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Let's be more specific

• Neural networks learn representations.


• Sharing the representations (multi-task learning).


• Using the representations --- by querying them.


• Biases in representations.


• Controlling the representations.



Neural networks learn representations. 
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to use the network as a feature extractor (Don-
ahue et al., 2014), where all layers in the model are
frozen when fine-tuning on the target task except
the last layer (hereafter referred to as the ‘last’ ap-
proach). Alternatively, another common approach
is to use the pretrained model as an initializa-
tion (Erhan et al., 2010), where the full model is
unfrozen (hereafter referred to as ‘full’).

We propose a new simple transfer learning ap-
proach, ‘chain-thaw’, that sequentially unfreezes
and fine-tunes a single layer at a time. This ap-
proach increases accuracy on the target task at the
expense of extra computational power needed for
the fine-tuning. By training each layer separately
the model is able to adjust the individual patterns
across the network with a reduced risk of overfit-
ting. The sequential fine-tuning seems to have a
regularizing effect similar to what has been exam-
ined with layer-wise training in the context of un-
supervised learning (Erhan et al., 2010).

More specifically, the chain-thaw approach first
fine-tunes any new layers (often only a Softmax
layer) to the target task until convergence on a
validation set. Then the approach fine-tunes each
layer individually starting from the first layer in
the network. Lastly, the entire model is trained
with all layers. Each time the model converges
as measured on the validation set, the weights
are reloaded to the best setting, thereby prevent-
ing overfitting in a similar manner to early stop-
ping (Sjöberg and Ljung, 1995). This process is
illustrated in Figure 2. Note how only perform-
ing step a) in the figure is identical to the ‘last’
approach, where the existing network is used as
a feature extractor. Similarly, only doing step d)
is identical to the ‘full’ approach, where the pre-
trained weights are used as an initialization for a
fully trainable network. Although the chain-thaw
procedure may seem extensive it is easily imple-
mented with only a few lines of code. Similarly,
the additional time spent on fine-tuning is limited
when the target task uses GPUs on small datasets
of manually annotated data as is often the case.

A benefit of the chain-thaw approach is the abil-
ity to expand the vocabulary to new domains with
little risk of overfitting. For a given dataset up to
10000 new words from the training set are added
to the vocabulary. §5.3 contains analysis on the
added word coverage gained from this approach.

Figure 2: Illustration of the chain-thaw transfer
learning approach, where each layer is fine-tuned
separately. Layers covered with a blue rectangle
are frozen. Step a) tunes any new layers, b) then
tunes the 1st layer and c) the next layer until all
layers have been fine-tuned individually. Lastly,
in step d) all layers are fine-tuned together.

Table 2: The number of tweets in the pretraining
dataset associated with each emoji in millions.

233.7 82.2 79.5 78.1 60.8 54.7 54.6 51.7 50.5 44.0 39.5 39.1 34.8 34.4 32.1 28.1

24.8 23.4 21.6 21.0 20.5 20.3 19.9 19.6 18.9 17.5 17.0 16.9 16.1 15.3 15.2 15.0

14.9 14.3 14.2 14.2 12.9 12.4 12.0 12.0 11.7 11.7 11.3 11.2 11.1 11.0 11.0 10.8

10.2 9.6 9.5 9.3 9.2 8.9 8.7 8.6 8.1 6.3 6.0 5.7 5.6 5.5 5.4 5.1

4 Experiments

4.1 Emoji prediction

We use a raw dataset of 56.6 billion tweets, which
is then filtered to 1.2 billion relevant tweets (see
details in §3.1). In the pretraining dataset a copy
of a single tweet is stored once for each unique
emoji, resulting in a dataset consisting of 1.6 bil-
lion tweets. Table 2 shows the distribution of
tweets across different emoji types. To evaluate
performance on the pretraining task a validation
set and a test set both containing 640K tweets
(10K of each emoji type) are used. The remain-
ing tweets are used for the training set, which is
balanced using upsampling.

The performance of the DeepMoji model is
evaluated on the pretraining task with the results
shown in Table 3. Both top 1 and top 5 accuracy
is used for the evaluation as the emoji labels are
noisy with multiple emojis being potentially cor-
rect for any given sentence. For comparison we
also train a version of our DeepMoji model with
smaller LSTM layers and a bag-of-words classi-
fier, fastText, that has recently shown competitive
results (Joulin et al., 2016). We use 256 dimen-
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representation than traditionally obtained through
distant supervision. We transfer this knowledge to
the target tasks using a new layer-wise fine-tuning
method, obtaining improvements over the state-
of-the-art within a range of tasks: emotion, sar-
casm and sentiment detection. We present multi-
ple analyses on the effect of pretraining, including
results that show that the diversity of our emoji set
is important for the transfer learning potential of
our model. Our pretrained DeepMoji model is re-
leased with the hope that other researchers can use
it for various NLP tasks1.

2 Related work

Using emotional expressions as noisy labels in
text to counter scarcity of labels is not a new
idea (Read, 2005; Go et al., 2009). Originally, bi-
narized emoticons were used as noisy labels, but
later also hashtags and emojis have been used.
To our knowledge, previous research has always
manually specified which emotional category each
emotional expression belong to. Prior work has
used theories of emotion such as Ekman’s six
basic emotions and Plutchik’s eight basic emo-
tions (Mohammad, 2012; Suttles and Ide, 2013).

Such manual categorization requires an under-
standing of the emotional content of each expres-
sion, which is difficult and time-consuming for
sophisticated combinations of emotional content.
Moreover, any manual selection and categoriza-
tion is prone to misinterpretations and may omit
important details regarding usage. In contrast, our
approach requires no prior knowledge of the cor-
pus and can capture diverse usage of 64 types of
emojis (see Table 1 for examples and Figure 3 for
how the model implicitly groups emojis).

Another way of automatically interpreting the
emotional content of an emoji is to learn emoji
embeddings from the words describing the emoji-
semantics in official emoji tables (Eisner et al.,
2016). This approach, in our context, suffers from
two severe limitations: a) It requires emojis at test
time while there are many domains with limited
or no usage of emojis. b) The tables do not cap-
ture the dynamics of emoji usage, i.e., drift in an
emoji’s intended meaning over time.

Knowledge can be transferred from the emoji
dataset to the target task in many different ways.
In particular, multitask learning with simultaneous

1Available with preprocessing code, examples of usage,
benchmark datasets etc. at github.com/bfelbo/deepmoji

Embedding

Text

BiLSTM

BiLSTM

Attention 1 x 2304

T x 1024

T x 1024

T x 256

Softmax 1 x C

Figure 1: Illustration of the DeepMoji model with
T being text length and C the number of classes.

training on multiple datasets has shown promis-
ing results (Collobert and Weston, 2008). How-
ever, multitask learning requires access to the
emoji dataset whenever the classifier needs to be
tuned for a new target task. Requiring access
to the dataset is problematic in terms of violat-
ing data access regulations. There are also is-
sues from a data storage perspective as the dataset
used for this research contains hundreds of mil-
lions of tweets (see Table 2). Instead we use trans-
fer learning (Bengio et al., 2012) as described in
§3.3, which does not require access to the original
dataset, but only the pretrained classifier.

3 Method

3.1 Pretraining

In many cases, emojis serve as a proxy for the
emotional contents of a text. Therefore, pretrain-
ing on the classification task of predicting which
emoji were initially part of a text can improve per-
formance on the target task (see §5.3 for an anal-
ysis of why our pretraining helps). Social media
contains large amounts of short texts with emojis
that can be utilized as noisy labels for pretraining.
Here, we use data from Twitter from January 1st
2013 to June 1st 2017, but any dataset with emoji
occurrences could be used.

Only English tweets without URL’s are used for
the pretraining dataset. Our hypothesis is that the
content obtained from the URL is likely to be im-
portant for understanding the emotional content of
the text in the tweet. Therefore, we expect emo-
jis associated with these tweets to be noiser labels
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Example: Multi-tasking
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The pitch

• Different sequence prediction tasks have shared 
structures. 

• Hints for predicting A may help to predict B. 

• Instead of training a network to do one thing, train it 
to do several things.
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Not all is pretty

• Not so easy to get it to work. 

• For many task pairs: no improvement at all. 

• If network not wide enough, MTL hurts both tasks. 

• More in-task data > more tasks.
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Thinking about 
 the architecture

We know there is a hierarchy between tasks 

Why not use it?

(joint work with Anders Søgaard)  
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(but also gets feedback from CHUNKS)
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(while using the POS information)
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Abstract

We show how eye-tracking corpora can be
used to improve sentence compression mod-
els, presenting a novel multi-task learning al-
gorithm based on multi-layer LSTMs. We ob-
tain performance competitive with or better
than state-of-the-art approaches.

1 Introduction

Sentence compression is a basic operation in text
simplification which has the potential to improve
statistical machine translation and automatic sum-
marization (Berg-Kirkpatrick et al., 2011; Klerke et
al., 2015), as well as helping poor readers in need of
assistive technologies (Canning et al., 2000). This
work suggests using eye-tracking recordings for im-
proving sentence compression for text simplification
systems and is motivated by two observations: (i)
Sentence compression is the task of automatically

making sentences easier to process by shortening

them. (ii) Eye-tracking measures such as first-pass
reading time and time spent on regressions, i.e., dur-
ing second and later passes over the text, are known

to correlate with perceived text difficulty (Rayner et
al., 2012).

These two observations recently lead Klerke et
al. (2015) to suggest using eye-tracking measures as
metrics in text simplification. We go beyond this by
suggesting that eye-tracking recordings can be used
to induce better models for sentence compression
for text simplification. Specifically, we show how
to use existing eye-tracking recordings to improve
the induction of Long Short-Term Memory models
(LSTMs) for sentence compression.

Our proposed model does not require that the gaze
data and the compression data come from the same
source. Indeed, in this work we use gaze data from
readers of the Dundee Corpus to improve sentence
compression results on several datasets. While not
explored here, an intriguing potential of this work
is in deriving sentence simplification models that
are personalized for individual users, based on their
reading behavior.

Several approaches to sentence compression have
been proposed, from noisy channel models (Knight
and Marcu, 2002) over conditional random fields
(Elming et al., 2013) to tree-to-tree machine trans-
lation models (Woodsend and Lapata, 2011). More
recently, Filippova et al. (2015) successfully used
LSTMs for sentence compression on a large scale
parallel dataset. We do not review the literature here,
and only compare to Filippova et al. (2015).

Our contributions

• We present a novel multi-task learning ap-
proach to sentence compression using labelled
data for sentence compression and a disjoint
eye-tracking corpus.

• Our method is fully competitive with state-of-
the-art across three corpora.

• Our code is made publicly available at
https://bitbucket.org/soegaard/
gaze-mtl16.

2 Gaze during reading

Readers fixate longer at rare words, words that are
semantically ambiguous, and words that are mor-

ar
X

iv
:1

60
4.

03
35

7v
1 

 [c
s.C

L]
  1

2 
A

pr
 2

01
6

Sentence Compression

BI

BI

BI

xthe

pred

B-NP

pred

DET

BI

BI

BI

xbrown

pred

I-NP

pred

ADJ

BI

BI

BI

xfox

pred

I-NP

pred

NN

BI

BI

BI

xjumped

pred

B-VP

pred

VB

BI

BI

BI

xover

pred

B-PP

pred

INeye tracking 
+

CCG tags

sentence 
compression 

decisions

Improving sentence compression by learning to predict gaze

Sigrid Klerke

University of Copenhagen
skl@hum.ku.dk

Yoav Goldberg

Bar-Ilan University
yoav.goldberg@gmail.com

Anders Søgaard

University of Copenhagen
soegaard@hum.ku.dk

Abstract

We show how eye-tracking corpora can be
used to improve sentence compression mod-
els, presenting a novel multi-task learning al-
gorithm based on multi-layer LSTMs. We ob-
tain performance competitive with or better
than state-of-the-art approaches.

