaaT2JAjuZR9TLXi7+53VSE974GZdJalCy+aEwFcTEJG+A9LlCZsTEEsoUt1kJG1JFmbE9FW0J3vKXV0nzsuq5Ve/hqly7XdRRgFM4gwp4cA01uIc6NIDBEzzDK7w5Y+fFeXc+5qNrzmLnBP7A+fwBdYmR4g==</latexit><latexit sha1_base64="0IzQalxvJSF1tWLr6+9Qg+gr6Qs=">AAAB9HicbVDLSgMxFL3js9ZX1aWbYBHqpsyIoMuiG5cV7APaoWTSO21oJjMmmUIZ+h1uXCji1o9x59+YabvQ1gOBwzn3ck9OkAiujet+O2vrG5tb24Wd4u7e/sFh6ei4qeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLRXe63xqg0j+WjmSToR3QgecgZNVbyB5VuRM0wCLPh9KJXKrtVdwaySrwFKcMC9V7pq9uPWRqhNExQrTuemxg/o8pwJnBa7KYaE8pGdIAdSyWNUPvZLPSUnFulT8JY2ScNmam/NzIaaT2JAjuZR9TLXi7+53VSE974GZdJalCy+aEwFcTEJG+A9LlCZsTEEsoUt1kJG1JFmbE9FW0J3vKXV0nzsuq5Ve/hqly7XdRRgFM4gwp4cA01uIc6NIDBEzzDK7w5Y+fFeXc+5qNrzmLnBP7A+fwBdYmR4g==</latexit><latexit sha1_base64="0IzQalxvJSF1tWLr6+9Qg+gr6Qs=">AAAB9HicbVDLSgMxFL3js9ZX1aWbYBHqpsyIoMuiG5cV7APaoWTSO21oJjMmmUIZ+h1uXCji1o9x59+YabvQ1gOBwzn3ck9OkAiujet+O2vrG5tb24Wd4u7e/sFh6ei4qeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLRXe63xqg0j+WjmSToR3QgecgZNVbyB5VuRM0wCLPh9KJXKrtVdwaySrwFKcMC9V7pq9uPWRqhNExQrTuemxg/o8pwJnBa7KYaE8pGdIAdSyWNUPvZLPSUnFulT8JY2ScNmam/NzIaaT2JAjuZR9TLXi7+53VSE974GZdJalCy+aEwFcTEJG+A9LlCZsTEEsoUt1kJG1JFmbE9FW0J3vKXV0nzsuq5Ve/hqly7XdRRgFM4gwp4cA01uIc6NIDBEzzDK7w5Y+fFeXc+5qNrzmLnBP7A+fwBdYmR4g==</latexit>

Lookup
Table

Lookup
Table

Lookup
Table

Lookup
Table

Lookup
Table

su

+ + + +vI vread va vbook vabout

The Computation Graph

• Computing the gradients:
• The network (and loss calculation) is a

mathematical function.

• Calculus rules apply.
• (a bit hairy, but carefully follow the chain rule and

you'll get there)

`(x, k) = �log(softmax(W3g2(W2g1(W1x+ b1)+b2) + b3)[k])

Gradient-based training

The Computation Graph
(CG)

• a DAG.

• Leafs are inputs (or parameters).

• Nodes are operators (functions).

• Edges are results (values).

• Can be built for any function.

RMSProp (Tieleman & Hinton, 2012) and Adam (Kingma & Ba, 2014) are designed to
select the learning rate for each minibatch, sometimes on a per-coordinate basis, potentially
alleviating the need of fiddling with learning rate scheduling. For details of these algorithms,
see the original papers or (Bengio et al., 2015, Sections 8.3, 8.4). As many neural-network
software frameworks provide implementations of these algorithms, it is easy and sometimes
worthwhile to try out di↵erent variants.

6.2 The Computation Graph Abstraction

While one can compute the gradients of the various parameters of a network by hand and
implement them in code, this procedure is cumbersome and error prone. For most pur-
poses, it is preferable to use automatic tools for gradient computation (Bengio, 2012). The
computation-graph abstraction allows us to easily construct arbitrary networks, evaluate
their predictions for given inputs (forward pass), and compute gradients for their parameters
with respect to arbitrary scalar losses (backward pass).

A computation graph is a representation of an arbitrary mathematical computation as
a graph. It is a directed acyclic graph (DAG) in which nodes correspond to mathematical
operations or (bound) variables and edges correspond to the flow of intermediary values
between the nodes. The graph structure defines the order of the computation in terms of
the dependencies between the di↵erent components. The graph is a DAG and not a tree, as
the result of one operation can be the input of several continuations. Consider for example
a graph for the computation of (a ⇤ b+ 1) ⇤ (a ⇤ b+ 2):

a b1 2

*
++

*

The computation of a⇤b is shared. We restrict ourselves to the case where the computation
graph is connected.

Since a neural network is essentially a mathematical expression, it can be represented
as a computation graph.

For example, Figure 3a presents the computation graph for a 1-layer MLP with a soft-
max output transformation. In our notation, oval nodes represent mathematical operations
or functions, and shaded rectangle nodes represent parameters (bound variables). Network
inputs are treated as constants, and drawn without a surrounding node. Input and param-
eter nodes have no incoming arcs, and output nodes have no outgoing arcs. The output of
each node is a matrix, the dimensionality of which is indicated above the node.

This graph is incomplete: without specifying the inputs, we cannot compute an output.
Figure 3b shows a complete graph for an MLP that takes three words as inputs, and predicts
the distribution over part-of-speech tags for the third word. This graph can be used for
prediction, but not for training, as the output is a vector (not a scalar) and the graph does
not take into account the correct answer or the loss term. Finally, the graph in 3c shows the
computation graph for a specific training example, in which the inputs are the (embeddings

28

RMSProp (Tieleman & Hinton, 2012) and Adam (Kingma & Ba, 2014) are designed to
select the learning rate for each minibatch, sometimes on a per-coordinate basis, potentially
alleviating the need of fiddling with learning rate scheduling. For details of these algorithms,
see the original papers or (Bengio et al., 2015, Sections 8.3, 8.4). As many neural-network
software frameworks provide implementations of these algorithms, it is easy and sometimes
worthwhile to try out di↵erent variants.

6.2 The Computation Graph Abstraction

While one can compute the gradients of the various parameters of a network by hand and
implement them in code, this procedure is cumbersome and error prone. For most pur-
poses, it is preferable to use automatic tools for gradient computation (Bengio, 2012). The
computation-graph abstraction allows us to easily construct arbitrary networks, evaluate
their predictions for given inputs (forward pass), and compute gradients for their parameters
with respect to arbitrary scalar losses (backward pass).

A computation graph is a representation of an arbitrary mathematical computation as
a graph. It is a directed acyclic graph (DAG) in which nodes correspond to mathematical
operations or (bound) variables and edges correspond to the flow of intermediary values
between the nodes. The graph structure defines the order of the computation in terms of
the dependencies between the di↵erent components. The graph is a DAG and not a tree, as
the result of one operation can be the input of several continuations. Consider for example
a graph for the computation of (a ⇤ b+ 1) ⇤ (a ⇤ b+ 2):

a b1 2

*
++

*

The computation of a⇤b is shared. We restrict ourselves to the case where the computation
graph is connected.

Since a neural network is essentially a mathematical expression, it can be represented
as a computation graph.

For example, Figure 3a presents the computation graph for a 1-layer MLP with a soft-
max output transformation. In our notation, oval nodes represent mathematical operations
or functions, and shaded rectangle nodes represent parameters (bound variables). Network
inputs are treated as constants, and drawn without a surrounding node. Input and param-
eter nodes have no incoming arcs, and output nodes have no outgoing arcs. The output of
each node is a matrix, the dimensionality of which is indicated above the node.

This graph is incomplete: without specifying the inputs, we cannot compute an output.
Figure 3b shows a complete graph for an MLP that takes three words as inputs, and predicts
the distribution over part-of-speech tags for the third word. This graph can be used for
prediction, but not for training, as the output is a vector (not a scalar) and the graph does
not take into account the correct answer or the loss term. Finally, the graph in 3c shows the
computation graph for a specific training example, in which the inputs are the (embeddings

28

x

1⇥ 150

W
1

150⇥ 20

MUL

1⇥ 20

ADD

1⇥ 20

b
1

1⇥ 20

tanh

1⇥ 20

W
2

20⇥ 17

b
2

1⇥ 17

MUL

1⇥ 17

ADD

1⇥ 17

softmax

1⇥ 17

(a)

concat

1⇥ 150

lookup

1⇥ 50

lookup

1⇥ 50

lookup

1⇥ 50

“the” “black” “dog” E

|V |⇥ 50

W
1

150⇥ 20

MUL

1⇥ 20

ADD

1⇥ 20

b
1

1⇥ 20

tanh

1⇥ 20

W
2

20⇥ 17

b
2

1⇥ 17

MUL

1⇥ 17

ADD

1⇥ 17

softmax

1⇥ 17

(b)

concat

1⇥ 150

lookup

1⇥ 50

lookup

1⇥ 50

lookup

1⇥ 50

“the” “black” “dog” E

|V |⇥ 50

W
1

150⇥ 20

MUL

1⇥ 20

ADD

1⇥ 20

b
1

1⇥ 20

tanh

1⇥ 20

W
2

20⇥ 17

b
2

1⇥ 17

MUL

1⇥ 17

ADD

1⇥ 17

softmax

1⇥ 17

pick

1⇥ 1

5

log

1⇥ 1

neg

1⇥ 1

(c)

Figure 3: Computation Graph for MLP1. (a) Graph with unbound input. (b) Graph
with concrete input. (c) Graph with concrete input, expected output, and loss
node.

of) the words “the”, “black”, “dog”, and the expected output is “NOUN” (whose index is
5).

Once the graph is built, it is straightforward to run either a forward computation (com-
pute the result of the computation) or a backward computation (computing the gradients),
as we show below. Constructing the graphs may look daunting, but is actually very easy
using dedicated software libraries and APIs.

Forward Computation The forward pass computes the outputs of the nodes in the
graph. Since each node’s output depends only on itself and on its incoming edges, it is
trivial to compute the outputs of all nodes by traversing the nodes in a topological order and
computing the output of each node given the already computed outputs of its predecessors.