1 Introduction

Sentence compression is a basic operation in text
simplification which has the potential to improve
statistical machine translation and automatic sum-
marization (Berg-Kirkpatrick et al., 2011; Klerke et
al., 2015), as well as helping poor readers in need of
assistive technologies (Canning et al., 2000). This
work suggests using eye-tracking recordings for im-
proving sentence compression for text simplification
systems and is motivated by two observations: (i)
Sentence compression is the task of automatically

making sentences easier to process by shortening

them. (ii) Eye-tracking measures such as first-pass
reading time and time spent on regressions, i.e., dur-
ing second and later passes over the text, are known

to correlate with perceived text difficulty (Rayner et
al., 2012).

These two observations recently lead Klerke et
al. (2015) to suggest using eye-tracking measures as
metrics in text simplification. We go beyond this by
suggesting that eye-tracking recordings can be used
to induce better models for sentence compression
for text simplification. Specifically, we show how
to use existing eye-tracking recordings to improve
the induction of Long Short-Term Memory models
(LSTMs) for sentence compression.

Our proposed model does not require that the gaze
data and the compression data come from the same
source. Indeed, in this work we use gaze data from
readers of the Dundee Corpus to improve sentence
compression results on several datasets. While not
explored here, an intriguing potential of this work
is in deriving sentence simplification models that
are personalized for individual users, based on their
reading behavior.

Several approaches to sentence compression have
been proposed, from noisy channel models (Knight
and Marcu, 2002) over conditional random fields
(Elming et al., 2013) to tree-to-tree machine trans-
lation models (Woodsend and Lapata, 2011). More
recently, Filippova et al. (2015) successfully used
LSTMs for sentence compression on a large scale
parallel dataset. We do not review the literature here,
and only compare to Filippova et al. (2015).

Our contributions

• We present a novel multi-task learning ap-
proach to sentence compression using labelled
data for sentence compression and a disjoint
eye-tracking corpus.

• Our method is fully competitive with state-of-
the-art across three corpora.

• Our code is made publicly available at
https://bitbucket.org/soegaard/
gaze-mtl16.

2 Gaze during reading

Readers fixate longer at rare words, words that are
semantically ambiguous, and words that are mor-

ar
X

iv
:1

60
4.

03
35

7v
1 

 [c
s.C

L]
  1

2 
A

pr
 2

01
6



Improving sentence compression by learning to predict gaze

Sigrid Klerke

University of Copenhagen
skl@hum.ku.dk

Yoav Goldberg

Bar-Ilan University
yoav.goldberg@gmail.com

Anders Søgaard

University of Copenhagen
soegaard@hum.ku.dk

Abstract

We show how eye-tracking corpora can be
used to improve sentence compression mod-
els, presenting a novel multi-task learning al-
gorithm based on multi-layer LSTMs. We ob-
tain performance competitive with or better
than state-of-the-art approaches.

1 Introduction

Sentence compression is a basic operation in text
simplification which has the potential to improve
statistical machine translation and automatic sum-
marization (Berg-Kirkpatrick et al., 2011; Klerke et
al., 2015), as well as helping poor readers in need of
assistive technologies (Canning et al., 2000). This
work suggests using eye-tracking recordings for im-
proving sentence compression for text simplification
systems and is motivated by two observations: (i)
Sentence compression is the task of automatically

making sentences easier to process by shortening

them. (ii) Eye-tracking measures such as first-pass
reading time and time spent on regressions, i.e., dur-
ing second and later passes over the text, are known

to correlate with perceived text difficulty (Rayner et
al., 2012).

These two observations recently lead Klerke et
al. (2015) to suggest using eye-tracking measures as
metrics in text simplification. We go beyond this by
suggesting that eye-tracking recordings can be used
to induce better models for sentence compression
for text simplification. Specifically, we show how
to use existing eye-tracking recordings to improve
the induction of Long Short-Term Memory models
(LSTMs) for sentence compression.

Our proposed model does not require that the gaze
data and the compression data come from the same
source. Indeed, in this work we use gaze data from
readers of the Dundee Corpus to improve sentence
compression results on several datasets. While not
explored here, an intriguing potential of this work
is in deriving sentence simplification models that
are personalized for individual users, based on their
reading behavior.

Several approaches to sentence compression have
been proposed, from noisy channel models (Knight
and Marcu, 2002) over conditional random fields
(Elming et al., 2013) to tree-to-tree machine trans-
lation models (Woodsend and Lapata, 2011). More
recently, Filippova et al. (2015) successfully used
LSTMs for sentence compression on a large scale
parallel dataset. We do not review the literature here,
and only compare to Filippova et al. (2015).

Our contributions

• We present a novel multi-task learning ap-
proach to sentence compression using labelled
data for sentence compression and a disjoint
eye-tracking corpus.

• Our method is fully competitive with state-of-
the-art across three corpora.

• Our code is made publicly available at
https://bitbucket.org/soegaard/
gaze-mtl16.

2 Gaze during reading

Readers fixate longer at rare words, words that are
semantically ambiguous, and words that are mor-

ar
X

iv
:1

60
4.

03
35

7v
1 

 [c
s.C

L]
  1

2 
A

pr
 2

01
6

Sentence Compression

BI

BI

BI

xthe

pred

B-NP

pred

DET

BI

BI

BI

xbrown

pred

I-NP

pred

ADJ

BI

BI

BI

xfox

pred

I-NP

pred

NN

BI

BI

BI

xjumped

pred

B-VP

pred

VB

BI

BI

BI

xover

pred

B-PP

pred

INeye tracking 
+

CCG tags

sentence 
compression 

decisions

Improving sentence compression by learning to predict gaze

Sigrid Klerke

University of Copenhagen
skl@hum.ku.dk

Yoav Goldberg

Bar-Ilan University
yoav.goldberg@gmail.com

Anders Søgaard

University of Copenhagen
soegaard@hum.ku.dk

Abstract

We show how eye-tracking corpora can be
used to improve sentence compression mod-
els, presenting a novel multi-task learning al-
gorithm based on multi-layer LSTMs. We ob-
tain performance competitive with or better
than state-of-the-art approaches.

1 Introduction

Sentence compression is a basic operation in text
simplification which has the potential to improve
statistical machine translation and automatic sum-
marization (Berg-Kirkpatrick et al., 2011; Klerke et
al., 2015), as well as helping poor readers in need of
assistive technologies (Canning et al., 2000). This
work suggests using eye-tracking recordings for im-
proving sentence compression for text simplification
systems and is motivated by two observations: (i)
Sentence compression is the task of automatically

making sentences easier to process by shortening

them. (ii) Eye-tracking measures such as first-pass
reading time and time spent on regressions, i.e., dur-
ing second and later passes over the text, are known

to correlate with perceived text difficulty (Rayner et
al., 2012).

These two observations recently lead Klerke et
al. (2015) to suggest using eye-tracking measures as
metrics in text simplification. We go beyond this by
suggesting that eye-tracking recordings can be used
to induce better models for sentence compression
for text simplification. Specifically, we show how
to use existing eye-tracking recordings to improve
the induction of Long Short-Term Memory models
(LSTMs) for sentence compression.

Our proposed model does not require that the gaze
data and the compression data come from the same
source. Indeed, in this work we use gaze data from
readers of the Dundee Corpus to improve sentence
compression results on several datasets. While not
explored here, an intriguing potential of this work
is in deriving sentence simplification models that
are personalized for individual users, based on their
reading behavior.

Several approaches to sentence compression have
been proposed, from noisy channel models (Knight
and Marcu, 2002) over conditional random fields
(Elming et al., 2013) to tree-to-tree machine trans-
lation models (Woodsend and Lapata, 2011). More
recently, Filippova et al. (2015) successfully used
LSTMs for sentence compression on a large scale
parallel dataset. We do not review the literature here,
and only compare to Filippova et al. (2015).

Our contributions

• We present a novel multi-task learning ap-
proach to sentence compression using labelled
data for sentence compression and a disjoint
eye-tracking corpus.

• Our method is fully competitive with state-of-
the-art across three corpora.

• Our code is made publicly available at
https://bitbucket.org/soegaard/
gaze-mtl16.

2 Gaze during reading

Readers fixate longer at rare words, words that are
semantically ambiguous, and words that are mor-

ar
X

iv
:1

60
4.

03
35

7v
1 

 [c
s.C

L]
  1

2 
A

pr
 2

01
6

The first new product, ATF prototype, is a line  
of digital postscript typefaces that will be sold  

in packages of up to six fonts



Improving sentence compression by learning to predict gaze

Sigrid Klerke

University of Copenhagen
skl@hum.ku.dk

Yoav Goldberg

Bar-Ilan University
yoav.goldberg@gmail.com

Anders Søgaard

University of Copenhagen
soegaard@hum.ku.dk

Abstract

We show how eye-tracking corpora can be
used to improve sentence compression mod-
els, presenting a novel multi-task learning al-
gorithm based on multi-layer LSTMs. We ob-
tain performance competitive with or better
than state-of-the-art approaches.

1 Introduction

Sentence compression is a basic operation in text
simplification which has the potential to improve
statistical machine translation and automatic sum-
marization (Berg-Kirkpatrick et al., 2011; Klerke et
al., 2015), as well as helping poor readers in need of
assistive technologies (Canning et al., 2000). This
work suggests using eye-tracking recordings for im-
proving sentence compression for text simplification
systems and is motivated by two observations: (i)
Sentence compression is the task of automatically

making sentences easier to process by shortening

them. (ii) Eye-tracking measures such as first-pass
reading time and time spent on regressions, i.e., dur-
ing second and later passes over the text, are known

to correlate with perceived text difficulty (Rayner et
al., 2012).

These two observations recently lead Klerke et
al. (2015) to suggest using eye-tracking measures as
metrics in text simplification. We go beyond this by
suggesting that eye-tracking recordings can be used
to induce better models for sentence compression
for text simplification. Specifically, we show how
to use existing eye-tracking recordings to improve
the induction of Long Short-Term Memory models
(LSTMs) for sentence compression.

Our proposed model does not require that the gaze
data and the compression data come from the same
source. Indeed, in this work we use gaze data from
readers of the Dundee Corpus to improve sentence
compression results on several datasets. While not
explored here, an intriguing potential of this work
is in deriving sentence simplification models that
are personalized for individual users, based on their
reading behavior.

Several approaches to sentence compression have
been proposed, from noisy channel models (Knight
and Marcu, 2002) over conditional random fields
(Elming et al., 2013) to tree-to-tree machine trans-
lation models (Woodsend and Lapata, 2011). More
recently, Filippova et al. (2015) successfully used
LSTMs for sentence compression on a large scale
parallel dataset. We do not review the literature here,
and only compare to Filippova et al. (2015).

Our contributions

• We present a novel multi-task learning ap-
proach to sentence compression using labelled
data for sentence compression and a disjoint
eye-tracking corpus.

• Our method is fully competitive with state-of-
the-art across three corpora.

• Our code is made publicly available at
https://bitbucket.org/soegaard/
gaze-mtl16.

2 Gaze during reading

Readers fixate longer at rare words, words that are
semantically ambiguous, and words that are mor-

ar
X

iv
:1

60
4.

03
35

7v
1 

 [c
s.C

L]
  1

2 
A

pr
 2

01
6

Sentence Compression

BI

BI

BI

xthe

pred

B-NP

pred

DET

BI

BI

BI

xbrown

pred

I-NP

pred

ADJ

BI

BI

BI

xfox

pred

I-NP

pred

NN

BI

BI

BI

xjumped

pred

B-VP

pred

VB

BI

BI

BI

xover

pred

B-PP

pred

INeye tracking 
+

CCG tags

sentence 
compression 

decisions

Improving sentence compression by learning to predict gaze

Sigrid Klerke

University of Copenhagen
skl@hum.ku.dk

Yoav Goldberg

Bar-Ilan University
yoav.goldberg@gmail.com

Anders Søgaard

University of Copenhagen
soegaard@hum.ku.dk

Abstract

We show how eye-tracking corpora can be
used to improve sentence compression mod-
els, presenting a novel multi-task learning al-
gorithm based on multi-layer LSTMs. We ob-
tain performance competitive with or better
than state-of-the-art approaches.

1 Introduction

Sentence compression is a basic operation in text
simplification which has the potential to improve
statistical machine translation and automatic sum-
marization (Berg-Kirkpatrick et al., 2011; Klerke et
al., 2015), as well as helping poor readers in need of
assistive technologies (Canning et al., 2000). This
work suggests using eye-tracking recordings for im-
proving sentence compression for text simplification
systems and is motivated by two observations: (i)
Sentence compression is the task of automatically

making sentences easier to process by shortening

them. (ii) Eye-tracking measures such as first-pass
reading time and time spent on regressions, i.e., dur-
ing second and later passes over the text, are known

to correlate with perceived text difficulty (Rayner et
al., 2012).

These two observations recently lead Klerke et
al. (2015) to suggest using eye-tracking measures as
metrics in text simplification. We go beyond this by
suggesting that eye-tracking recordings can be used
to induce better models for sentence compression
for text simplification. Specifically, we show how
to use existing eye-tracking recordings to improve
the induction of Long Short-Term Memory models
(LSTMs) for sentence compression.

Our proposed model does not require that the gaze
data and the compression data come from the same
source. Indeed, in this work we use gaze data from
readers of the Dundee Corpus to improve sentence
compression results on several datasets. While not
explored here, an intriguing potential of this work
is in deriving sentence simplification models that
are personalized for individual users, based on their
reading behavior.

Several approaches to sentence compression have
been proposed, from noisy channel models (Knight
and Marcu, 2002) over conditional random fields
(Elming et al., 2013) to tree-to-tree machine trans-
lation models (Woodsend and Lapata, 2011). More
recently, Filippova et al. (2015) successfully used
LSTMs for sentence compression on a large scale
parallel dataset. We do not review the literature here,
and only compare to Filippova et al. (2015).

Our contributions

• We present a novel multi-task learning ap-
proach to sentence compression using labelled
data for sentence compression and a disjoint
eye-tracking corpus.

• Our method is fully competitive with state-of-
the-art across three corpora.

• Our code is made publicly available at
https://bitbucket.org/soegaard/
gaze-mtl16.

2 Gaze during reading

Readers fixate longer at rare words, words that are
semantically ambiguous, and words that are mor-

ar
X

iv
:1

60
4.

03
35

7v
1 

 [c
s.C

L]
  1

2 
A

pr
 2

01
6

The first new product, ATF prototype, is a line  
of digital postscript typefaces that will be sold  

in packages of up to six fonts



Improving sentence compression by learning to predict gaze

Sigrid Klerke

University of Copenhagen
skl@hum.ku.dk

Yoav Goldberg

Bar-Ilan University
yoav.goldberg@gmail.com

Anders Søgaard

University of Copenhagen
soegaard@hum.ku.dk

Abstract

We show how eye-tracking corpora can be
used to improve sentence compression mod-
els, presenting a novel multi-task learning al-
gorithm based on multi-layer LSTMs. We ob-
tain performance competitive with or better
than state-of-the-art approaches.

1 Introduction

Sentence compression is a basic operation in text
simplification which has the potential to improve
statistical machine translation and automatic sum-
marization (Berg-Kirkpatrick et al., 2011; Klerke et
al., 2015), as well as helping poor readers in need of
assistive technologies (Canning et al., 2000). This
work suggests using eye-tracking recordings for im-
proving sentence compression for text simplification
systems and is motivated by two observations: (i)
Sentence compression is the task of automatically

making sentences easier to process by shortening

them. (ii) Eye-tracking measures such as first-pass
reading time and time spent on regressions, i.e., dur-
ing second and later passes over the text, are known

to correlate with perceived text difficulty (Rayner et
al., 2012).

These two observations recently lead Klerke et
al. (2015) to suggest using eye-tracking measures as
metrics in text simplification. We go beyond this by
suggesting that eye-tracking recordings can be used
to induce better models for sentence compression
for text simplification. Specifically, we show how
to use existing eye-tracking recordings to improve
the induction of Long Short-Term Memory models
(LSTMs) for sentence compression.

Our proposed model does not require that the gaze
data and the compression data come from the same
source. Indeed, in this work we use gaze data from
readers of the Dundee Corpus to improve sentence
compression results on several datasets. While not
explored here, an intriguing potential of this work
is in deriving sentence simplification models that
are personalized for individual users, based on their
reading behavior.

Several approaches to sentence compression have
been proposed, from noisy channel models (Knight
and Marcu, 2002) over conditional random fields
(Elming et al., 2013) to tree-to-tree machine trans-
lation models (Woodsend and Lapata, 2011). More
recently, Filippova et al. (2015) successfully used
LSTMs for sentence compression on a large scale
parallel dataset. We do not review the literature here,
and only compare to Filippova et al. (2015).

Our contributions

• We present a novel multi-task learning ap-
proach to sentence compression using labelled
data for sentence compression and a disjoint
eye-tracking corpus.

• Our method is fully competitive with state-of-
the-art across three corpora.

• Our code is made publicly available at
https://bitbucket.org/soegaard/
gaze-mtl16.

2 Gaze during reading

Readers fixate longer at rare words, words that are
semantically ambiguous, and words that are mor-

ar
X

iv
:1

60
4.

03
35

7v
1 

 [c
s.C

L]
  1

2 
A

pr
 2

01
6

Sentence Compression

BI

BI

BI

xthe

pred

B-NP

pred

DET

BI

BI

BI

xbrown

pred

I-NP

pred

ADJ

BI

BI

BI

xfox

pred

I-NP

pred

NN

BI

BI

BI

xjumped

pred

B-VP

pred

VB

BI

BI

BI

xover

pred

B-PP

pred

INeye tracking 
+

CCG tags

sentence 
compression 

decisions

Improving sentence compression by learning to predict gaze

Sigrid Klerke

University of Copenhagen
skl@hum.ku.dk

Yoav Goldberg

Bar-Ilan University
yoav.goldberg@gmail.com

Anders Søgaard

University of Copenhagen
soegaard@hum.ku.dk

Abstract

We show how eye-tracking corpora can be
used to improve sentence compression mod-
els, presenting a novel multi-task learning al-
gorithm based on multi-layer LSTMs. We ob-
tain performance competitive with or better
than state-of-the-art approaches.

1 Introduction

Sentence compression is a basic operation in text
simplification which has the potential to improve
statistical machine translation and automatic sum-
marization (Berg-Kirkpatrick et al., 2011; Klerke et
al., 2015), as well as helping poor readers in need of
assistive technologies (Canning et al., 2000). This
work suggests using eye-tracking recordings for im-
proving sentence compression for text simplification
systems and is motivated by two observations: (i)
Sentence compression is the task of automatically

making sentences easier to process by shortening

them. (ii) Eye-tracking measures such as first-pass
reading time and time spent on regressions, i.e., dur-
ing second and later passes over the text, are known

to correlate with perceived text difficulty (Rayner et
al., 2012).

These two observations recently lead Klerke et
al. (2015) to suggest using eye-tracking measures as
metrics in text simplification. We go beyond this by
suggesting that eye-tracking recordings can be used
to induce better models for sentence compression
for text simplification. Specifically, we show how
to use existing eye-tracking recordings to improve
the induction of Long Short-Term Memory models
(LSTMs) for sentence compression.

Our proposed model does not require that the gaze
data and the compression data come from the same
source. Indeed, in this work we use gaze data from
readers of the Dundee Corpus to improve sentence
compression results on several datasets. While not
explored here, an intriguing potential of this work
is in deriving sentence simplification models that
are personalized for individual users, based on their
reading behavior.

Several approaches to sentence compression have
been proposed, from noisy channel models (Knight
and Marcu, 2002) over conditional random fields
(Elming et al., 2013) to tree-to-tree machine trans-
lation models (Woodsend and Lapata, 2011). More
recently, Filippova et al. (2015) successfully used
LSTMs for sentence compression on a large scale
parallel dataset. We do not review the literature here,
and only compare to Filippova et al. (2015).

Our contributions

• We present a novel multi-task learning ap-
proach to sentence compression using labelled
data for sentence compression and a disjoint
eye-tracking corpus.

• Our method is fully competitive with state-of-
the-art across three corpora.

• Our code is made publicly available at
https://bitbucket.org/soegaard/
gaze-mtl16.

2 Gaze during reading

Readers fixate longer at rare words, words that are
semantically ambiguous, and words that are mor-

ar
X

iv
:1

60
4.

03
35

7v
1 

 [c
s.C

L]
  1

2 
A

pr
 2

01
6



Improving sentence compression by learning to predict gaze

Sigrid Klerke

University of Copenhagen
skl@hum.ku.dk

Yoav Goldberg

Bar-Ilan University
yoav.goldberg@gmail.com

Anders Søgaard

University of Copenhagen
soegaard@hum.ku.dk

Abstract

We show how eye-tracking corpora can be
used to improve sentence compression mod-
els, presenting a novel multi-task learning al-
gorithm based on multi-layer LSTMs. We ob-
tain performance competitive with or better
than state-of-the-art approaches.

1 Introduction

Sentence compression is a basic operation in text
simplification which has the potential to improve
statistical machine translation and automatic sum-
marization (Berg-Kirkpatrick et al., 2011; Klerke et
al., 2015), as well as helping poor readers in need of
assistive technologies (Canning et al., 2000). This
work suggests using eye-tracking recordings for im-
proving sentence compression for text simplification
systems and is motivated by two observations: (i)
Sentence compression is the task of automatically

making sentences easier to process by shortening

them. (ii) Eye-tracking measures such as first-pass
reading time and time spent on regressions, i.e., dur-
ing second and later passes over the text, are known

to correlate with perceived text difficulty (Rayner et
al., 2012).

These two observations recently lead Klerke et
al. (2015) to suggest using eye-tracking measures as
metrics in text simplification. We go beyond this by
suggesting that eye-tracking recordings can be used
to induce better models for sentence compression
for text simplification. Specifically, we show how
to use existing eye-tracking recordings to improve
the induction of Long Short-Term Memory models
(LSTMs) for sentence compression.

Our proposed model does not require that the gaze
data and the compression data come from the same
source. Indeed, in this work we use gaze data from
readers of the Dundee Corpus to improve sentence
compression results on several datasets. While not
explored here, an intriguing potential of this work
is in deriving sentence simplification models that
are personalized for individual users, based on their
reading behavior.

Several approaches to sentence compression have
been proposed, from noisy channel models (Knight
and Marcu, 2002) over conditional random fields
(Elming et al., 2013) to tree-to-tree machine trans-
lation models (Woodsend and Lapata, 2011). More
recently, Filippova et al. (2015) successfully used
LSTMs for sentence compression on a large scale
parallel dataset. We do not review the literature here,
and only compare to Filippova et al. (2015).

Our contributions

• We present a novel multi-task learning ap-
proach to sentence compression using labelled
data for sentence compression and a disjoint
eye-tracking corpus.

• Our method is fully competitive with state-of-
the-art across three corpora.

• Our code is made publicly available at
https://bitbucket.org/soegaard/
gaze-mtl16.

2 Gaze during reading

Readers fixate longer at rare words, words that are
semantically ambiguous, and words that are mor-

ar
X

iv
:1

60
4.

03
35

7v
1 

 [c
s.C

L]
  1

2 
A

pr
 2

01
6

Sentence Compression

BI

BI

BI

xthe

pred

B-NP

pred

DET

BI

BI

BI

xbrown

pred

I-NP

pred

ADJ

BI

BI

BI

xfox

pred

I-NP

pred

NN

BI

BI

BI

xjumped

pred

B-VP

pred

VB

BI

BI

BI

xover

pred

B-PP

pred

INeye tracking 
+

CCG tags

sentence 
compression 

decisions

Improving sentence compression by learning to predict gaze

Sigrid Klerke

University of Copenhagen
skl@hum.ku.dk

Yoav Goldberg

Bar-Ilan University
yoav.goldberg@gmail.com

Anders Søgaard

University of Copenhagen
soegaard@hum.ku.dk

Abstract

We show how eye-tracking corpora can be
used to improve sentence compression mod-
els, presenting a novel multi-task learning al-
gorithm based on multi-layer LSTMs. We ob-
tain performance competitive with or better
than state-of-the-art approaches.