More formally, in a graph of N nodes, we associate each node with an index i according
to their topological ordering. Let fi be the function computed by node i (e.g. multiplication.
addition, . . .). Let ⇡(i) be the parent nodes of node i, and ⇡

�1(i) = {j | i 2 ⇡(j)} the
children nodes of node i (these are the arguments of fi). Denote by v(i) the output of node

29

MLP1

input

parameters

hidden layer

output layer

 with concrete input

x

1⇥ 150

W
1

150⇥ 20

MUL

1⇥ 20

ADD

1⇥ 20

b
1

1⇥ 20

tanh

1⇥ 20

W
2

20⇥ 17

b
2

1⇥ 17

MUL

1⇥ 17

ADD

1⇥ 17

softmax

1⇥ 17

(a)

concat

1⇥ 150

lookup

1⇥ 50

lookup

1⇥ 50

lookup

1⇥ 50

“the” “black” “dog” E

|V |⇥ 50

W
1

150⇥ 20

MUL

1⇥ 20

ADD

1⇥ 20

b
1

1⇥ 20

tanh

1⇥ 20

W
2

20⇥ 17

b
2

1⇥ 17

MUL

1⇥ 17

ADD

1⇥ 17

softmax

1⇥ 17

(b)

concat

1⇥ 150

lookup

1⇥ 50

lookup

1⇥ 50

lookup

1⇥ 50

“the” “black” “dog” E

|V |⇥ 50

W
1

150⇥ 20

MUL

1⇥ 20

ADD

1⇥ 20

b
1

1⇥ 20

tanh

1⇥ 20

W
2

20⇥ 17

b
2

1⇥ 17

MUL

1⇥ 17

ADD

1⇥ 17

softmax

1⇥ 17

pick

1⇥ 1

5

log

1⇥ 1

neg

1⇥ 1

(c)

Figure 3: Computation Graph for MLP1. (a) Graph with unbound input. (b) Graph
with concrete input. (c) Graph with concrete input, expected output, and loss
node.

of) the words “the”, “black”, “dog”, and the expected output is “NOUN” (whose index is
5).

Once the graph is built, it is straightforward to run either a forward computation (com-
pute the result of the computation) or a backward computation (computing the gradients),
as we show below. Constructing the graphs may look daunting, but is actually very easy
using dedicated software libraries and APIs.

Forward Computation The forward pass computes the outputs of the nodes in the
graph. Since each node’s output depends only on itself and on its incoming edges, it is
trivial to compute the outputs of all nodes by traversing the nodes in a topological order and
computing the output of each node given the already computed outputs of its predecessors.

More formally, in a graph of N nodes, we associate each node with an index i according
to their topological ordering. Let fi be the function computed by node i (e.g. multiplication.
addition, . . .). Let ⇡(i) be the parent nodes of node i, and ⇡

�1(i) = {j | i 2 ⇡(j)} the
children nodes of node i (these are the arguments of fi). Denote by v(i) the output of node

29

MLP1

input

parameters

hidden layer

output layer

Embedding matrix

x

1⇥ 150

W
1

150⇥ 20

MUL

1⇥ 20

ADD

1⇥ 20

b
1

1⇥ 20

tanh

1⇥ 20

W
2

20⇥ 17

b
2

1⇥ 17

MUL

1⇥ 17

ADD

1⇥ 17

softmax

1⇥ 17

(a)

concat

1⇥ 150

lookup

1⇥ 50

lookup

1⇥ 50

lookup

1⇥ 50

“the” “black” “dog” E

|V |⇥ 50

W
1

150⇥ 20

MUL

1⇥ 20

ADD

1⇥ 20

b
1

1⇥ 20

tanh

1⇥ 20

W
2

20⇥ 17

b
2

1⇥ 17

MUL

1⇥ 17

ADD

1⇥ 17

softmax

1⇥ 17

(b)

concat

1⇥ 150

lookup

1⇥ 50

lookup

1⇥ 50

lookup

1⇥ 50

“the” “black” “dog” E

|V |⇥ 50

W
1

150⇥ 20

MUL

1⇥ 20

ADD

1⇥ 20

b
1

1⇥ 20

tanh

1⇥ 20

W
2

20⇥ 17

b
2

1⇥ 17

MUL

1⇥ 17

ADD

1⇥ 17

softmax

1⇥ 17

pick

1⇥ 1

5

log

1⇥ 1

neg

1⇥ 1

(c)

Figure 3: Computation Graph for MLP1. (a) Graph with unbound input. (b) Graph
with concrete input. (c) Graph with concrete input, expected output, and loss
node.

of) the words “the”, “black”, “dog”, and the expected output is “NOUN” (whose index is
5).

Once the graph is built, it is straightforward to run either a forward computation (com-
pute the result of the computation) or a backward computation (computing the gradients),
as we show below. Constructing the graphs may look daunting, but is actually very easy
using dedicated software libraries and APIs.

Forward Computation The forward pass computes the outputs of the nodes in the
graph. Since each node’s output depends only on itself and on its incoming edges, it is
trivial to compute the outputs of all nodes by traversing the nodes in a topological order and
computing the output of each node given the already computed outputs of its predecessors.

More formally, in a graph of N nodes, we associate each node with an index i according
to their topological ordering. Let fi be the function computed by node i (e.g. multiplication.
addition, . . .). Let ⇡(i) be the parent nodes of node i, and ⇡

�1(i) = {j | i 2 ⇡(j)} the
children nodes of node i (these are the arguments of fi). Denote by v(i) the output of node

29

MLP1

input

parameters

hidden layer

output layer

Embedding matrix

 with concrete input
and loss

loss

expected output

• Create a graph for each
training example.

• Once graph is built, we have
two essential algorithms:

• Forward:  
compute all values.

• Backward (backprop):
compute all gradients.

x

1⇥ 150

W
1

150⇥ 20

MUL

1⇥ 20

ADD

1⇥ 20

b
1

1⇥ 20

tanh

1⇥ 20

W
2

20⇥ 17

b
2

1⇥ 17

MUL

1⇥ 17

ADD

1⇥ 17

softmax

1⇥ 17

(a)

concat

1⇥ 150

lookup

1⇥ 50

lookup

1⇥ 50

lookup

1⇥ 50

“the” “black” “dog” E

|V |⇥ 50

W
1

150⇥ 20

MUL

1⇥ 20

ADD

1⇥ 20

b
1

1⇥ 20

tanh

1⇥ 20

W
2

20⇥ 17

b
2

1⇥ 17

MUL

1⇥ 17

ADD

1⇥ 17

softmax

1⇥ 17

(b)

concat

1⇥ 150

lookup

1⇥ 50

lookup

1⇥ 50

lookup

1⇥ 50

“the” “black” “dog” E

|V |⇥ 50

W
1

150⇥ 20

MUL

1⇥ 20

ADD

1⇥ 20

b
1

1⇥ 20

tanh

1⇥ 20

W
2

20⇥ 17

b
2

1⇥ 17

MUL

1⇥ 17

ADD

1⇥ 17

softmax

1⇥ 17

pick

1⇥ 1

5

log

1⇥ 1

neg

1⇥ 1

(c)

Figure 3: Computation Graph for MLP1. (a) Graph with unbound input. (b) Graph
with concrete input. (c) Graph with concrete input, expected output, and loss
node.

of) the words “the”, “black”, “dog”, and the expected output is “NOUN” (whose index is
5).

Once the graph is built, it is straightforward to run either a forward computation (com-
pute the result of the computation) or a backward computation (computing the gradients),
as we show below. Constructing the graphs may look daunting, but is actually very easy
using dedicated software libraries and APIs.

Forward Computation The forward pass computes the outputs of the nodes in the
graph. Since each node’s output depends only on itself and on its incoming edges, it is
trivial to compute the outputs of all nodes by traversing the nodes in a topological order and
computing the output of each node given the already computed outputs of its predecessors.

More formally, in a graph of N nodes, we associate each node with an index i according
to their topological ordering. Let fi be the function computed by node i (e.g. multiplication.
addition, . . .). Let ⇡(i) be the parent nodes of node i, and ⇡

�1(i) = {j | i 2 ⇡(j)} the
children nodes of node i (these are the arguments of fi). Denote by v(i) the output of node

29

x

1⇥ 150

W
1

150⇥ 20

MUL

1⇥ 20

ADD

1⇥ 20

b
1

1⇥ 20

tanh

1⇥ 20

W
2

20⇥ 17

b
2

1⇥ 17

MUL

1⇥ 17

ADD

1⇥ 17

softmax

1⇥ 17

(a)

concat

1⇥ 150

lookup

1⇥ 50

lookup

1⇥ 50

lookup

1⇥ 50

“the” “black” “dog” E

|V |⇥ 50

W
1

150⇥ 20

MUL

1⇥ 20

ADD

1⇥ 20

b
1

1⇥ 20

tanh

1⇥ 20

W
2

20⇥ 17

b
2

1⇥ 17

MUL

1⇥ 17

ADD

1⇥ 17

softmax

1⇥ 17

(b)

concat

1⇥ 150

lookup

1⇥ 50

lookup

1⇥ 50

lookup

1⇥ 50

“the” “black” “dog” E

|V |⇥ 50

W
1

150⇥ 20

MUL

1⇥ 20

ADD

1⇥ 20

b
1

1⇥ 20

tanh

1⇥ 20

W
2

20⇥ 17

b
2

1⇥ 17

MUL

1⇥ 17

ADD

1⇥ 17

softmax

1⇥ 17

pick

1⇥ 1

5

log

1⇥ 1

neg

1⇥ 1

(c)

Figure 3: Computation Graph for MLP1. (a) Graph with unbound input. (b) Graph
with concrete input. (c) Graph with concrete input, expected output, and loss
node.

of) the words “the”, “black”, “dog”, and the expected output is “NOUN” (whose index is
5).

Once the graph is built, it is straightforward to run either a forward computation (com-
pute the result of the computation) or a backward computation (computing the gradients),
as we show below. Constructing the graphs may look daunting, but is actually very easy
using dedicated software libraries and APIs.

Forward Computation The forward pass computes the outputs of the nodes in the
graph. Since each node’s output depends only on itself and on its incoming edges, it is
trivial to compute the outputs of all nodes by traversing the nodes in a topological order and
computing the output of each node given the already computed outputs of its predecessors.