1 Introduction

Sentence compression is a basic operation in text
simplification which has the potential to improve
statistical machine translation and automatic sum-
marization (Berg-Kirkpatrick et al., 2011; Klerke et
al., 2015), as well as helping poor readers in need of
assistive technologies (Canning et al., 2000). This
work suggests using eye-tracking recordings for im-
proving sentence compression for text simplification
systems and is motivated by two observations: (i)
Sentence compression is the task of automatically

making sentences easier to process by shortening

them. (ii) Eye-tracking measures such as first-pass
reading time and time spent on regressions, i.e., dur-
ing second and later passes over the text, are known

to correlate with perceived text difficulty (Rayner et
al., 2012).

These two observations recently lead Klerke et
al. (2015) to suggest using eye-tracking measures as
metrics in text simplification. We go beyond this by
suggesting that eye-tracking recordings can be used
to induce better models for sentence compression
for text simplification. Specifically, we show how
to use existing eye-tracking recordings to improve
the induction of Long Short-Term Memory models
(LSTMs) for sentence compression.

Our proposed model does not require that the gaze
data and the compression data come from the same
source. Indeed, in this work we use gaze data from
readers of the Dundee Corpus to improve sentence
compression results on several datasets. While not
explored here, an intriguing potential of this work
is in deriving sentence simplification models that
are personalized for individual users, based on their
reading behavior.

Several approaches to sentence compression have
been proposed, from noisy channel models (Knight
and Marcu, 2002) over conditional random fields
(Elming et al., 2013) to tree-to-tree machine trans-
lation models (Woodsend and Lapata, 2011). More
recently, Filippova et al. (2015) successfully used
LSTMs for sentence compression on a large scale
parallel dataset. We do not review the literature here,
and only compare to Filippova et al. (2015).

Our contributions

• We present a novel multi-task learning ap-
proach to sentence compression using labelled
data for sentence compression and a disjoint
eye-tracking corpus.

• Our method is fully competitive with state-of-
the-art across three corpora.

• Our code is made publicly available at
https://bitbucket.org/soegaard/
gaze-mtl16.

2 Gaze during reading

Readers fixate longer at rare words, words that are
semantically ambiguous, and words that are mor-

ar
X

iv
:1

60
4.

03
35

7v
1 

 [c
s.C

L]
  1

2 
A

pr
 2

01
6



Improving sentence compression by learning to predict gaze

Sigrid Klerke

University of Copenhagen
skl@hum.ku.dk

Yoav Goldberg

Bar-Ilan University
yoav.goldberg@gmail.com

Anders Søgaard

University of Copenhagen
soegaard@hum.ku.dk

Abstract

We show how eye-tracking corpora can be
used to improve sentence compression mod-
els, presenting a novel multi-task learning al-
gorithm based on multi-layer LSTMs. We ob-
tain performance competitive with or better
than state-of-the-art approaches.

1 Introduction

Sentence compression is a basic operation in text
simplification which has the potential to improve
statistical machine translation and automatic sum-
marization (Berg-Kirkpatrick et al., 2011; Klerke et
al., 2015), as well as helping poor readers in need of
assistive technologies (Canning et al., 2000). This
work suggests using eye-tracking recordings for im-
proving sentence compression for text simplification
systems and is motivated by two observations: (i)
Sentence compression is the task of automatically

making sentences easier to process by shortening

them. (ii) Eye-tracking measures such as first-pass
reading time and time spent on regressions, i.e., dur-
ing second and later passes over the text, are known

to correlate with perceived text difficulty (Rayner et
al., 2012).

These two observations recently lead Klerke et
al. (2015) to suggest using eye-tracking measures as
metrics in text simplification. We go beyond this by
suggesting that eye-tracking recordings can be used
to induce better models for sentence compression
for text simplification. Specifically, we show how
to use existing eye-tracking recordings to improve
the induction of Long Short-Term Memory models
(LSTMs) for sentence compression.

Our proposed model does not require that the gaze
data and the compression data come from the same
source. Indeed, in this work we use gaze data from
readers of the Dundee Corpus to improve sentence
compression results on several datasets. While not
explored here, an intriguing potential of this work
is in deriving sentence simplification models that
are personalized for individual users, based on their
reading behavior.

Several approaches to sentence compression have
been proposed, from noisy channel models (Knight
and Marcu, 2002) over conditional random fields
(Elming et al., 2013) to tree-to-tree machine trans-
lation models (Woodsend and Lapata, 2011). More
recently, Filippova et al. (2015) successfully used
LSTMs for sentence compression on a large scale
parallel dataset. We do not review the literature here,
and only compare to Filippova et al. (2015).

Our contributions

• We present a novel multi-task learning ap-
proach to sentence compression using labelled
data for sentence compression and a disjoint
eye-tracking corpus.

• Our method is fully competitive with state-of-
the-art across three corpora.

• Our code is made publicly available at
https://bitbucket.org/soegaard/
gaze-mtl16.

2 Gaze during reading

Readers fixate longer at rare words, words that are
semantically ambiguous, and words that are mor-
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where g is a non-linear activation function such as ReLU or tanh, W and U are input-to-hidden and
hidden-to-output transformation matrices, and b1 and b2 are optional bias terms. We use subscripts
(MLPf1, MLPf2) to denote MLPs with different parameters.

Recurrent Neural Networks (RNNs) (Elman, 1990) allow the representation of arbitrary sized se-
quences, without limiting the length of the history. RNN models have been proven to effectively model
sequence-related phenomena such as line lengths, brackets and quotes (Karpathy et al., 2015).

In our implementation we use the long short-term memory network (LSTM), a subtype of the RNN
(Hochreiter and Schmidhuber, 1997). LSTM(w1:i) is the output vector resulting from inputing the items
w1, ..., wi into the LSTM in order.

3 Monolingual Preposition Sense Classification

We start by describing an MLP-based model for classifying prepositions to their senses. For an English
sentence s = w1, ..., wn and a preposition position i,2 we classify to the sense y as:

y = argmax
j

MLPsense(�(s, i))[j]

where �(s, i) is a feature vector composed of 19 features. The features are based on the features of
Tratz and Hovy (2009), and are similar in spirit to those used in previous attempts at preposition sense
disambiguation. We deliberately do not include WordNet based features, as we want to focus on features
that do not require extensive human-curated resources. This makes our model applicable for use in other
languages with minimal change. We use the following features: (1) The embedding of the preposition.
(2) The embeddings of the lemmas of the two words before and after the preposition, of the head of the
preposition in the dependency tree, and of the first modifier of the preposition. (3) The embeddings of
the POS tags of these words, of the preposition, and of the head’s head. (4) The embeddings of the labels
of the edges to the head of the preposition, to the head’s head and to the first modifier of the preposition.
(5) A boolean that indicates whether one of the two words that follow the preposition is capitalized. The
English sentences were parsed using the spaCy parser.3

The network (including the embedding vectors) is trained using cross entropy loss. This model per-
forms relatively well, achieving an accuracy of 73.34 on the Web-reviews corpus, way above the most-
frequent-sense baseline of 62.37. On the SemEval corpus, it achieves an accuracy of 74.8, outperforming
all participants in the original shared task (Section 5). However, these results are limited by the small
size of both training sets. In what follows, we will improve the model using unannotated data.

4 Semi-Supervised Learning Using Multilingual Data

Our goal is to derive a representation from unannotated data that is predictive of preposition-senses.
We suggest using multilingual data, following the intuition that preposition ambiguity usually differs
between languages (Dagan et al., 1991). For example, consider the following two sentences, taken from
the Europarl parallel corpus (Koehn, 2005): “What action will it take to defuse the crisis and tension
in the region?”, and “These are only available in English, which is totally unacceptable”. In the first
sentence, the preposition “in” is translated into the French preposition “dans”, whereas in the second
one, it is translated into the French preposition “en”. Thus, a representation that is predictive of the
preposition’s translation is likely to be predictive also of its sense.

Learning a representation from a multilingual corpus We train a neural network model to encode
the context of an English preposition as a vector, and predict the foreign preposition based on the context
vector. The resulting context encodings will then be predictive of the foreign prepositions, and hopefully
also of the preposition senses.

We derive a training set of roughly 7.4M instances from the Europarl corpus (Koehn, 2005). Europoarl
contains sentence-aligned data in 21 languages. We started by using several ones, and ended up with a

2We also support multi-word prepositions in this work. The extension is trivial.
3https://spacy.io/

Stage 1: Simple MLP with features
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In our implementation we use the long short-term memory network (LSTM), a subtype of the RNN
(Hochreiter and Schmidhuber, 1997). LSTM(w1:i) is the output vector resulting from inputing the items
w1, ..., wi into the LSTM in order.

3 Monolingual Preposition Sense Classification

We start by describing an MLP-based model for classifying prepositions to their senses. For an English
sentence s = w1, ..., wn and a preposition position i,2 we classify to the sense y as:

y = argmax
j

MLPsense(�(s, i))[j]

where �(s, i) is a feature vector composed of 19 features. The features are based on the features of
Tratz and Hovy (2009), and are similar in spirit to those used in previous attempts at preposition sense
disambiguation. We deliberately do not include WordNet based features, as we want to focus on features
that do not require extensive human-curated resources. This makes our model applicable for use in other
languages with minimal change. We use the following features: (1) The embedding of the preposition.
(2) The embeddings of the lemmas of the two words before and after the preposition, of the head of the
preposition in the dependency tree, and of the first modifier of the preposition. (3) The embeddings of
the POS tags of these words, of the preposition, and of the head’s head. (4) The embeddings of the labels
of the edges to the head of the preposition, to the head’s head and to the first modifier of the preposition.
(5) A boolean that indicates whether one of the two words that follow the preposition is capitalized. The
English sentences were parsed using the spaCy parser.3

The network (including the embedding vectors) is trained using cross entropy loss. This model per-
forms relatively well, achieving an accuracy of 73.34 on the Web-reviews corpus, way above the most-
frequent-sense baseline of 62.37. On the SemEval corpus, it achieves an accuracy of 74.8, outperforming
all participants in the original shared task (Section 5). However, these results are limited by the small
size of both training sets. In what follows, we will improve the model using unannotated data.

4 Semi-Supervised Learning Using Multilingual Data

Our goal is to derive a representation from unannotated data that is predictive of preposition-senses.
We suggest using multilingual data, following the intuition that preposition ambiguity usually differs
between languages (Dagan et al., 1991). For example, consider the following two sentences, taken from
the Europarl parallel corpus (Koehn, 2005): “What action will it take to defuse the crisis and tension
in the region?”, and “These are only available in English, which is totally unacceptable”. In the first
sentence, the preposition “in” is translated into the French preposition “dans”, whereas in the second
one, it is translated into the French preposition “en”. Thus, a representation that is predictive of the
preposition’s translation is likely to be predictive also of its sense.

Learning a representation from a multilingual corpus We train a neural network model to encode
the context of an English preposition as a vector, and predict the foreign preposition based on the context
vector. The resulting context encodings will then be predictive of the foreign prepositions, and hopefully
also of the preposition senses.

We derive a training set of roughly 7.4M instances from the Europarl corpus (Koehn, 2005). Europoarl
contains sentence-aligned data in 21 languages. We started by using several ones, and ended up with a

2We also support multi-word prepositions in this work. The extension is trivial.
3https://spacy.io/
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LSTMs are very capable learners

Use them to build stuff

Goal: derive a representation from unannotated data that is predictive of 
preposition-sense.

Ambiguity differs between languages:
“What action will it take to defuse the crisis and tension in the region?”

French: dans
“These are only available in English, which is totally unacceptable”

French: en

A representation that is predictive of the preposition's translation is likely to be
predictive also of its sense.

Extracting training data
Data in 12 languages from Europarl corpus: Bulgarian, Czech, Danish, German, 
Greek, Spanish, French, Hungarian, Italian, Polish, Romanian and Swedish.

Training example: (The vote will take place tomorrow at 12 p.m. , at, à)

Encode the context as a concatenation of two LSTMs:

Context vector is fed into a language specific MLP for predicting the
target preposition:

Train the context-encoder with all languages together.
The context-encoder and the word embeddings are shared across languages.

Improving Preposition Sense Disambiguation
with Representations Learned from Multilingual Data

Hila Gonen and Yoav Goldberg

Prepositions are very common, very ambiguous and tend to carry different 
meanings in different contexts. 

Preposition-sense disambiguation is a task of assigning a category to a 
preposition in context: 

“You should book a room for 2 nights”         Duration
“For some reason, he is not here yet”         Explanation 
“I went there to get a present for my mother”        Beneficiary

- Can we improve performance by using unannotated data?
- Are translations of prepositions to other languages predictive for this task? 
- How can we use multilingual corpora for learning a representation of the 

context that can be used for sense-disambiguation?

ݕ = argmax௝ܮܯ ௦ܲ௘௡௦௘(߶ ,ݏ ݅ )[݆]

hilagonen87@gmail.com yoav.goldberg@gmail.com

The vote will take place tomorrow at 12 p.m. 

Le vote aura lieu demain à 12 heures.

1.Motivation

4. Multilingual data

5. Learning a context representation

Concatenate the representation obtained from the context encoder to the
features vector.

Classify prepositions to senses using an MLP network:

ݔݐܿ ,ݏ ݅ - the output vector of the context-encoder
߶ ,ݏ ݅ - the features vector

The error back-propagates also to the context-encoder and to the word 
embeddings.

6. Using the representation for sense classification

̂݌ = argmax௝ܮܯ ௅ܲ(ܿݔݐ ,ݏ ݅ )[݆]

,s)ݔݐܿ i) = (ଵ:௜ିଵݓ)௙ܯܶܵܮ ∘ (௡:௜ାଵݓ)௕ܯܶܵܮ

ݕ = argmax௝ܮܯ ௦ܲ௘௡௦௘(ܿݔݐ ,ݏ ݅ ∘ ߶ ,ݏ ݅ )[݆]

The multilingual representation improves accuracy by 1.53 points: 

External word embeddings do not improve results:

7. Results

model accuracy

base 74.75 (73.76-75.88)

+context 74.73 (73.88-75.65)

+context(multilingual) 76.28 (75.65-77.18)

model deps bow none

+context 74.87 (73.65-75.76) 73.91 (72.82-74.47) 74.73 (73.88-75.65)

+context(multilingual) 76.38 (74.82-77.06) 74.71 (73.06-75.41) 76.28 (75.65-77.18)

2. Full Model  

Classify prepositions to senses using an MLP:

,ݏ)߶ ݅) – concatenation of 18 contextual features and the preposition’s embedding

The features and the model:

3. MLP-based model for preposition classification

Preposition Sense Disambiguation

Goal: derive a representation from unannotated data that is predictive of 
preposition-sense.

Ambiguity differs between languages (Dagan et al, 1991):
g

French: dans
“What action will it take to defuse the crisis and tension in the region?”          PLACE

French: en
“These are only available in English, which is totally unacceptable”              MANNER

g
A representation that is predictive of the preposition's translation is likely to be
predictive also of its sense.

Extracting training data
Data in 12 languages from Europarl corpus: Bulgarian, Czech, Danish, German, 
Greek, Spanish, French, Hungarian, Italian, Polish, Romanian and Swedish.

Training example: (FR, The vote will take place tomorrow at 12 p.m. , at, à)

Encode the context as a concatenation of two LSTMs:

Context vector is fed into a language specific MLP for predicting the
target preposition:

Train the context-encoder with all languages together.
The context-encoder and the word embeddings are shared across languages.

Semi Supervised Preposition-Sense Disambiguation
using Multilingual Data

Hila Gonen and Yoav Goldberg

Prepositions are very common, very ambiguous and tend to carry different 
meanings in different contexts. Preposition-sense disambiguation is a task of 
assigning a category to a preposition in context: 

“You should book a room for 2 nights”         Duration
“For some reason, he is not here yet”         Explanation 
“I went there to get a present for my mother”        Beneficiary

- Small dataset – 4250 examples (Schneider et al, 2016)

- Can we improve performance by using unannotated data?
- Are translations of prepositions to other languages predictive for this task? 
- How can we use multilingual corpora for learning a representation of the 

context that can be used for sense-disambiguation?

ݕ = argmax௝ܮܯ ௦ܲ௘௡௦௘(߶ ,ݏ ݅ )[݆]
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The vote will take place tomorrow at 12 p.m. 

Le vote aura lieu demain à 12 heures.

1.Motivation

4. Multilingual data

5. Learning a context representation

Concatenate the representation obtained from the context encoder to the
feature vector.

Classify prepositions to senses using an MLP network:

ݔݐܿ ,ݏ ݅ - the output vector of the context-encoder   ߶ ,ݏ ݅ - the feature vector

The error back-propagates also to the context-encoder and to the word 
embeddings.

6. Using the representation for sense classification

̂݌ = argmax௝ܮܯ ௅ܲ(ܿݔݐ ,ݏ ݅ )[݆]

,s)ݔݐܿ i) = (ଵ:௜ିଵݓ)௙ܯܶܵܮ ∘ (௡:௜ାଵݓ)௕ܯܶܵܮ

ݕ = argmax௝ܮܯ ௦ܲ௘௡௦௘(ܿݔݐ ,ݏ ݅ ∘ ߶ ,ݏ ݅ )[݆]

The multilingual representation improves accuracy by 2.86 points: 

Adding external word embeddings + ensemble improves the results:

7. Results

Model Accuracy

base 73.34 (71.63-73.97)

+context 73.76 (71.86-75.38)

+context(multilingual) 76.20 (74.91-77.26)

Model Accuracy (Web-reviews corpus) Accuracy (Semeval 2007 corpus)

base 77.61 79.5

+context 78.90 81.1

+context(multilingual) 80.54 81.2

+both-contexts 79.84 81.7

2. Full Model  

Classify prepositions to senses using an MLP:

,ݏ)߶ ݅) – concatenation of 18 contextual features and the preposition’s embedding

The features and the model:

3. MLP-based baseline for preposition classification

6M training examples 3397 training examples

The features are similar to those 
used in previous works. Features 
are extracted from:
• 2-words-window
• Head and modifier of the 

preposition

௙ܯܶܵܮ ௕ܯܶܵܮ

௙ܯܶܵܮ ௕ܯܶܵܮ
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Stage 2: Adding Context

subset of 12 languages4 that together constitute a good representation of the different language families
available in the corpus. Though adding the other languages is possible, we did not experiment with them.
To extract the training set, we first word-align5 the sentence-aligned data, and then create a dataset of
English sentences where each preposition is matched to its translation in a foreign language. Since the
alignment of prepositions is noisier than that of content words, we use a heuristic to improve precision:
given a candidate foreign-preposition, we verify that the two words surrounding it are aligned to the two
words surrounding the English preposition. Additionally, we filter out, for each English preposition, all
foreign prepositions that were aligned to it in less than 5% of the cases.

We then train the context representations according to the following model. For an English sentence
s = w1, ..., wn, a preposition position i and a target preposition p in language L, we encode the context
as a concatenation of two LSTMs, one reading the sentence from the beginning up to but not including
the preposition, and the other in reverse:

ctx(s, i) = LSTMf (w1:i�1) � LSTMb(wn:i+1)

This is similar to a BiLSTM encoder, with the difference that the encoding does not include the prepo-
sition wi but only its context. By ignoring the preposition, we force the model to focus on the context,
and help it share information between different prepositions. Indeed, including the preposition in the en-
coder resulted in better performance in foreign preposition classification, but the resulting representation
was not as effective when used for the sense disambiguation task.

The context vector is then fed into a language specific MLP for predicting the target preposition:

p̂ = argmax
j

MLPL(ctx(s, i))[j]

The context-encoder and the word embeddings are shared across languages, but the MLP classifiers
that follow are language specific. By using multiple languages, we learn more robust representations.

The English word embeddings can be initialized randomly, or using pre-trained embedding vectors,
as we explore in Section 5.1. The network is trained using cross entropy loss, and the error is back-
propagated through the context-encoder and the word embeddings.

Using the representation for sense classification Once the encoder is trained over the multilingual
data, we incorporate it in the supervised sense-disambiguation model by concatenating the representation
obtained from the context encoder to the feature vector. Concretely, the supervised model now becomes:

y = argmax
j

MLPsense(ctx(s, i) � �(s, i))[j]

where ctx(s, i) is the output vector of the context-encoder and �(s, i) is the feature vector as before.
The network is trained using cross entropy loss, and the error back-propagates also to the context-

encoder and to the word embeddings to maximize the model’s ability to adapt to the preposition-sense
disambiguation task. The complete model is depicted in Figure 1.

5 Empirical results

Implementation details The models were implemented using PyCNN.6 All models were trained using
SGD, shuffling the examples before each of the 5 epochs. When training a sense prediction model, we
use early stopping and choose the best performing model on the development set. The sense-prediction
MLP uses ReLU activation, and foreign preposition MLPs use tanh, with no bias terms. Unless noted
otherwise, we use randomly initialized embedding vectors. For each experiment, we chose the param-
eters that maximized the accuracy on the dev set.7 The accuracies we report are the average accuracies
over 5 different seeds.

4Bulgarian, Czech, Danish, German, Greek, Spanish, French, Hungarian, Italian, Polish, Romanian and Swedish.
5Word-alignment is done using the cdec aligner (Dyer et al., 2010).
6https://github.com/clab/cnn
7In most of the experiments, the best results are achieved when the hidden-layer of the sense-prediction MLPs is of the

size 500, and the preposition embedding is of size 200. In some cases, the best results are achieved with different dimensions.

(almost biRNN, but not exactly. What's the difference?)

ctx(s, i) = RNNf (x1:i�1) �RNNb(xn:i+1)
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+context 74.73 (73.88-75.65)

+context(multilingual) 76.28 (75.65-77.18)

model deps bow none

+context 74.87 (73.65-75.76) 73.91 (72.82-74.47) 74.73 (73.88-75.65)

+context(multilingual) 76.38 (74.82-77.06) 74.71 (73.06-75.41) 76.28 (75.65-77.18)

2. Full Model  

Classify prepositions to senses using an MLP:

,ݏ)߶ ݅) – concatenation of 18 contextual features and the preposition’s embedding

The features and the model:

3. MLP-based model for preposition classification

Preposition Sense Disambiguation

Goal: derive a representation from unannotated data that is predictive of 
preposition-sense.

Ambiguity differs between languages (Dagan et al, 1991):
g

French: dans
“What action will it take to defuse the crisis and tension in the region?”          PLACE

French: en
“These are only available in English, which is totally unacceptable”              MANNER

g
A representation that is predictive of the preposition's translation is likely to be
predictive also of its sense.

Extracting training data
Data in 12 languages from Europarl corpus: Bulgarian, Czech, Danish, German, 
Greek, Spanish, French, Hungarian, Italian, Polish, Romanian and Swedish.

Training example: (FR, The vote will take place tomorrow at 12 p.m. , at, à)

Encode the context as a concatenation of two LSTMs:

Context vector is fed into a language specific MLP for predicting the
target preposition:

Train the context-encoder with all languages together.
The context-encoder and the word embeddings are shared across languages.

Semi Supervised Preposition-Sense Disambiguation
using Multilingual Data

Hila Gonen and Yoav Goldberg

Prepositions are very common, very ambiguous and tend to carry different 
meanings in different contexts. Preposition-sense disambiguation is a task of 
assigning a category to a preposition in context: 

“You should book a room for 2 nights”         Duration
“For some reason, he is not here yet”         Explanation 
“I went there to get a present for my mother”        Beneficiary

- Small dataset – 4250 examples (Schneider et al, 2016)

- Can we improve performance by using unannotated data?
- Are translations of prepositions to other languages predictive for this task? 
- How can we use multilingual corpora for learning a representation of the 

context that can be used for sense-disambiguation?

ݕ = argmax௝ܮܯ ௦ܲ௘௡௦௘(߶ ,ݏ ݅ )[݆]

hilagnn@gmail.com yoav.goldberg@gmail.com

The vote will take place tomorrow at 12 p.m. 