More formally, in a graph of N nodes, we associate each node with an index i according
to their topological ordering. Let fi be the function computed by node i (e.g. multiplication.
addition, . . .). Let ⇡(i) be the parent nodes of node i, and ⇡

�1(i) = {j | i 2 ⇡(j)} the
children nodes of node i (these are the arguments of fi). Denote by v(i) the output of node

29

Computing the Gradients
(backprop)

• Consider the chain-rule
(example on blackboard)

• Each node needs to know
how to:

• Compute forward.

• Compute its local
gradient.

The Python Neural Networks Toolkits 
Landscape (partial)

The Python Neural Networks Toolkits 
Landscape (partial)

high-level

low-level

The Python Neural Networks Toolkits 
Landscape (partial)

high-level

static graphs
dynamic graphs

The Python Neural Networks Toolkits 
Landscape (partial)

high-level

static graphs
dynamic graphs

- fast also on CPU
- automatic batching

Network Training algorithm:

• For each training example 
(or mini-batch):

• Create graph for computing loss.

• Compute loss (forward).

• Compute gradients (backwards).

• Update model parameters.x

1⇥ 150

W
1

150⇥ 20

MUL

1⇥ 20

ADD

1⇥ 20

b
1

1⇥ 20

tanh

1⇥ 20

W
2

20⇥ 17

b
2

1⇥ 17

MUL

1⇥ 17

ADD

1⇥ 17

softmax

1⇥ 17

(a)

concat

1⇥ 150

lookup

1⇥ 50

lookup

1⇥ 50

lookup

1⇥ 50

“the” “black” “dog” E

|V |⇥ 50

W
1

150⇥ 20

MUL

1⇥ 20

ADD

1⇥ 20

b
1

1⇥ 20

tanh

1⇥ 20

W
2

20⇥ 17

b
2

1⇥ 17

MUL

1⇥ 17

ADD

1⇥ 17

softmax

1⇥ 17

(b)

concat

1⇥ 150

lookup

1⇥ 50

lookup

1⇥ 50

lookup

1⇥ 50

“the” “black” “dog” E

|V |⇥ 50

W
1

150⇥ 20

MUL

1⇥ 20

ADD

1⇥ 20

b
1

1⇥ 20

tanh

1⇥ 20

W
2

20⇥ 17

b
2

1⇥ 17

MUL

1⇥ 17

ADD

1⇥ 17

softmax

1⇥ 17

pick

1⇥ 1

5

log

1⇥ 1

neg

1⇥ 1

(c)

Figure 3: Computation Graph for MLP1. (a) Graph with unbound input. (b) Graph
with concrete input. (c) Graph with concrete input, expected output, and loss
node.

of) the words “the”, “black”, “dog”, and the expected output is “NOUN” (whose index is
5).

Once the graph is built, it is straightforward to run either a forward computation (com-
pute the result of the computation) or a backward computation (computing the gradients),
as we show below. Constructing the graphs may look daunting, but is actually very easy
using dedicated software libraries and APIs.

Forward Computation The forward pass computes the outputs of the nodes in the
graph. Since each node’s output depends only on itself and on its incoming edges, it is
trivial to compute the outputs of all nodes by traversing the nodes in a topological order and
computing the output of each node given the already computed outputs of its predecessors.

More formally, in a graph of N nodes, we associate each node with an index i according
to their topological ordering. Let fi be the function computed by node i (e.g. multiplication.
addition, . . .). Let ⇡(i) be the parent nodes of node i, and ⇡

�1(i) = {j | i 2 ⇡(j)} the
children nodes of node i (these are the arguments of fi). Denote by v(i) the output of node

29

DyNet Example

x

1⇥ 150

W
1

150⇥ 20

MUL

1⇥ 20

ADD

1⇥ 20

b
1

1⇥ 20

tanh

1⇥ 20

W
2

20⇥ 17

b
2

1⇥ 17

MUL

1⇥ 17

ADD

1⇥ 17

softmax

1⇥ 17

(a)

concat

1⇥ 150

lookup

1⇥ 50

lookup

1⇥ 50

lookup

1⇥ 50

“the” “black” “dog” E

|V |⇥ 50

W
1

150⇥ 20

MUL

1⇥ 20

ADD

1⇥ 20

b
1

1⇥ 20

tanh

1⇥ 20

W
2

20⇥ 17

b
2

1⇥ 17

MUL

1⇥ 17

ADD

1⇥ 17

softmax

1⇥ 17

(b)

concat

1⇥ 150

lookup

1⇥ 50

lookup

1⇥ 50

lookup

1⇥ 50

“the” “black” “dog” E

|V |⇥ 50

W
1

150⇥ 20

MUL

1⇥ 20

ADD

1⇥ 20

b
1

1⇥ 20

tanh

1⇥ 20

W
2

20⇥ 17

b
2

1⇥ 17

MUL

1⇥ 17

ADD

1⇥ 17

softmax

1⇥ 17

pick

1⇥ 1

5

log

1⇥ 1

neg

1⇥ 1

(c)

Figure 3: Computation Graph for MLP1. (a) Graph with unbound input. (b) Graph
with concrete input. (c) Graph with concrete input, expected output, and loss
node.

of) the words “the”, “black”, “dog”, and the expected output is “NOUN” (whose index is
5).

Once the graph is built, it is straightforward to run either a forward computation (com-
pute the result of the computation) or a backward computation (computing the gradients),
as we show below. Constructing the graphs may look daunting, but is actually very easy
using dedicated software libraries and APIs.

Forward Computation The forward pass computes the outputs of the nodes in the
graph. Since each node’s output depends only on itself and on its incoming edges, it is
trivial to compute the outputs of all nodes by traversing the nodes in a topological order and
computing the output of each node given the already computed outputs of its predecessors.

More formally, in a graph of N nodes, we associate each node with an index i according
to their topological ordering. Let fi be the function computed by node i (e.g. multiplication.
addition, . . .). Let ⇡(i) be the parent nodes of node i, and ⇡

�1(i) = {j | i 2 ⇡(j)} the
children nodes of node i (these are the arguments of fi). Denote by v(i) the output of node

29

50 5. NEURAL NETWORKS TRAINING

the computation. Thus, the gradient of pick(x, 5) is a vector g with the dimensionality
of x where g[5] = 1 and g[i 6=5] = 0. Similarly, for the function max(0, x) the value of
the gradient is 1 for x > 0 and 0 otherwise.

For further information on automatic di↵erentiation see [Neidinger, 2010, Section
7], [Baydin et al., 2015]. For more in depth discussion of the backpropagation algorithm
and computation graphs (also called flow graphs) see [Bengio et al., 2016, Section 6.4],
[Bengio, 2012, LeCun et al., 1998b]. For a popular yet technical presentation, see Chris
Olah’s description at http://colah.github.io/posts/2015-08-Backprop/.

5.1.3 SOFTWARE

Several software packages implement the computation-graph model, including Theano1,
TensorFlow2, Chainer3, and CNN/pyCNN4. All these packages support all the essential
components (node types) for defining a wide range of neural network architectures, covering
the structures described in this book and more. Graph creation is made almost transparent
by use of operator overloading. The framework defines a type for representing graph nodes
(commonly called expressions), methods for constructing nodes for inputs and parameters,
and a set of functions and mathematical operations that take expressions as input and result
in more complex expressions. For example, the python code for creating the computation
graph from Figure (5.1c) using the pyCNN framework is:

from pycnn import *

model initialization.
model = Model()

mW1 = model.add_parameters((20,150))

mb1 = model.add_parameters(20)

mW2 = model.add_parameters((17,20))

mb2 = model.add_parameters(17)

lookup = model.add_lookup_parameters((100, 50))

Building the computation graph:
renew_cg() # create a new graph.
Wrap the model parameters as graph-nodes.
W1 = parameter(mW1)

b1 = parameter(mb1)

W2 = parameter(mW2)

b2 = parameter(mb2)

def get_index(x): return 1

Generate the embeddings layer.
vthe = lookup[get_index("the")]

vblack = lookup[get_index("black")]

vdog = lookup[get_index("dog")]

1
http://deeplearning.net/software/theano/

2
https://www.tensorflow.org/

3
http://chainer.org

4
https://github.com/clab/cnn

5.1. THE COMPUTATION GRAPH ABSTRACTION 51

Connect the leaf nodes into a complete graph.
x = concatenate([vthe, vblack, vdog])

output = softmax(W2*(tanh(W1*x)+b1)+b2)

loss = -log(pick(output, 5))

loss_value = loss.forward()

loss.backward() # the gradient is computed
and stored in the corresponding
parameters.

Most of the code involves various initializations: the first block defines model parameters
that are be shared between di↵erent computation graphs (recall that each graph corresponds
to a specific training example). The second block turns the model parameters into the graph-
node (Expression) types. The third block retrieves the Expressions for the embeddings of the
input words. Finally, the fourth block is where the graph is created. Note how transparent
the graph creation is – there is an almost a one-to-one correspondence between creating
the graph and describing it mathematically. The last block shows a forward and backward
pass. The other software frameworks follow similar patterns.

Theano and TensorFlow involve an optimizing compiler for computation graphs,
which is both a blessing and a curse. On the one hand, once compiled, large graphs can be
run e�ciently on either the CPU or a GPU, making it ideal for large graphs with a fixed
structure, where only the inputs change between instances. However, the compilation step
itself can be costly, and it makes the interface a bit cumbersome to work with. In contrast,
the other packages focus on building large and dynamic computation graphs and execut-
ing them “on the fly” without a compilation step. While the execution speed may su↵er
with respect to Theano and TensorFlow’s optimized version, these packages are especially
convenient when working with the recurrent and recursive networks described in chapters
14 and 18 as well as in structured prediction settings as described in chapter 19. Finally,
packages such as Keras5 provide a higher level interface on top of packages such as Theano
and TensorFlow, allowing the definition and training of complex neural networks with even
fewer lines of code.

5.1.4 IMPLEMENTATION RECIPE

Using the computation graph abstraction, the pseudo-code for a network training algorithm
is given in Algorithm 5.