Le vote aura lieu demain à 12 heures.

1.Motivation

4. Multilingual data

5. Learning a context representation

Concatenate the representation obtained from the context encoder to the
feature vector.

Classify prepositions to senses using an MLP network:

ݔݐܿ ,ݏ ݅ - the output vector of the context-encoder   ߶ ,ݏ ݅ - the feature vector

The error back-propagates also to the context-encoder and to the word 
embeddings.

6. Using the representation for sense classification

̂݌ = argmax௝ܮܯ ௅ܲ(ܿݔݐ ,ݏ ݅ )[݆]

,s)ݔݐܿ i) = (ଵ:௜ିଵݓ)௙ܯܶܵܮ ∘ (௡:௜ାଵݓ)௕ܯܶܵܮ

ݕ = argmax௝ܮܯ ௦ܲ௘௡௦௘(ܿݔݐ ,ݏ ݅ ∘ ߶ ,ݏ ݅ )[݆]

The multilingual representation improves accuracy by 2.86 points: 

Adding external word embeddings + ensemble improves the results:

7. Results

Model Accuracy

base 73.34 (71.63-73.97)

+context 73.76 (71.86-75.38)

+context(multilingual) 76.20 (74.91-77.26)

Model Accuracy (Web-reviews corpus) Accuracy (Semeval 2007 corpus)

base 77.61 79.5

+context 78.90 81.1

+context(multilingual) 80.54 81.2

+both-contexts 79.84 81.7

2. Full Model  

Classify prepositions to senses using an MLP:

,ݏ)߶ ݅) – concatenation of 18 contextual features and the preposition’s embedding

The features and the model:

3. MLP-based baseline for preposition classification

6M training examples 3397 training examples

The features are similar to those 
used in previous works. Features 
are extracted from:
• 2-words-window
• Head and modifier of the 

preposition

௙ܯܶܵܮ ௕ܯܶܵܮ

௙ܯܶܵܮ ௕ܯܶܵܮ



two nightsbooked a

French prepositions German prepositions Spanish prepositions Prepositions supersenses

�(he booked a ... ,5)

context representation

roomhe for

MLPFR MLPGE MLPSP

dans, en, sur, ..., par mit, vor, zu, ..., gegen sobre, con, para, ..., a Temporal, Place, Manner, ..., Explanation

MLPsense

Figure 1: The suggested model for incorporating multilingual data in classifying prepositions to senses. First, a context-
encoder (at the bottom, the green and red squares are LSTM cells) is trained on the Europarl corpus, with a different MLP for
each language (left dashed frame). Then, the representation obtained from the context-encoder is added to the feature vector
when classifying a preposition to senses (right dashed frame).

5.1 Evaluation on the Web-reviews corpus

Using multilingual data Our main motivation in this work was to train a representation which is useful
for the preposition-sense disambiguation task. Thus, we compare the performance of our model using
the representation obtained from the context-encoder (multilingual model) with the model that does not
use this representation (base model). We use the train/test split provided with the corpus. We further
split the train set into train and dev sets, by assigning every fourth example of each sense to the dev set,
yielding 2552/845/853 instances of train/dev/test.

The results are presented in Table 1. We see an improvement of 2.86 points when using the pre-trained
context representations, improving the average result from 73.34 to 76.20.

To verify that the improvement stems from pre-training the context-encoder on multilingual data and
not from adding the context-encoder as is, we also evaluated the performance of a model identical to
the multilingual model, but with no pre-training on the multilingual data (context model, middle row of
Table 1). The context model achieved a very similar result to that of the base model – 73.76, indicating
that adding the context-encoder to the base model is not the source of the improvement.

Model Accuracy
base 73.34 (71.63-73.97)
+context 73.76 (71.86-75.38)
+context(multilingual) 76.20 (74.91-77.26)

Table 1: The average accuracies on the test set of the Web-reviews corpus on 5 different seeds. Numbers in brackets indicate
the min and max accuracy across seeds.

Using monolingual or bilingual data only In order to verify the contribution of incorporating infor-
mation from 12 languages, we also experiment with monolingual and bilingual models. For the mono-
lingual model we train a model similar to our multilingual one, but when trying to predict the English
preposition itself, rather than the foreign one, ignoring the multilingual signal altogether. For the bilin-
gual models we train 12 separate models similar to our multilingual model, where each one is trained
only on the training examples of a single language.

As shown in Table 2, both the monolingual and the bilingual models improve over the base model
(with the exception of Czech), but no improvement is as significant as that of the multilingual model.
In addition, we see that the strength of the model does not depend solely on the number of training
examples.

Adding external word embeddings Another way of incorporating semi-supervised data into a model
is using pre-trained word embeddings. We evaluate our model when using external word embeddings

These two parameters were tuned on the dev set. The embeddings of the features are of dimension 4, with the exception of the
lemmas, which are of dimension 50. The dimension of the input to the LSTMs (word embeddings) is 128. Both LSTMs have a
single layer with 100 nodes, thus, the representation of the context obtained from the context-encoder is of dimension 200. The
hidden-layer of the foreign-preposition MLP is of size 32.

LSTMs are very capable learners
I met him for lunch
He paid for me
We sat there for hours

Purpose
Beneficiary
Duration



two nightsbooked a

French prepositions German prepositions Spanish prepositions Prepositions supersenses

�(he booked a ... ,5)
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MLPFR MLPGE MLPSP
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Figure 1: The suggested model for incorporating multilingual data in classifying prepositions to senses. First, a context-
encoder (at the bottom, the green and red squares are LSTM cells) is trained on the Europarl corpus, with a different MLP for
each language (left dashed frame). Then, the representation obtained from the context-encoder is added to the feature vector
when classifying a preposition to senses (right dashed frame).

5.1 Evaluation on the Web-reviews corpus

Using multilingual data Our main motivation in this work was to train a representation which is useful
for the preposition-sense disambiguation task. Thus, we compare the performance of our model using
the representation obtained from the context-encoder (multilingual model) with the model that does not
use this representation (base model). We use the train/test split provided with the corpus. We further
split the train set into train and dev sets, by assigning every fourth example of each sense to the dev set,
yielding 2552/845/853 instances of train/dev/test.

The results are presented in Table 1. We see an improvement of 2.86 points when using the pre-trained
context representations, improving the average result from 73.34 to 76.20.

To verify that the improvement stems from pre-training the context-encoder on multilingual data and
not from adding the context-encoder as is, we also evaluated the performance of a model identical to
the multilingual model, but with no pre-training on the multilingual data (context model, middle row of
Table 1). The context model achieved a very similar result to that of the base model – 73.76, indicating
that adding the context-encoder to the base model is not the source of the improvement.

Model Accuracy
base 73.34 (71.63-73.97)
+context 73.76 (71.86-75.38)
+context(multilingual) 76.20 (74.91-77.26)

Table 1: The average accuracies on the test set of the Web-reviews corpus on 5 different seeds. Numbers in brackets indicate
the min and max accuracy across seeds.

Using monolingual or bilingual data only In order to verify the contribution of incorporating infor-
mation from 12 languages, we also experiment with monolingual and bilingual models. For the mono-
lingual model we train a model similar to our multilingual one, but when trying to predict the English
preposition itself, rather than the foreign one, ignoring the multilingual signal altogether. For the bilin-
gual models we train 12 separate models similar to our multilingual model, where each one is trained
only on the training examples of a single language.

As shown in Table 2, both the monolingual and the bilingual models improve over the base model
(with the exception of Czech), but no improvement is as significant as that of the multilingual model.
In addition, we see that the strength of the model does not depend solely on the number of training
examples.

Adding external word embeddings Another way of incorporating semi-supervised data into a model
is using pre-trained word embeddings. We evaluate our model when using external word embeddings

These two parameters were tuned on the dev set. The embeddings of the features are of dimension 4, with the exception of the
lemmas, which are of dimension 50. The dimension of the input to the LSTMs (word embeddings) is 128. Both LSTMs have a
single layer with 100 nodes, thus, the representation of the context obtained from the context-encoder is of dimension 200. The
hidden-layer of the foreign-preposition MLP is of size 32.

Adding Semi-supervised 
training with MTL

(how?)

LSTMs are very capable learners
I met him for lunch
He paid for me
We sat there for hours

Purpose
Beneficiary
Duration
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Figure 1: The suggested model for incorporating multilingual data in classifying prepositions to senses. First, a context-
encoder (at the bottom, the green and red squares are LSTM cells) is trained on the Europarl corpus, with a different MLP for
each language (left dashed frame). Then, the representation obtained from the context-encoder is added to the feature vector
when classifying a preposition to senses (right dashed frame).

5.1 Evaluation on the Web-reviews corpus

Using multilingual data Our main motivation in this work was to train a representation which is useful
for the preposition-sense disambiguation task. Thus, we compare the performance of our model using
the representation obtained from the context-encoder (multilingual model) with the model that does not
use this representation (base model). We use the train/test split provided with the corpus. We further
split the train set into train and dev sets, by assigning every fourth example of each sense to the dev set,
yielding 2552/845/853 instances of train/dev/test.

The results are presented in Table 1. We see an improvement of 2.86 points when using the pre-trained
context representations, improving the average result from 73.34 to 76.20.

To verify that the improvement stems from pre-training the context-encoder on multilingual data and
not from adding the context-encoder as is, we also evaluated the performance of a model identical to
the multilingual model, but with no pre-training on the multilingual data (context model, middle row of
Table 1). The context model achieved a very similar result to that of the base model – 73.76, indicating
that adding the context-encoder to the base model is not the source of the improvement.

Model Accuracy
base 73.34 (71.63-73.97)
+context 73.76 (71.86-75.38)
+context(multilingual) 76.20 (74.91-77.26)

Table 1: The average accuracies on the test set of the Web-reviews corpus on 5 different seeds. Numbers in brackets indicate
the min and max accuracy across seeds.

Using monolingual or bilingual data only In order to verify the contribution of incorporating infor-
mation from 12 languages, we also experiment with monolingual and bilingual models. For the mono-
lingual model we train a model similar to our multilingual one, but when trying to predict the English
preposition itself, rather than the foreign one, ignoring the multilingual signal altogether. For the bilin-
gual models we train 12 separate models similar to our multilingual model, where each one is trained
only on the training examples of a single language.

As shown in Table 2, both the monolingual and the bilingual models improve over the base model
(with the exception of Czech), but no improvement is as significant as that of the multilingual model.
In addition, we see that the strength of the model does not depend solely on the number of training
examples.

Adding external word embeddings Another way of incorporating semi-supervised data into a model
is using pre-trained word embeddings. We evaluate our model when using external word embeddings

These two parameters were tuned on the dev set. The embeddings of the features are of dimension 4, with the exception of the
lemmas, which are of dimension 50. The dimension of the input to the LSTMs (word embeddings) is 128. Both LSTMs have a
single layer with 100 nodes, thus, the representation of the context obtained from the context-encoder is of dimension 200. The
hidden-layer of the foreign-preposition MLP is of size 32.

Adding Semi-supervised 
training with MTL

Using Parallel Corpora 
and translation prediction

LSTMs are very capable learners
I met him for lunch
He paid for me
We sat there for hours

Purpose
Beneficiary
Duration



LSTMs are very capable learners

Use them to build stuff

Goal: derive a representation from unannotated data that is predictive of 
preposition-sense.

Ambiguity differs between languages:
“What action will it take to defuse the crisis and tension in the region?”

French: dans
“These are only available in English, which is totally unacceptable”

French: en

A representation that is predictive of the preposition's translation is likely to be
predictive also of its sense.

Extracting training data
Data in 12 languages from Europarl corpus: Bulgarian, Czech, Danish, German, 
Greek, Spanish, French, Hungarian, Italian, Polish, Romanian and Swedish.

Training example: (The vote will take place tomorrow at 12 p.m. , at, à)

Encode the context as a concatenation of two LSTMs:

Context vector is fed into a language specific MLP for predicting the
target preposition:

Train the context-encoder with all languages together.
The context-encoder and the word embeddings are shared across languages.