Here, build computation graph is a user-defined function that builds the computation
graph for the given input, output and network structure, returning a single loss node.
update parameters is an optimizer specific update rule. The recipe specifies that a new
graph is created for each training example. This accommodates cases in which the network
structure varies between training example, such as recurrent and recursive neural networks,

5
https://keras.io

DyNet Example

x

1⇥ 150

W
1

150⇥ 20

MUL

1⇥ 20

ADD

1⇥ 20

b
1

1⇥ 20

tanh

1⇥ 20

W
2

20⇥ 17

b
2

1⇥ 17

MUL

1⇥ 17

ADD

1⇥ 17

softmax

1⇥ 17

(a)

concat

1⇥ 150

lookup

1⇥ 50

lookup

1⇥ 50

lookup

1⇥ 50

“the” “black” “dog” E

|V |⇥ 50

W
1

150⇥ 20

MUL

1⇥ 20

ADD

1⇥ 20

b
1

1⇥ 20

tanh

1⇥ 20

W
2

20⇥ 17

b
2

1⇥ 17

MUL

1⇥ 17

ADD

1⇥ 17

softmax

1⇥ 17

(b)

concat

1⇥ 150

lookup

1⇥ 50

lookup

1⇥ 50

lookup

1⇥ 50

“the” “black” “dog” E

|V |⇥ 50

W
1

150⇥ 20

MUL

1⇥ 20

ADD

1⇥ 20

b
1

1⇥ 20

tanh

1⇥ 20

W
2

20⇥ 17

b
2

1⇥ 17

MUL

1⇥ 17

ADD

1⇥ 17

softmax

1⇥ 17

pick

1⇥ 1

5

log

1⇥ 1

neg

1⇥ 1

(c)

Figure 3: Computation Graph for MLP1. (a) Graph with unbound input. (b) Graph
with concrete input. (c) Graph with concrete input, expected output, and loss
node.

of) the words “the”, “black”, “dog”, and the expected output is “NOUN” (whose index is
5).

Once the graph is built, it is straightforward to run either a forward computation (com-
pute the result of the computation) or a backward computation (computing the gradients),
as we show below. Constructing the graphs may look daunting, but is actually very easy
using dedicated software libraries and APIs.

Forward Computation The forward pass computes the outputs of the nodes in the
graph. Since each node’s output depends only on itself and on its incoming edges, it is
trivial to compute the outputs of all nodes by traversing the nodes in a topological order and
computing the output of each node given the already computed outputs of its predecessors.

More formally, in a graph of N nodes, we associate each node with an index i according
to their topological ordering. Let fi be the function computed by node i (e.g. multiplication.
addition, . . .). Let ⇡(i) be the parent nodes of node i, and ⇡

�1(i) = {j | i 2 ⇡(j)} the
children nodes of node i (these are the arguments of fi). Denote by v(i) the output of node

29

50 5. NEURAL NETWORKS TRAINING

the computation. Thus, the gradient of pick(x, 5) is a vector g with the dimensionality
of x where g[5] = 1 and g[i 6=5] = 0. Similarly, for the function max(0, x) the value of
the gradient is 1 for x > 0 and 0 otherwise.

For further information on automatic di↵erentiation see [Neidinger, 2010, Section
7], [Baydin et al., 2015]. For more in depth discussion of the backpropagation algorithm
and computation graphs (also called flow graphs) see [Bengio et al., 2016, Section 6.4],
[Bengio, 2012, LeCun et al., 1998b]. For a popular yet technical presentation, see Chris
Olah’s description at http://colah.github.io/posts/2015-08-Backprop/.

5.1.3 SOFTWARE

Several software packages implement the computation-graph model, including Theano1,
TensorFlow2, Chainer3, and CNN/pyCNN4. All these packages support all the essential
components (node types) for defining a wide range of neural network architectures, covering
the structures described in this book and more. Graph creation is made almost transparent
by use of operator overloading. The framework defines a type for representing graph nodes
(commonly called expressions), methods for constructing nodes for inputs and parameters,
and a set of functions and mathematical operations that take expressions as input and result
in more complex expressions. For example, the python code for creating the computation
graph from Figure (5.1c) using the pyCNN framework is:

from pycnn import *

model initialization.
model = Model()

mW1 = model.add_parameters((20,150))

mb1 = model.add_parameters(20)

mW2 = model.add_parameters((17,20))

mb2 = model.add_parameters(17)

lookup = model.add_lookup_parameters((100, 50))

Building the computation graph:
renew_cg() # create a new graph.
Wrap the model parameters as graph-nodes.
W1 = parameter(mW1)

b1 = parameter(mb1)

W2 = parameter(mW2)

b2 = parameter(mb2)

def get_index(x): return 1

Generate the embeddings layer.
vthe = lookup[get_index("the")]

vblack = lookup[get_index("black")]

vdog = lookup[get_index("dog")]

1
http://deeplearning.net/software/theano/

2
https://www.tensorflow.org/

3
http://chainer.org

4
https://github.com/clab/cnn

5.1. THE COMPUTATION GRAPH ABSTRACTION 51

Connect the leaf nodes into a complete graph.
x = concatenate([vthe, vblack, vdog])

output = softmax(W2*(tanh(W1*x)+b1)+b2)

loss = -log(pick(output, 5))

loss_value = loss.forward()

loss.backward() # the gradient is computed
and stored in the corresponding
parameters.

Most of the code involves various initializations: the first block defines model parameters
that are be shared between di↵erent computation graphs (recall that each graph corresponds
to a specific training example). The second block turns the model parameters into the graph-
node (Expression) types. The third block retrieves the Expressions for the embeddings of the
input words. Finally, the fourth block is where the graph is created. Note how transparent
the graph creation is – there is an almost a one-to-one correspondence between creating
the graph and describing it mathematically. The last block shows a forward and backward
pass. The other software frameworks follow similar patterns.

Theano and TensorFlow involve an optimizing compiler for computation graphs,
which is both a blessing and a curse. On the one hand, once compiled, large graphs can be
run e�ciently on either the CPU or a GPU, making it ideal for large graphs with a fixed
structure, where only the inputs change between instances. However, the compilation step
itself can be costly, and it makes the interface a bit cumbersome to work with. In contrast,
the other packages focus on building large and dynamic computation graphs and execut-
ing them “on the fly” without a compilation step. While the execution speed may su↵er
with respect to Theano and TensorFlow’s optimized version, these packages are especially
convenient when working with the recurrent and recursive networks described in chapters
14 and 18 as well as in structured prediction settings as described in chapter 19. Finally,
packages such as Keras5 provide a higher level interface on top of packages such as Theano
and TensorFlow, allowing the definition and training of complex neural networks with even
fewer lines of code.

5.1.4 IMPLEMENTATION RECIPE

Using the computation graph abstraction, the pseudo-code for a network training algorithm
is given in Algorithm 5.

Here, build computation graph is a user-defined function that builds the computation
graph for the given input, output and network structure, returning a single loss node.
update parameters is an optimizer specific update rule. The recipe specifies that a new
graph is created for each training example. This accommodates cases in which the network
structure varies between training example, such as recurrent and recursive neural networks,

5
https://keras.io

DyNet Example

x

1⇥ 150

W
1

150⇥ 20

MUL

1⇥ 20

ADD

1⇥ 20

b
1

1⇥ 20

tanh

1⇥ 20

W
2

20⇥ 17

b
2

1⇥ 17

MUL

1⇥ 17

ADD

1⇥ 17

softmax

1⇥ 17

(a)

concat

1⇥ 150

lookup

1⇥ 50

lookup

1⇥ 50

lookup

1⇥ 50

“the” “black” “dog” E

|V |⇥ 50

W
1

150⇥ 20

MUL

1⇥ 20

ADD

1⇥ 20

b
1

1⇥ 20

tanh

1⇥ 20

W
2

20⇥ 17

b
2

1⇥ 17

MUL

1⇥ 17

ADD

1⇥ 17

softmax

1⇥ 17

(b)

concat

1⇥ 150

lookup

1⇥ 50

lookup

1⇥ 50

lookup

1⇥ 50

“the” “black” “dog” E

|V |⇥ 50

W
1

150⇥ 20

MUL

1⇥ 20

ADD

1⇥ 20

b
1

1⇥ 20

tanh

1⇥ 20

W
2

20⇥ 17

b
2

1⇥ 17

MUL

1⇥ 17

ADD

1⇥ 17

softmax

1⇥ 17

pick

1⇥ 1

5

log

1⇥ 1

neg

1⇥ 1

(c)

Figure 3: Computation Graph for MLP1. (a) Graph with unbound input. (b) Graph
with concrete input. (c) Graph with concrete input, expected output, and loss
node.

of) the words “the”, “black”, “dog”, and the expected output is “NOUN” (whose index is
5).

Once the graph is built, it is straightforward to run either a forward computation (com-
pute the result of the computation) or a backward computation (computing the gradients),
as we show below. Constructing the graphs may look daunting, but is actually very easy
using dedicated software libraries and APIs.

Forward Computation The forward pass computes the outputs of the nodes in the
graph. Since each node’s output depends only on itself and on its incoming edges, it is
trivial to compute the outputs of all nodes by traversing the nodes in a topological order and
computing the output of each node given the already computed outputs of its predecessors.

More formally, in a graph of N nodes, we associate each node with an index i according
to their topological ordering. Let fi be the function computed by node i (e.g. multiplication.
addition, . . .). Let ⇡(i) be the parent nodes of node i, and ⇡

�1(i) = {j | i 2 ⇡(j)} the
children nodes of node i (these are the arguments of fi). Denote by v(i) the output of node

29

50 5. NEURAL NETWORKS TRAINING

the computation. Thus, the gradient of pick(x, 5) is a vector g with the dimensionality
of x where g[5] = 1 and g[i 6=5] = 0. Similarly, for the function max(0, x) the value of
the gradient is 1 for x > 0 and 0 otherwise.

For further information on automatic di↵erentiation see [Neidinger, 2010, Section
7], [Baydin et al., 2015]. For more in depth discussion of the backpropagation algorithm
and computation graphs (also called flow graphs) see [Bengio et al., 2016, Section 6.4],
[Bengio, 2012, LeCun et al., 1998b]. For a popular yet technical presentation, see Chris
Olah’s description at http://colah.github.io/posts/2015-08-Backprop/.

5.1.3 SOFTWARE

Several software packages implement the computation-graph model, including Theano1,
TensorFlow2, Chainer3, and CNN/pyCNN4. All these packages support all the essential
components (node types) for defining a wide range of neural network architectures, covering
the structures described in this book and more. Graph creation is made almost transparent
by use of operator overloading. The framework defines a type for representing graph nodes
(commonly called expressions), methods for constructing nodes for inputs and parameters,
and a set of functions and mathematical operations that take expressions as input and result
in more complex expressions. For example, the python code for creating the computation
graph from Figure (5.1c) using the pyCNN framework is:

from pycnn import *

model initialization.
model = Model()

mW1 = model.add_parameters((20,150))

mb1 = model.add_parameters(20)

mW2 = model.add_parameters((17,20))

mb2 = model.add_parameters(17)

lookup = model.add_lookup_parameters((100, 50))

Building the computation graph:
renew_cg() # create a new graph.
Wrap the model parameters as graph-nodes.
W1 = parameter(mW1)

b1 = parameter(mb1)

W2 = parameter(mW2)

b2 = parameter(mb2)

def get_index(x): return 1

Generate the embeddings layer.
vthe = lookup[get_index("the")]

vblack = lookup[get_index("black")]

vdog = lookup[get_index("dog")]

1
http://deeplearning.net/software/theano/

2
https://www.tensorflow.org/

3
http://chainer.org

4
https://github.com/clab/cnn

5.1. THE COMPUTATION GRAPH ABSTRACTION 51

Connect the leaf nodes into a complete graph.
x = concatenate([vthe, vblack, vdog])

output = softmax(W2*(tanh(W1*x)+b1)+b2)

loss = -log(pick(output, 5))

loss_value = loss.forward()

loss.backward() # the gradient is computed
and stored in the corresponding
parameters.

Most of the code involves various initializations: the first block defines model parameters
that are be shared between di↵erent computation graphs (recall that each graph corresponds
to a specific training example). The second block turns the model parameters into the graph-
node (Expression) types. The third block retrieves the Expressions for the embeddings of the
input words. Finally, the fourth block is where the graph is created. Note how transparent
the graph creation is – there is an almost a one-to-one correspondence between creating
the graph and describing it mathematically. The last block shows a forward and backward
pass. The other software frameworks follow similar patterns.

Theano and TensorFlow involve an optimizing compiler for computation graphs,
which is both a blessing and a curse. On the one hand, once compiled, large graphs can be
run e�ciently on either the CPU or a GPU, making it ideal for large graphs with a fixed
structure, where only the inputs change between instances. However, the compilation step
itself can be costly, and it makes the interface a bit cumbersome to work with. In contrast,
the other packages focus on building large and dynamic computation graphs and execut-
ing them “on the fly” without a compilation step. While the execution speed may su↵er
with respect to Theano and TensorFlow’s optimized version, these packages are especially
convenient when working with the recurrent and recursive networks described in chapters
14 and 18 as well as in structured prediction settings as described in chapter 19. Finally,
packages such as Keras5 provide a higher level interface on top of packages such as Theano
and TensorFlow, allowing the definition and training of complex neural networks with even
fewer lines of code.

5.1.4 IMPLEMENTATION RECIPE

Using the computation graph abstraction, the pseudo-code for a network training algorithm
is given in Algorithm 5.

Here, build computation graph is a user-defined function that builds the computation
graph for the given input, output and network structure, returning a single loss node.
update parameters is an optimizer specific update rule. The recipe specifies that a new
graph is created for each training example. This accommodates cases in which the network
structure varies between training example, such as recurrent and recursive neural networks,

5
https://keras.io

DyNet Example

x

1⇥ 150

W
1

150⇥ 20

MUL

1⇥ 20

ADD

1⇥ 20

b
1

1⇥ 20

tanh

1⇥ 20

W
2

20⇥ 17

b
2

1⇥ 17

MUL

1⇥ 17

ADD

1⇥ 17

softmax

1⇥ 17

(a)

concat

1⇥ 150

lookup

1⇥ 50

lookup

1⇥ 50

lookup

1⇥ 50

“the” “black” “dog” E

|V |⇥ 50

W
1

150⇥ 20

MUL

1⇥ 20

ADD

1⇥ 20

b
1

1⇥ 20

tanh

1⇥ 20

W
2

20⇥ 17

b
2

1⇥ 17

MUL

1⇥ 17

ADD

1⇥ 17

softmax

1⇥ 17

(b)

concat

1⇥ 150

lookup

1⇥ 50

lookup

1⇥ 50

lookup

1⇥ 50

“the” “black” “dog” E

|V |⇥ 50

W
1

150⇥ 20

MUL

1⇥ 20

ADD

1⇥ 20

b
1

1⇥ 20

tanh

1⇥ 20

W
2

20⇥ 17

b
2

1⇥ 17

MUL

1⇥ 17

ADD

1⇥ 17

softmax

1⇥ 17

pick

1⇥ 1

5

log

1⇥ 1

neg

1⇥ 1

(c)

Figure 3: Computation Graph for MLP1. (a) Graph with unbound input. (b) Graph
with concrete input. (c) Graph with concrete input, expected output, and loss
node.

of) the words “the”, “black”, “dog”, and the expected output is “NOUN” (whose index is
5).

Once the graph is built, it is straightforward to run either a forward computation (com-
pute the result of the computation) or a backward computation (computing the gradients),
as we show below. Constructing the graphs may look daunting, but is actually very easy
using dedicated software libraries and APIs.

Forward Computation The forward pass computes the outputs of the nodes in the
graph. Since each node’s output depends only on itself and on its incoming edges, it is
trivial to compute the outputs of all nodes by traversing the nodes in a topological order and
computing the output of each node given the already computed outputs of its predecessors.

More formally, in a graph of N nodes, we associate each node with an index i according
to their topological ordering. Let fi be the function computed by node i (e.g. multiplication.
addition, . . .). Let ⇡(i) be the parent nodes of node i, and ⇡

�1(i) = {j | i 2 ⇡(j)} the
children nodes of node i (these are the arguments of fi). Denote by v(i) the output of node

29

50 5. NEURAL NETWORKS TRAINING

the computation. Thus, the gradient of pick(x, 5) is a vector g with the dimensionality
of x where g[5] = 1 and g[i 6=5] = 0. Similarly, for the function max(0, x) the value of
the gradient is 1 for x > 0 and 0 otherwise.

For further information on automatic di↵erentiation see [Neidinger, 2010, Section
7], [Baydin et al., 2015]. For more in depth discussion of the backpropagation algorithm
and computation graphs (also called flow graphs) see [Bengio et al., 2016, Section 6.4],
[Bengio, 2012, LeCun et al., 1998b]. For a popular yet technical presentation, see Chris
Olah’s description at http://colah.github.io/posts/2015-08-Backprop/.

5.1.3 SOFTWARE

Several software packages implement the computation-graph model, including Theano1,
TensorFlow2, Chainer3, and CNN/pyCNN4. All these packages support all the essential
components (node types) for defining a wide range of neural network architectures, covering
the structures described in this book and more. Graph creation is made almost transparent
by use of operator overloading. The framework defines a type for representing graph nodes
(commonly called expressions), methods for constructing nodes for inputs and parameters,
and a set of functions and mathematical operations that take expressions as input and result
in more complex expressions. For example, the python code for creating the computation
graph from Figure (5.1c) using the pyCNN framework is:

from pycnn import *

model initialization.
model = Model()

mW1 = model.add_parameters((20,150))

mb1 = model.add_parameters(20)

mW2 = model.add_parameters((17,20))

mb2 = model.add_parameters(17)

lookup = model.add_lookup_parameters((100, 50))

Building the computation graph:
renew_cg() # create a new graph.
Wrap the model parameters as graph-nodes.
W1 = parameter(mW1)

b1 = parameter(mb1)

W2 = parameter(mW2)

b2 = parameter(mb2)

def get_index(x): return 1

Generate the embeddings layer.
vthe = lookup[get_index("the")]

vblack = lookup[get_index("black")]

vdog = lookup[get_index("dog")]

1
http://deeplearning.net/software/theano/

2
https://www.tensorflow.org/

3
http://chainer.org

4
https://github.com/clab/cnn

5.1. THE COMPUTATION GRAPH ABSTRACTION 51

Connect the leaf nodes into a complete graph.
x = concatenate([vthe, vblack, vdog])

output = softmax(W2*(tanh(W1*x)+b1)+b2)

loss = -log(pick(output, 5))

loss_value = loss.forward()

loss.backward() # the gradient is computed
and stored in the corresponding
parameters.

Most of the code involves various initializations: the first block defines model parameters
that are be shared between di↵erent computation graphs (recall that each graph corresponds
to a specific training example). The second block turns the model parameters into the graph-
node (Expression) types. The third block retrieves the Expressions for the embeddings of the
input words. Finally, the fourth block is where the graph is created. Note how transparent
the graph creation is – there is an almost a one-to-one correspondence between creating
the graph and describing it mathematically. The last block shows a forward and backward
pass. The other software frameworks follow similar patterns.

Theano and TensorFlow involve an optimizing compiler for computation graphs,
which is both a blessing and a curse. On the one hand, once compiled, large graphs can be
run e�ciently on either the CPU or a GPU, making it ideal for large graphs with a fixed
structure, where only the inputs change between instances. However, the compilation step
itself can be costly, and it makes the interface a bit cumbersome to work with. In contrast,
the other packages focus on building large and dynamic computation graphs and execut-
ing them “on the fly” without a compilation step. While the execution speed may su↵er
with respect to Theano and TensorFlow’s optimized version, these packages are especially
convenient when working with the recurrent and recursive networks described in chapters
14 and 18 as well as in structured prediction settings as described in chapter 19. Finally,
packages such as Keras5 provide a higher level interface on top of packages such as Theano
and TensorFlow, allowing the definition and training of complex neural networks with even
fewer lines of code.

5.1.4 IMPLEMENTATION RECIPE

Using the computation graph abstraction, the pseudo-code for a network training algorithm
is given in Algorithm 5.