Improving Preposition Sense Disambiguation
with Representations Learned from Multilingual Data

Hila Gonen and Yoav Goldberg

Prepositions are very common, very ambiguous and tend to carry different 
meanings in different contexts. 

Preposition-sense disambiguation is a task of assigning a category to a 
preposition in context: 

“You should book a room for 2 nights”         Duration
“For some reason, he is not here yet”         Explanation 
“I went there to get a present for my mother”        Beneficiary

- Can we improve performance by using unannotated data?
- Are translations of prepositions to other languages predictive for this task? 
- How can we use multilingual corpora for learning a representation of the 

context that can be used for sense-disambiguation?

ݕ = argmax௝ܮܯ ௦ܲ௘௡௦௘(߶ ,ݏ ݅ )[݆]

hilagonen87@gmail.com yoav.goldberg@gmail.com

The vote will take place tomorrow at 12 p.m. 

Le vote aura lieu demain à 12 heures.

1.Motivation

4. Multilingual data

5. Learning a context representation

Concatenate the representation obtained from the context encoder to the
features vector.

Classify prepositions to senses using an MLP network:

ݔݐܿ ,ݏ ݅ - the output vector of the context-encoder
߶ ,ݏ ݅ - the features vector

The error back-propagates also to the context-encoder and to the word 
embeddings.

6. Using the representation for sense classification

̂݌ = argmax௝ܮܯ ௅ܲ(ܿݔݐ ,ݏ ݅ )[݆]

,s)ݔݐܿ i) = (ଵ:௜ିଵݓ)௙ܯܶܵܮ ∘ (௡:௜ାଵݓ)௕ܯܶܵܮ

ݕ = argmax௝ܮܯ ௦ܲ௘௡௦௘(ܿݔݐ ,ݏ ݅ ∘ ߶ ,ݏ ݅ )[݆]

The multilingual representation improves accuracy by 1.53 points: 

External word embeddings do not improve results:

7. Results

model accuracy

base 74.75 (73.76-75.88)

+context 74.73 (73.88-75.65)

+context(multilingual) 76.28 (75.65-77.18)

model deps bow none

+context 74.87 (73.65-75.76) 73.91 (72.82-74.47) 74.73 (73.88-75.65)

+context(multilingual) 76.38 (74.82-77.06) 74.71 (73.06-75.41) 76.28 (75.65-77.18)

2. Full Model  

Classify prepositions to senses using an MLP:

,ݏ)߶ ݅) – concatenation of 18 contextual features and the preposition’s embedding

The features and the model:

3. MLP-based model for preposition classification

Goal: derive a representation from unannotated data that is predictive of 
preposition-sense.

Ambiguity differs between languages (Dagan et al, 1991):
g

French: dans
“What action will it take to defuse the crisis and tension in the region?”          PLACE

French: en
“These are only available in English, which is totally unacceptable”              MANNER

g
A representation that is predictive of the preposition's translation is likely to be
predictive also of its sense.

Extracting training data
Data in 12 languages from Europarl corpus: Bulgarian, Czech, Danish, German, 
Greek, Spanish, French, Hungarian, Italian, Polish, Romanian and Swedish.

Training example: (FR, The vote will take place tomorrow at 12 p.m. , at, à)

Encode the context as a concatenation of two LSTMs:

Context vector is fed into a language specific MLP for predicting the
target preposition:

Train the context-encoder with all languages together.
The context-encoder and the word embeddings are shared across languages.

Semi Supervised Preposition-Sense Disambiguation
using Multilingual Data

Hila Gonen and Yoav Goldberg

Prepositions are very common, very ambiguous and tend to carry different 
meanings in different contexts. Preposition-sense disambiguation is a task of 
assigning a category to a preposition in context: 

“You should book a room for 2 nights”         Duration
“For some reason, he is not here yet”         Explanation 
“I went there to get a present for my mother”        Beneficiary

- Small dataset – 4250 examples (Schneider et al, 2016)

- Can we improve performance by using unannotated data?
- Are translations of prepositions to other languages predictive for this task? 
- How can we use multilingual corpora for learning a representation of the 

context that can be used for sense-disambiguation?

ݕ = argmax௝ܮܯ ௦ܲ௘௡௦௘(߶ ,ݏ ݅ )[݆]

hilagnn@gmail.com yoav.goldberg@gmail.com

The vote will take place tomorrow at 12 p.m. 

Le vote aura lieu demain à 12 heures.

1.Motivation

4. Multilingual data

5. Learning a context representation

Concatenate the representation obtained from the context encoder to the
feature vector.

Classify prepositions to senses using an MLP network:

ݔݐܿ ,ݏ ݅ - the output vector of the context-encoder   ߶ ,ݏ ݅ - the feature vector

The error back-propagates also to the context-encoder and to the word 
embeddings.

6. Using the representation for sense classification

̂݌ = argmax௝ܮܯ ௅ܲ(ܿݔݐ ,ݏ ݅ )[݆]

,s)ݔݐܿ i) = (ଵ:௜ିଵݓ)௙ܯܶܵܮ ∘ (௡:௜ାଵݓ)௕ܯܶܵܮ

ݕ = argmax௝ܮܯ ௦ܲ௘௡௦௘(ܿݔݐ ,ݏ ݅ ∘ ߶ ,ݏ ݅ )[݆]

The multilingual representation improves accuracy by 2.86 points: 

Adding external word embeddings + ensemble improves the results:

7. Results

Model Accuracy

base 73.34 (71.63-73.97)

+context 73.76 (71.86-75.38)

+context(multilingual) 76.20 (74.91-77.26)

Model Accuracy (Web-reviews corpus) Accuracy (Semeval 2007 corpus)

base 77.61 79.5

+context 78.90 81.1

+context(multilingual) 80.54 81.2

+both-contexts 79.84 81.7

2. Full Model  

Classify prepositions to senses using an MLP:

,ݏ)߶ ݅) – concatenation of 18 contextual features and the preposition’s embedding

The features and the model:

3. MLP-based baseline for preposition classification

6M training examples 3397 training examples

The features are similar to those 
used in previous works. Features 
are extracted from:
• 2-words-window
• Head and modifier of the 

preposition

௙ܯܶܵܮ ௕ܯܶܵܮ

௙ܯܶܵܮ ௕ܯܶܵܮ



LSTMs are very capable learners
I met him for lunch
He paid for me
We sat there for hours

Purpose
Beneficiary
Duration

two nightsbooked a

French prepositions German prepositions Spanish prepositions Prepositions supersenses

�(he booked a ... ,5)

context representation

roomhe for

MLPFR MLPGE MLPSP

dans, en, sur, ..., par mit, vor, zu, ..., gegen sobre, con, para, ..., a Temporal, Place, Manner, ..., Explanation

MLPsense

Figure 1: The suggested model for incorporating multilingual data in classifying prepositions to senses. First, a context-
encoder (at the bottom, the green and red squares are LSTM cells) is trained on the Europarl corpus, with a different MLP for
each language (left dashed frame). Then, the representation obtained from the context-encoder is added to the feature vector
when classifying a preposition to senses (right dashed frame).

5.1 Evaluation on the Web-reviews corpus

Using multilingual data Our main motivation in this work was to train a representation which is useful
for the preposition-sense disambiguation task. Thus, we compare the performance of our model using
the representation obtained from the context-encoder (multilingual model) with the model that does not
use this representation (base model). We use the train/test split provided with the corpus. We further
split the train set into train and dev sets, by assigning every fourth example of each sense to the dev set,
yielding 2552/845/853 instances of train/dev/test.

The results are presented in Table 1. We see an improvement of 2.86 points when using the pre-trained
context representations, improving the average result from 73.34 to 76.20.

To verify that the improvement stems from pre-training the context-encoder on multilingual data and
not from adding the context-encoder as is, we also evaluated the performance of a model identical to
the multilingual model, but with no pre-training on the multilingual data (context model, middle row of
Table 1). The context model achieved a very similar result to that of the base model – 73.76, indicating
that adding the context-encoder to the base model is not the source of the improvement.

Model Accuracy
base 73.34 (71.63-73.97)
+context 73.76 (71.86-75.38)
+context(multilingual) 76.20 (74.91-77.26)

Table 1: The average accuracies on the test set of the Web-reviews corpus on 5 different seeds. Numbers in brackets indicate
the min and max accuracy across seeds.

Using monolingual or bilingual data only In order to verify the contribution of incorporating infor-
mation from 12 languages, we also experiment with monolingual and bilingual models. For the mono-
lingual model we train a model similar to our multilingual one, but when trying to predict the English
preposition itself, rather than the foreign one, ignoring the multilingual signal altogether. For the bilin-
gual models we train 12 separate models similar to our multilingual model, where each one is trained
only on the training examples of a single language.

As shown in Table 2, both the monolingual and the bilingual models improve over the base model
(with the exception of Czech), but no improvement is as significant as that of the multilingual model.
In addition, we see that the strength of the model does not depend solely on the number of training
examples.

Adding external word embeddings Another way of incorporating semi-supervised data into a model
is using pre-trained word embeddings. We evaluate our model when using external word embeddings

These two parameters were tuned on the dev set. The embeddings of the features are of dimension 4, with the exception of the
lemmas, which are of dimension 50. The dimension of the input to the LSTMs (word embeddings) is 128. Both LSTMs have a
single layer with 100 nodes, thus, the representation of the context obtained from the context-encoder is of dimension 200. The
hidden-layer of the foreign-preposition MLP is of size 32.

(with pre-trained embeddings, ensembles, get to ~80)



MTL - Recap

• For related tasks, can get nice gains from MTL. 

• Thinking about the architecture helps.



Ultimate task: 
Language Modeling

• Train a model on "what is the next word?" 

• The resulting representation is very useful for many 
different tasks.
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• The resulting representation is even more useful for 
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• Train a model on "what is the next word?" 

• The resulting representation is very useful for many 
different tasks.

Why does it work? 
under what conditions? 
should we fine-tune?

 what happens in fine-tuning?
can we have a theory for this?
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• Train a model on "what is the next word?" 

• The resulting representation is very useful for many 
different tasks.

Why does it work? 
under what conditions? 
should we fine-tune?

 what happens in fine-tuning?
can we have a theory for this?

no

PostUltimate task: 
Masked Language Modeling?

Why does it work? 
under what conditions? 
should we fine-tune?

 what happens in fine-tuning?
can we have a theory for this?



Moving back to more 
discrete representations?



Task: Word Sense Induction

• We are given k sentences with the same word. 

• We need to cluster them into groups according to 
senses. 

• Can we use ELMo (or similar, or BERT) for this?



I like the sound of the harpsichord.

this is a sound idea, I like it.

• Represent each word based on its ELMo/BERT vector. 
• Cluster the vectors.



ELMO-based 
word sense induction

• This sort-of works... but not very well. 

• What went wrong? who knows. 

• How can we improve? great question.

if only the vectors were more transparent!!
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• Represent a word as a distribution of substitute words 

• This is not our own idea. 

• But now we have neural LM
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Back to more discrete 
representations

• Substitute vectors

• Using the LM as an LM

• Represent a word as a distribution of substitute words 

• This is not our own idea. 

• But now we have neural LM



I like the sound of the harpsichord.

this is a sound idea, I like it.



I like the sound of the harpsichord.

this is a sound idea, I like it.

bad 0.12 good 0.09 great 0.06 wonderful 0.05 nice 0.04

sounds 0.04 versions 0.03 rhythms 0.03 strings 0.03 
piece 0.03



State-vectors  
--> Word Distributions

• By looking at the substitute word distributions 
rather than the state vectors, we get a better 
understanding of what going on.



Structured settlements provide for future 
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Two recent discoveries indicate probable 
very early settlements near the Thames in 
the London area .
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credit 0.03 bonds 0.03 deals 0.03 securities 0.03



Structured settlements provide for future 
periodic payments .

Two recent discoveries indicate probable 
very early settlements near the Thames in 
the London area .

development 0.34 stage 0.14 death 0.13 signs 0.08 
stages 0.07 life 0.04 cases 0.03 properties 0.02

to 0.32 loans 0.23 and 0.12 products 0.08 as 0.06
credit 0.03 bonds 0.03 deals 0.03 securities 0.03



Two recent discoveries indicate probable 
very early settlements near the Thames in 
the London area .

development 0.34 stage 0.14 death 0.13 signs 0.08 
stages 0.07 life 0.04 cases 0.03 properties 0.02

Problem: no information about the word itself.