Here, build computation graph is a user-defined function that builds the computation
graph for the given input, output and network structure, returning a single loss node.
update parameters is an optimizer specific update rule. The recipe specifies that a new
graph is created for each training example. This accommodates cases in which the network
structure varies between training example, such as recurrent and recursive neural networks,

5
https://keras.io

DyNet Example

x

1⇥ 150

W
1

150⇥ 20

MUL

1⇥ 20

ADD

1⇥ 20

b
1

1⇥ 20

tanh

1⇥ 20

W
2

20⇥ 17

b
2

1⇥ 17

MUL

1⇥ 17

ADD

1⇥ 17

softmax

1⇥ 17

(a)

concat

1⇥ 150

lookup

1⇥ 50

lookup

1⇥ 50

lookup

1⇥ 50

“the” “black” “dog” E

|V |⇥ 50

W
1

150⇥ 20

MUL

1⇥ 20

ADD

1⇥ 20

b
1

1⇥ 20

tanh

1⇥ 20

W
2

20⇥ 17

b
2

1⇥ 17

MUL

1⇥ 17

ADD

1⇥ 17

softmax

1⇥ 17

(b)

concat

1⇥ 150

lookup

1⇥ 50

lookup

1⇥ 50

lookup

1⇥ 50

“the” “black” “dog” E

|V |⇥ 50

W
1

150⇥ 20

MUL

1⇥ 20

ADD

1⇥ 20

b
1

1⇥ 20

tanh

1⇥ 20

W
2

20⇥ 17

b
2

1⇥ 17

MUL

1⇥ 17

ADD

1⇥ 17

softmax

1⇥ 17

pick

1⇥ 1

5

log

1⇥ 1

neg

1⇥ 1

(c)

Figure 3: Computation Graph for MLP1. (a) Graph with unbound input. (b) Graph
with concrete input. (c) Graph with concrete input, expected output, and loss
node.

of) the words “the”, “black”, “dog”, and the expected output is “NOUN” (whose index is
5).

Once the graph is built, it is straightforward to run either a forward computation (com-
pute the result of the computation) or a backward computation (computing the gradients),
as we show below. Constructing the graphs may look daunting, but is actually very easy
using dedicated software libraries and APIs.

Forward Computation The forward pass computes the outputs of the nodes in the
graph. Since each node’s output depends only on itself and on its incoming edges, it is
trivial to compute the outputs of all nodes by traversing the nodes in a topological order and
computing the output of each node given the already computed outputs of its predecessors.

More formally, in a graph of N nodes, we associate each node with an index i according
to their topological ordering. Let fi be the function computed by node i (e.g. multiplication.
addition, . . .). Let ⇡(i) be the parent nodes of node i, and ⇡

�1(i) = {j | i 2 ⇡(j)} the
children nodes of node i (these are the arguments of fi). Denote by v(i) the output of node

29

50 5. NEURAL NETWORKS TRAINING

the computation. Thus, the gradient of pick(x, 5) is a vector g with the dimensionality
of x where g[5] = 1 and g[i 6=5] = 0. Similarly, for the function max(0, x) the value of
the gradient is 1 for x > 0 and 0 otherwise.

For further information on automatic di↵erentiation see [Neidinger, 2010, Section
7], [Baydin et al., 2015]. For more in depth discussion of the backpropagation algorithm
and computation graphs (also called flow graphs) see [Bengio et al., 2016, Section 6.4],
[Bengio, 2012, LeCun et al., 1998b]. For a popular yet technical presentation, see Chris
Olah’s description at http://colah.github.io/posts/2015-08-Backprop/.

5.1.3 SOFTWARE

Several software packages implement the computation-graph model, including Theano1,
TensorFlow2, Chainer3, and CNN/pyCNN4. All these packages support all the essential
components (node types) for defining a wide range of neural network architectures, covering
the structures described in this book and more. Graph creation is made almost transparent
by use of operator overloading. The framework defines a type for representing graph nodes
(commonly called expressions), methods for constructing nodes for inputs and parameters,
and a set of functions and mathematical operations that take expressions as input and result
in more complex expressions. For example, the python code for creating the computation
graph from Figure (5.1c) using the pyCNN framework is:

from pycnn import *

model initialization.
model = Model()

mW1 = model.add_parameters((20,150))

mb1 = model.add_parameters(20)

mW2 = model.add_parameters((17,20))

mb2 = model.add_parameters(17)

lookup = model.add_lookup_parameters((100, 50))

Building the computation graph:
renew_cg() # create a new graph.
Wrap the model parameters as graph-nodes.
W1 = parameter(mW1)

b1 = parameter(mb1)

W2 = parameter(mW2)

b2 = parameter(mb2)

def get_index(x): return 1

Generate the embeddings layer.
vthe = lookup[get_index("the")]

vblack = lookup[get_index("black")]

vdog = lookup[get_index("dog")]

1
http://deeplearning.net/software/theano/

2
https://www.tensorflow.org/

3
http://chainer.org

4
https://github.com/clab/cnn

5.1. THE COMPUTATION GRAPH ABSTRACTION 51

Connect the leaf nodes into a complete graph.
x = concatenate([vthe, vblack, vdog])

output = softmax(W2*(tanh(W1*x)+b1)+b2)

loss = -log(pick(output, 5))

loss_value = loss.forward()

loss.backward() # the gradient is computed
and stored in the corresponding
parameters.

Most of the code involves various initializations: the first block defines model parameters
that are be shared between di↵erent computation graphs (recall that each graph corresponds
to a specific training example). The second block turns the model parameters into the graph-
node (Expression) types. The third block retrieves the Expressions for the embeddings of the
input words. Finally, the fourth block is where the graph is created. Note how transparent
the graph creation is – there is an almost a one-to-one correspondence between creating
the graph and describing it mathematically. The last block shows a forward and backward
pass. The other software frameworks follow similar patterns.

Theano and TensorFlow involve an optimizing compiler for computation graphs,
which is both a blessing and a curse. On the one hand, once compiled, large graphs can be
run e�ciently on either the CPU or a GPU, making it ideal for large graphs with a fixed
structure, where only the inputs change between instances. However, the compilation step
itself can be costly, and it makes the interface a bit cumbersome to work with. In contrast,
the other packages focus on building large and dynamic computation graphs and execut-
ing them “on the fly” without a compilation step. While the execution speed may su↵er
with respect to Theano and TensorFlow’s optimized version, these packages are especially
convenient when working with the recurrent and recursive networks described in chapters
14 and 18 as well as in structured prediction settings as described in chapter 19. Finally,
packages such as Keras5 provide a higher level interface on top of packages such as Theano
and TensorFlow, allowing the definition and training of complex neural networks with even
fewer lines of code.

5.1.4 IMPLEMENTATION RECIPE

Using the computation graph abstraction, the pseudo-code for a network training algorithm
is given in Algorithm 5.

Here, build computation graph is a user-defined function that builds the computation
graph for the given input, output and network structure, returning a single loss node.
update parameters is an optimizer specific update rule. The recipe specifies that a new
graph is created for each training example. This accommodates cases in which the network
structure varies between training example, such as recurrent and recursive neural networks,

5
https://keras.io

Back to Combining Vectors

ConvNets

• "bags of ngrams".

• Useful!

(we'll probably skip them today)

the service was not goodveryactual

the service was not goodveryactual

dot

the service was not goodveryactual

dot

=

the service was not goodveryactual

dot

=
the

 ac
tua

l

the service was not goodveryactual

dot

=

the
 ac

tua
l

ac
tua

l se
rvi

ce

the service was not goodveryactual

dot
=

the
 ac

tua
l

ac
tua

l se
rvi

ce

se
rvi

ce
 was

the service was not goodveryactual

dot

=

the
 ac

tua
l

ac
tua

l se
rvi

ce

se
rvi

ce
 was

was
 no

t

the service was not goodveryactual

dot

=

the
 ac

tua
l

ac
tua

l se
rvi

ce

se
rvi

ce
 was

was
 no

t

no
t v

ery

the service was not goodveryactual

dot

=

the
 ac

tua
l

ac
tua

l se
rvi

ce

se
rvi

ce
 was

was
 no

t

no
t v

ery

ve
ry

goo
d

the service was not goodveryactual

dot

=
the

 ac
tua

l

the service was not goodveryactual

dot

=
the

 ac
tua

l

the service was not goodveryactual

dot

=
the

 ac
tua

l

the service was not goodveryactual

dot

=

the
 ac

tua
l

ac
tua

l se
rvi

ce

the service was not goodveryactual

dot

=

the
 ac

tua
l

ac
tua

l se
rvi

ce

se
rvi

ce
 was

was
 no

t

no
t v

ery

ve
ry

goo
d

the

(another way to represent text convolutions)

actual
service

was
not

very

conv =

ac
tua

l se
rvi

ce

the

(another way to represent text convolutions)

actual
service

was
not

very

conv =

ac
tua

l se
rvi

ce

the

(another way to represent text convolutions)

actual
service

was
not

very

conv =

se
rvi

ce
 was

the service was not goodveryactual

dot

=

the
 ac

tua
l

ac
tua

l se
rvi

ce

se
rvi

ce
 was

was
 no

t

no
t v

ery

ve
ry

goo
d

(we'll focus on the 1-d view here,
but remember they are equivalent)

the service was not goodveryactual

dot

=

the
 ac

tua
l

ac
tua

l se
rvi

ce

se
rvi

ce
 was

was
 no

t

no
t v

ery

ve
ry

goo
d

tanh() tanh() tanh() tanh() tanh() tanh()

(usually also add non linearity)

the service was not goodveryactual

(can have larger filters)

dot

=
the

 ac
tua

l

tanh()

the service was not goodveryactual

dot

=

the
 ac

tua
l se

rvi
ce

tanh()

(can have larger filters)

the service was not goodveryactual

the
 ac

tua
l

ac
tua

l se
rvi

ce

se
rvi

ce
 was

was
 no

t

no
t v

ery

ve
ry

goo
d

we have the ngram vectors. now what?

the service was not goodveryactual

the
 ac

tua
l

ac
tua

l se
rvi

ce

se
rvi

ce
 was

was
 no

t

no
t v

ery

ve
ry

goo
d

can do "pooling"

+ + + + + =

"Pooling"

Combine K vectors into a single vector

"Pooling"

Combine K vectors into a single vector

This vector is a summary of the K vectors,
and can be used for prediction.

the service was not goodveryactual

the
 ac

tua
l

ac
tua

l se
rvi

ce

se
rvi

ce
 was

was
 no

t

no
t v

ery

ve
ry

goo
d

+ + + + + =

average pooling average vector

the service was not goodveryactual

the
 ac

tua
l

ac
tua

l se
rvi

ce

se
rvi

ce
 was

was
 no

t

no
t v

ery

ve
ry

goo
d

max max max max max =

max pooling average vector

the service was not goodveryactual

the
 ac

tua
l

ac
tua

l se
rvi

ce

se
rvi

ce
 was

was
 no

t

no
t v

ery

ve
ry

goo
d

max max max max max =

max pooling average vector

max over each dimension

the service was not goodveryactual

+ + + + + =

tanh(W⇤+ b)

U⇤

softmax(⇤)

prediction

MLP

train end-to-end for some task
(train the MLP, the filter matrix, and the embeddings together)

RNNs

Lookup
Table

a

Combining Vectors

Lookup
Table

I

Lookup
Table

read

Lookup
Table

book

Lookup
Table

about

vI vread va vbook vabout

Recurrent Neural Network: RNN

Lookup
Table

a

Combining Vectors

Lookup
Table

I

Lookup
Table

read

Lookup
Table

book

Lookup
Table

about

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

vI vread va vbook vabout

I read a book aboutRecurrent Neural Network: RNN

Lookup
Table

a

Combining Vectors

Lookup
Table

I

Lookup
Table

read

Lookup
Table

book

Lookup
Table

about

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

vI vread va vbook vabout

I read a book about

Lookup
Table

a

Combining Vectors

Lookup
Table

I

Lookup
Table

read

Lookup
Table

book

Lookup
Table

about

RNN
cell

vI vread va vbook vabout

s0

s1 si = RNN(si�1,xi)

Lookup
Table

a

Combining Vectors

Lookup
Table

I

Lookup
Table

read

Lookup
Table

book

Lookup
Table

about

RNN
cell

vI vread va vbook vabout

s0

s1 si = RNN(si�1,xi)

RNN
cell

s2

Lookup
Table

a

Combining Vectors

Lookup
Table

I

Lookup
Table

read

Lookup
Table

book

Lookup
Table

about

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

vI vread va vbook vabout

s1 s2 s3 s4 s5

Lookup
Table

a

Combining Vectors

Lookup
Table

I

Lookup
Table

read

Lookup
Table

book

Lookup
Table

about

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

vI vread va vbook vabout

I read a book aboutI read a bookI read aI readI

Lookup

Combining Vectors

Lookup Lookup Lookup Lookup

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

vI vread va vbook vabout

I read a book aboutI read a bookI read aI readI

Recurrent Neural Network: RNN

si = RNN(si�1,xi)

Lookup

Combining Vectors

Lookup Lookup Lookup Lookup

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

vI vread va vbook vabout

I read a book aboutI read a bookI read aI readI

Recurrent Neural Network: RNN

RSRNN (si�1,xi) = tanh(Ws · si�1 +Wx · xi)

Lookup

Combining Vectors

Lookup Lookup Lookup Lookup

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

vI vread va vbook vabout

I read a book aboutI read a bookI read aI readI

Recurrent Neural Network: RNN
RLSTM (sj�1,xj) =[cj;hj]

cj =cj�1 � f + g � i

hj =tanh(cj)� o

i =�(Wxi · xj +Whi · hj�1)

f =�(Wxf · xj +Whf · hj�1)

o =�(Wxo · xj +Who · hj�1)

g =tanh(Wxg · xj +Whg · hj�1)

RLSTM (sj�1,xj) =[cj;hj]

cj =cj�1 � f + g � i

hj =tanh(cj)� o

i =�(Wxi · xj +Whi · hj�1)

f =�(Wxf · xj +Whf · hj�1)

o =�(Wxo · xj +Who · hj�1)

g =tanh(Wxg · xj +Whg · hj�1)

LSTM: differential gates

better controlled memory access

• The main idea behind the LSTM is that you want to
somehow control the "memory access".

• In a SimpleRNN:

• All the memory gets overwritten

RSRNN (si�1,xi) = tanh(Ws · si�1 +Wx · xi)

read previous state memory write new input

LSTM: differential gates

Vector Gates
• We'd like to:  

* Selectively read from some memory "cells".  
* Selectively write to some memory "cells".

• A gate function:

•
vector of valuesgate controls access

15.3. GATED ARCHITECTURES 163

and a gate g 2 0, 1d. The computation s0 g � x + (1� g)� (s) “reads” the entries in x
that correspond to the 1 values in g, and writes them to the new memory s0. Then, locations
that weren’t read to are copied from the memory s to the new memory s0 through the use
of the gate (1� g). Figure 15.1 shows this process for updating the memory with positions
2 and 5 from the input:

2

66666664

8
11
3
7
5
15

3

77777775

2

66666664

0
1
0
0
0
1

3

77777775

�

2

66666664

10
11
12
13
14
15

3

77777775

+

2

66666664

1
0
1
1
1
0

3

77777775

�

2

66666664

8
9
3
7
5
8

3

77777775

s0 g x (1� g) s

Figure 15.1: Using binary gate vector g to control access to memory s0.

The gating mechanism described above can serve as a building block in our RNN: gate
vectors can be used to control access to the memory state si. However, we are still missing
two important (and related) components: the gates should not be static, but be controlled
by the current memory state and the input, and their behavior should be learned. This
introduced an obstacle, as learning in our framework entails being di↵erentiable (because
of the backpropagation algorithm) and the binary 0-1 values used in the gates are not
di↵erentiable.

A solution to the above problem is to approximate the hard gating mechanism with a
soft – but di↵erentiable – gating mechanism. To achieve these di↵erentiable gates, we replace
the requirement that g 2 {0, 1}n and allow arbitrary real numbers, g0 2 Rn, which are then
pass through a sigmoid function �(g0). This bounds the value in the range (0, 1), with
most values near the borders. When using the gate �(g0)� x, indices in x corresponding to
near-one values in �(g0) are allowed to pass, while those corresponding to near-zero values
are blocked. The gate values can then be conditioned on the input and the current memory,
and trained using a gradient-based method to perform a desired behavior.

This is controllable gating mechanism is the basis of the LSTM and the GRU ar-
chitectures, to be defined next: at each time step, di↵erentiable gating mechanisms decide
which parts of the inputs will be written to memory, and which parts of memory will be
overwritten (forgotten). This rather abstract description will be made concrete in the next
sections.

(element-wise multiplication)

Vector "Gates"
• We'd like to:  

* Selectively read from some memory "cells".  
* Selectively write to some memory "cells".

• A gate function:

•
vector of valuesgate controls access

15.3. GATED ARCHITECTURES 163

and a gate g 2 0, 1d. The computation s0 g � x + (1� g)� (s) “reads” the entries in x
that correspond to the 1 values in g, and writes them to the new memory s0. Then, locations
that weren’t read to are copied from the memory s to the new memory s0 through the use
of the gate (1� g). Figure 15.1 shows this process for updating the memory with positions
2 and 5 from the input:

2

66666664

8
11
3
7
5
15

3

77777775

2

66666664

0
1
0
0
0
1

3

77777775

�

2

66666664

10
11
12
13
14
15

3

77777775

+

2

66666664

1
0
1
1
1
0

3

77777775

�

2

66666664

8
9
3
7
5
8

3

77777775

s0 g x (1� g) s

Figure 15.1: Using binary gate vector g to control access to memory s0.

The gating mechanism described above can serve as a building block in our RNN: gate
vectors can be used to control access to the memory state si. However, we are still missing
two important (and related) components: the gates should not be static, but be controlled
by the current memory state and the input, and their behavior should be learned. This
introduced an obstacle, as learning in our framework entails being di↵erentiable (because
of the backpropagation algorithm) and the binary 0-1 values used in the gates are not
di↵erentiable.

A solution to the above problem is to approximate the hard gating mechanism with a
soft – but di↵erentiable – gating mechanism. To achieve these di↵erentiable gates, we replace
the requirement that g 2 {0, 1}n and allow arbitrary real numbers, g0 2 Rn, which are then
pass through a sigmoid function �(g0). This bounds the value in the range (0, 1), with
most values near the borders. When using the gate �(g0)� x, indices in x corresponding to
near-one values in �(g0) are allowed to pass, while those corresponding to near-zero values
are blocked. The gate values can then be conditioned on the input and the current memory,
and trained using a gradient-based method to perform a desired behavior.

This is controllable gating mechanism is the basis of the LSTM and the GRU ar-
chitectures, to be defined next: at each time step, di↵erentiable gating mechanisms decide
which parts of the inputs will be written to memory, and which parts of memory will be
overwritten (forgotten). This rather abstract description will be made concrete in the next
sections.

(element-wise multiplication)

Vector "Gates"
• We'd like to:  

* Selectively read from some memory "cells".  
* Selectively write to some memory "cells".

• A gate function:

•

vector of values gate controls access

g 2 {0, 1}dsi�1 � g

si si�1 � gr + xi � gw

Vector "Gates"

• Using the gate function to control access:

•

which cells to read which cells to write

g 2 {0, 1}d

si si�1 � gr + xi � gw

Vector "Gates"

• Using the gate function to control access:

• (can also tie them:)

g 2 {0, 1}d

gr = 1� gw

which cells to read which cells to write

Vector "Gates"

15.3. GATED ARCHITECTURES 163

and a gate g 2 0, 1d. The computation s0 g � x + (1� g)� (s) “reads” the entries in x
that correspond to the 1 values in g, and writes them to the new memory s0. Then, locations
that weren’t read to are copied from the memory s to the new memory s0 through the use
of the gate (1� g). Figure 15.1 shows this process for updating the memory with positions
2 and 5 from the input:

2

66666664

8
11
3
7
5
15

3

77777775

2

66666664

0
1
0
0
0
1

3

77777775

�

2

66666664

10
11
12
13
14
15

3

77777775

+

2

66666664

1
0
1
1
1
0

3

77777775

�

2

66666664

8
9
3
7
5
8

3

77777775

s0 g x (1� g) s

Figure 15.1: Using binary gate vector g to control access to memory s0.

The gating mechanism described above can serve as a building block in our RNN: gate
vectors can be used to control access to the memory state si. However, we are still missing
two important (and related) components: the gates should not be static, but be controlled
by the current memory state and the input, and their behavior should be learned. This
introduced an obstacle, as learning in our framework entails being di↵erentiable (because
of the backpropagation algorithm) and the binary 0-1 values used in the gates are not
di↵erentiable.

A solution to the above problem is to approximate the hard gating mechanism with a
soft – but di↵erentiable – gating mechanism. To achieve these di↵erentiable gates, we replace
the requirement that g 2 {0, 1}n and allow arbitrary real numbers, g0 2 Rn, which are then
pass through a sigmoid function �(g0). This bounds the value in the range (0, 1), with
most values near the borders. When using the gate �(g0)� x, indices in x corresponding to
near-one values in �(g0) are allowed to pass, while those corresponding to near-zero values
are blocked. The gate values can then be conditioned on the input and the current memory,
and trained using a gradient-based method to perform a desired behavior.

This is controllable gating mechanism is the basis of the LSTM and the GRU ar-
chitectures, to be defined next: at each time step, di↵erentiable gating mechanisms decide
which parts of the inputs will be written to memory, and which parts of memory will be
overwritten (forgotten). This rather abstract description will be made concrete in the next
sections.

• Problem with the gates: 
* they are fixed.  
* they don't depend on the input or the output.

• Solution: make them smooth, input dependent, and
trainable.

•

Differentiable "Gates"

"almost 0" 
or 

"almost 1"
function of input and state

gr = �(W · xi +U · si�1)

• Problem with the gates: 
* they are fixed.  
* they don't depend on the input or the output.

• Solution: make them smooth, input dependent, and
trainable.

•

Differentiable "Gates"

"almost 0" 
or 

"almost 1"
function of input and state

gr = �(W · xi +U · si�1)

• The LSTM is a specific combination of gates.

•

LSTM  
(Long short-term Memory)

RLSTM (sj�1,xj) =[cj;hj]

cj =cj�1 � f + g � i

hj =tanh(cj)� o

i =�(Wxi · xj +Whi · hj�1)

f =�(Wxf · xj +Whf · hj�1)

o =�(Wxo · xj +Who · hj�1)

g =tanh(Wxg · xj +Whg · hj�1)

OLSTM (sj) = OLSTM ([cj;hj]) = hj

Lookup

Combining Vectors

Lookup Lookup Lookup Lookup

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

vI vread va vbook vabout

I read a book aboutI read a bookI read aI readI

Recurrent Neural Network: RNN
RLSTM (sj�1,xj) =[cj;hj]

cj =cj�1 � f + g � i

hj =tanh(cj)� o

i =�(Wxi · xj +Whi · hj�1)

f =�(Wxf · xj +Whf · hj�1)

o =�(Wxo · xj +Who · hj�1)

g =tanh(Wxg · xj +Whg · hj�1)

Lookup

Combining Vectors

Lookup Lookup Lookup Lookup

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

vI vread va vbook vabout

I read a book aboutI read a bookI read aI readI

Recurrent Neural Network: RNN

Lookup

Combining Vectors

Lookup Lookup Lookup Lookup

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

vI vread va vbook vabout

I read a book aboutI read a bookI read aI readI

multi-layer RNN

Bi-RNN

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

Leyó el libro en cama

Leyó el libro en camaLeyó el libro enLeyó el libroLeyó elLeyó

keep intermediate vectors

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

Leyó el libro en cama

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

add right-to-left RNN
(bi-RNN)

Bi-RNN

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

Leyó el libro en cama

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

add right-to-left RNN
(bi-RNN)

Bi-RNN

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

Leyó el libro en cama

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

add right-to-left RNN
(bi-RNN)

Leyó el libro en cama

Bi-RNN

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

Leyó el libro en cama

Leyó el libro en cama

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

Leyó el libro en cama

Leyó el libro en cama

Leyó el libro en cama

Leyó el libro en cama

add right-to-left RNN
(bi-RNN)

a representation of a word in context.

Bi-RNN

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

vI vread va vbook

I

Predict

v<s>

Predict Predict Predict Predict

read a book about

Training
RNN

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

vI vread va vbook

<s>

Predict

v<s>

Predict Predict Predict Predict

I read a book

Training
bi-RNN

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

see a problem?

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

vI vread va vbook

Predict

v<s>

Predict Predict Predict Predict

Training
bi-RNN

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

solution 1:  
don't predict words.

predict tags. use as part fo larger network.

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

vI vread va vbook

Predict

v<s>

Predict Predict Predict Predict

Training
bi-RNN

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

solution 2:  
single layer. skip word

<s> I read a book

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

vI vread va vbook

Predict

v<s>

Predict Predict Predict Predict

Training
bi-RNN

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

solution 2:  
single layer. skip word

<s> I read a book

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

va vbookv<s>

Predict

Training
bi-RNN

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

solution 3:  
masking.

I

vread[MASK]

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

vI vav<s>

Predict

Training
bi-RNN

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

solution 3:  
masking.

book

[MASK]vread

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

vI va vbookv<s>

Predict

Training
bi-RNN

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

solution 3:  
masking.

read

[MASK]

RNN
cell

RNN
cell

He

Predict

v<s>

Generation
from RNN

RNN
cell

RNN
cell

RNN
cell

RNN
cell

He

Predict

v<s>

Predict

read

Generation

vHe

from RNN

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

vread

He

Predict

v<s>

Predict Predict

read the

Generation

vHe

from RNN

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

vread

He

Predict

v<s>

Predict Predict Predict

read the book

Generation

vHe
vthe

from RNN

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

vread vbook

He

Predict

v<s>

Predict Predict Predict Predict

read the book in

Generation

vHe
vthe

from RNN

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

vread vbook

He

Predict

v<s>

Predict Predict Predict Predict

read the book in

Conditioned Generation

vHe
vthe

from RNN

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

vread vbook

He

Predict

v<s>

Predict Predict Predict Predict

read the book in

Conditioned Generation

vHe
vthe

condition
vector

Conditioned Generation

condition
vector

Conditioned Generation

condition
vector

Name Triton 52

EcoRating A+

Family L7

Encode

Table

Conditioned Generation

condition
vector

Encode

Leyó el libro en cama

Text

Seq2Seq

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

Leyó el libro en cama

Leyó el libro en cama

Seq2Seq

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

Leyó el libro en cama

v<s>

Leyó el libro en cama

RNN
cell

He

Predict

Seq2Seq

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

Leyó el libro en cama

v<s> vHe

Leyó el libro en cama

RNN
cell

He

Predict Predict

read

RNN
cell

Seq2Seq

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

Leyó el libro en cama

vreadv<s> vHe

Leyó el libro en cama

RNN
cell

He

Predict Predict Predict

read the

RNN
cell

RNN
cell

Seq2Seq

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

Leyó el libro en cama

vread vbookv<s> vHe
vthe

Leyó el libro en cama

RNN
cell

He

Predict Predict Predict Predict Predict

read the book in

RNN
cell

RNN
cell

RNN
cell

RNN
cell

Predict

bed

RNN
cell

vin

Seq2Seq + Attention

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

Leyó el libro en cama

Leyó el libro en camaLeyó el libro enLeyó el libroLeyó elLeyó

keep intermediate vectors

Seq2Seq + Attention

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

Leyó el libro en cama

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

as Bi-RNN

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

Leyó el libro en cama

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

weighted sum

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

Leyó el libro en cama

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

weighted sum

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

Leyó el libro en cama

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

v<s>

RNN
cell

Predict

weighted sum

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

Leyó el libro en cama

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

v<s>

RNN
cell

He

Predict

weighted sum

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

Leyó el libro en cama

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

v<s> vHe

RNN
cell

He

Predict

weighted sum

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

Leyó el libro en cama

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

v<s> vHe

RNN
cell

He

Predict Predict

read

RNN
cell

weighted sum

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

Leyó el libro en cama

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

vreadv<s> vHe

RNN
cell

He

Predict Predict Predict

read the

RNN
cell

RNN
cell

weighted sum

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

Leyó el libro en cama

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

vread vbookv<s> vHe
vthe

RNN
cell

He

Predict Predict Predict Predict Predict

read the book in

RNN
cell

RNN
cell

RNN
cell

RNN
cell

Predict

bed

RNN
cell

vin

weighted sum

Transformer

Transformer

• Main concepts to know:

• Self-attention

• Multi-head attention

• Also think about: why do this? what is the motivation?

replace RNN with attention-based mechanism

Transformer
Self attention

each token attends to all tokens in previous layer

Transformer
Self attention

Transformer
Self attention

Transformer
multi-head attention

one attention pattern

Transformer
multi-head attention

another attention pattern

Transformer
multi-head attention

why chose if we can just have several?

Transformer
Skip connections

Cost vs Opportunity

http://www.cs.toronto.edu/~rgrosse/courses/csc421_2019/slides/lec16.pdf

http://www.cs.toronto.edu/~rgrosse/courses/csc421_2019/slides/lec16.pdf

Cost vs Opportunity

http://www.cs.toronto.edu/~rgrosse/courses/csc421_2019/slides/lec16.pdf

http://www.cs.toronto.edu/~rgrosse/courses/csc421_2019/slides/lec16.pdf

Cost vs Opportunity

http://www.cs.toronto.edu/~rgrosse/courses/csc421_2019/slides/lec16.pdf

http://www.cs.toronto.edu/~rgrosse/courses/csc421_2019/slides/lec16.pdf

Cost vs Opportunity

http://www.cs.toronto.edu/~rgrosse/courses/csc421_2019/slides/lec16.pdf

http://www.cs.toronto.edu/~rgrosse/courses/csc421_2019/slides/lec16.pdf

Cost vs Opportunity
RNN to Self-attention

Cost vs Opportunity
RNN to Self-attention

drop
time dependence

Cost vs Opportunity
RNN to Self-attention

add
attention

Cost vs Opportunity
RNN to Self-attention

can parallelize
across all sequence

Cost vs Opportunity
RNN to Self-attention

can parallelize
across all sequence

Transformer
Information flow

how do we pass information between the blue arrows?

Transformer
Information flow

how do we pass information between the blue arrows?

vs
RNN case

Transformer
Positional information

Transformer
Positional information

"1" "2" "3" "4"
+ + + +

Neural NLP

Input OutputInput Neural Network Output

The basic abstraction

Input Encode Decode OutputInput Encode Decode Output

The basic abstraction

Input Encode Decode Output

Attend

Input Encode Decode Output

Attend

Encoder abstarctions
symbol Encode vector

n vectors Encode vector

n vectors Encode n vectors

"embeddings"

CNN + pooling
RNN

Sum

RNN (~)
Bi-RNN

Transformer

Decoders
Linear, MLP (predict)

RNN

(Attention) Transformer

at single vector

at each position

RNN + Attention arbitrary length

one prediction

input length