Better Word Distributions

• Query the language model in a creative way



this is a sound
sound idea, I like it.



this is a sound and
sound idea, I like it.
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this is a sound and
and sound idea, I like it.

Hearst patterns / symmetric patterns

Neural-LM Query
+

=

Context-dependent Hearst patterns



this is a sound and
and sound idea, I like it.

funny 0.10 welcome 0.09 beautiful 0.05 fun 0.04 
simple 0.04 practical 0.03 comprehensive 0.03 

Hearst patterns / symmetric patterns

Neural-LM Query
+

=

Context-dependent Hearst patterns



this is a sound and
and sound idea, I like it.

funny 0.10 welcome 0.09 beautiful 0.05 fun 0.04 
simple 0.04 practical 0.03 comprehensive 0.03 

I like the sound and
       and sound of the harpsichord.

sight 0.16 feel 0.15 sounds 0.11 smell 0.06  
rhythm 0.04 tone 0.03 noise 0.03



Gulls nest in large , densely packed , 
noisy colonies .

urban 0.36
remote 0.12
isolated 0.11
tropical 0.10
dense 0.06

crowded 0.54
remote 0.14
noisy 0.09
overcrowded 0.05
cramped 0.04

Substitute Vector Contextualized Hearst



land 0.25 sites 0.07 buildings 0.03 homes 0.02  
plants 0.01 farms 0.01 development 0.01

Structured settlements provide for future 
periodic payments .

Two recent discoveries indicate probable 
very early settlements near the Thames in 
the London area .

agreements 0.40 payments 0.13 contracts 0.10 loans 
0.07 fees 0.05 swaps 0.03 litigation 0.02 
transactions 0.01



land 0.25 sites 0.07 buildings 0.03 homes 0.02  
plants 0.01 farms 0.01 development 0.01

Structured settlements provide for future 
periodic payments .

Two recent discoveries indicate probable 
very early settlements near the Thames in 
the London area .

agreements 0.40 payments 0.13 contracts 0.10 loans 
0.07 fees 0.05 swaps 0.03 litigation 0.02 
transactions 0.01



NGRAM LM 
(AI-KU) 15.9

ELMo LM 23.4

ELMo LM 
+ pattern 25.4

(Avg of FNMI and FBC on SemEval 2013 task 13)



AKA "Let's try it with BERT"



NGRAM LM 
(AI-KU) 15.92

ELMo LM 23.4

ELMo LM 
+ pattern 25.4

AKA "Let's try it with BERT"

BERT 35.1

BERT + pattern 37.0



Takeaway

• From opaque biLM state  
--> to transparent biLM word distribution 

• Can look at things and try to debug 

• Query the model in a creative way 

• Context-dependent Hearst patterns



What's encoded in my representation? 



• Consider the columns of W3. 

• Consider the rows of E.

Word Embeddings
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• Consider the columns of W3. 

• Consider the rows of E.

Word Embeddings











controlling the 
representations?



Debiasing  
word embeddings
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Debiasing  
word embeddings

not so easy!



controlling the 
representation?

not so easy!



T-SNE, then color by gender  
(using the gender direction definition)





new metric: how many of my neighbors 
are male / female leaning?





YES.



So what happened here?

1. define a way to measure a problem.

2. confuse the measurement of the phenomena with the phenomena.

3. design a way to treat the phenomena (actually, attack the measurement)

4. can no longer measure the phenomena (all measures are 0). Problem solved?



Word embeddings  
in gender marking languages

a whole new complex story. not in this talk. check out the paper.



taking a step back
gender-based examples are easy to find.
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Models make many decisions based on various factors 
that we do not understand, with subtle interactions 

and the most non-transparent mechanism imaginable.

These models then ACT in the real world.



taking a step back
Gender-based examples are easy to find.

But the problem goes far beyond gender (or race, or age).

Models make many decisions based on various factors 
that we do not understand, with subtle interactions 

and the most non-transparent mechanism imaginable.

These models then ACT in the real world.

It is our responsibility to consider the 
consequences, and be careful about what we do, 
especially when we build "production" systems,  

but also when we "just do research".



Beyond word embeddings



Example: DeepMoji

Emojis
sentiment

emotion

Vectors are also predictive of related tasks
Train a model to predict emojis from tweets

sarcasm

DeepMoji
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Example: DeepMoji

age
race

gender

DeepMoji

Emojis
sentiment

emotion
sarcasm



Emojis
sentiment age

race
gender

Vectors trained for Emojis.
Meant for sentiment.

Predictive of demographics.

emotion
sarcasm

DeepMoji
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Predictive of demographics.

who could have guessed?



Vectors trained for Emojis.
Meant for sentiment.

Predictive of demographics.

well... not very surprising actually. 
emoji usage is very much correlated with demographics. 

knowing the demographics helps predict emojis.

who could have guessed?



Vectors trained for Emojis.
Meant for sentiment.

Predictive of demographics.

well... not very surprising actually. 
emoji usage is very much correlated with demographics. 

knowing the demographics helps predict emojis.

who could have guessed?

Lets control for this.
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Balanced Unbalanced
Data Task Protected Attribute Task Acc Leakage Task Acc Leakage
DIAL Sentiment Race 67.4 64.5 79.5 73.5

Mention Race 81.2 71.5 86.0 73.8
PAN16 Mention Gender 77.5 60.1 76.8 64.0

Age 74.7 59.4 77.5 59.7

Table 2: Protected attribute leakage: balanced & unbalanced data splits.

M+P+M+P�

M�P� M�P+

(a) balanced

M+P+

M+P�

M�P�

M�P+

(b) unbalanced

Figure 1: Balanced (a) vs. Unbalanced (b)
dataset. Red(M+)/Blue(M-): Main Task.
Light(P+)/Dark(P-): Protected attribute. Each
class is globally balanced, but in (b) the propor-
tion of the protected attribute within each main
task split is unbalanced.

high accuracies. But is information about them
being encoded when we train on the main tasks?
In this set of experiments, we encode the train-
ing and validation sets using the encoder trained
on the main task, and train the attacker network
to predict the protected attributes based on these
vectors. This experiment suggests an upper bound
for the amount of leakage of protected attributes
when we do not actively attempt to prevent it.
The Balanced section in Table 2 summarizes the
validation-set accuracies. While the numbers are
lower than when training directly (Table 1), they
are still high enough to extract meaningful and
possibly highly sensitive information (e.g. DIAL
Race direct prediction prediction is 83.9% while
DIAL Race leakage on the balanced Sentiment
task is 64.5%).

Leakage: Unbalanced Data The datasets we
considered were perfectly balanced with respect to
both main task and protected attribute labels (Fig-
ure 1a). Such extreme case is not representative
of real-world datasets, in which a dataset may be
well balanced w.r.t. the main task labels but not
the protected attribute. For example, when train-
ing a classifier to predict a fit for managerial po-
sition based on Curriculum Vitae (CV) of candi-
dates, the CV dataset may be perfectly balanced
according to the managerial / non-managerial vari-

able, but, because of existing social biases, CVs of
females might be under-represented in the man-
agerial category and over-represented in the non-
managerial one. In such a situation, the classi-
fier may perpetuate the bias by learning to favor
males over females for managerial positions. We
simulate this more realistic scenario by construct-
ing unbalanced datasets in which the main tasks
(sentiment/mention) remain balanced but the pro-
tected class proportions within each main class are
not, as demonstrated in Figure 1b. For example,
in the sentiment/gender case, we set the positive-
sentiment class to contain 80% male and 20% fe-
male tweets, while the negative-sentiment class
contains 20% male and 80% female tweets. We
then follow the leakage experiment on the unbal-
anced datasets. The attacker is trained and tested
on a balanced dataset. Otherwise, the attacker can
perform quite well on the male/female task simply
by learning to predict sentiment, which does not
reflect leakage of gender data to the representa-
tion. When training the attacker on balanced data,
its decisions cannot rely on the sentiment informa-
tion encoded in the vectors, and must look for en-
coded information about the protected attributes.
The results in Table 2 indicate that both task accu-
racy and attribute leakage are stronger in the un-
balanced case.

5 Mitigating Data Leakage

Leakage of protected attributes information into
the internal representation of the network when
training on seemingly unrelated tasks is very com-
mon. We explore the means of mitigating such
leakage.

5.1 Adversarial Training

We repeat the experiments in Table 2 with an ad-
versarial component (Ganin and Lempitsky, 2015)
as described in Section 2, in order to actively re-
move the protected attribute information from the
encoded representation during training. Note that
the adversarial objective is in odds with the main-

balanced
dataset
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dataset. Red(M+)/Blue(M-): Main Task.
Light(P+)/Dark(P-): Protected attribute. Each
class is globally balanced, but in (b) the propor-
tion of the protected attribute within each main
task split is unbalanced.

high accuracies. But is information about them
being encoded when we train on the main tasks?
In this set of experiments, we encode the train-
ing and validation sets using the encoder trained
on the main task, and train the attacker network
to predict the protected attributes based on these
vectors. This experiment suggests an upper bound
for the amount of leakage of protected attributes
when we do not actively attempt to prevent it.
The Balanced section in Table 2 summarizes the
validation-set accuracies. While the numbers are
lower than when training directly (Table 1), they
are still high enough to extract meaningful and
possibly highly sensitive information (e.g. DIAL
Race direct prediction prediction is 83.9% while
DIAL Race leakage on the balanced Sentiment
task is 64.5%).

Leakage: Unbalanced Data The datasets we
considered were perfectly balanced with respect to
both main task and protected attribute labels (Fig-
ure 1a). Such extreme case is not representative
of real-world datasets, in which a dataset may be
well balanced w.r.t. the main task labels but not
the protected attribute. For example, when train-
ing a classifier to predict a fit for managerial po-
sition based on Curriculum Vitae (CV) of candi-
dates, the CV dataset may be perfectly balanced
according to the managerial / non-managerial vari-

able, but, because of existing social biases, CVs of
females might be under-represented in the man-
agerial category and over-represented in the non-
managerial one. In such a situation, the classi-
fier may perpetuate the bias by learning to favor
males over females for managerial positions. We
simulate this more realistic scenario by construct-
ing unbalanced datasets in which the main tasks
(sentiment/mention) remain balanced but the pro-
tected class proportions within each main class are
not, as demonstrated in Figure 1b. For example,
in the sentiment/gender case, we set the positive-
sentiment class to contain 80% male and 20% fe-
male tweets, while the negative-sentiment class
contains 20% male and 80% female tweets. We
then follow the leakage experiment on the unbal-
anced datasets. The attacker is trained and tested
on a balanced dataset. Otherwise, the attacker can
perform quite well on the male/female task simply
by learning to predict sentiment, which does not
reflect leakage of gender data to the representa-
tion. When training the attacker on balanced data,
its decisions cannot rely on the sentiment informa-
tion encoded in the vectors, and must look for en-
coded information about the protected attributes.
The results in Table 2 indicate that both task accu-
racy and attribute leakage are stronger in the un-
balanced case.

5 Mitigating Data Leakage

Leakage of protected attributes information into
the internal representation of the network when
training on seemingly unrelated tasks is very com-
mon. We explore the means of mitigating such
leakage.

5.1 Adversarial Training

We repeat the experiments in Table 2 with an ad-
versarial component (Ganin and Lempitsky, 2015)
as described in Section 2, in order to actively re-
move the protected attribute information from the
encoded representation during training. Note that
the adversarial objective is in odds with the main-

50%  
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50%  
negative

task
(sentiment)

balanced
dataset
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dataset. Red(M+)/Blue(M-): Main Task.
Light(P+)/Dark(P-): Protected attribute. Each
class is globally balanced, but in (b) the propor-
tion of the protected attribute within each main
task split is unbalanced.

high accuracies. But is information about them
being encoded when we train on the main tasks?
In this set of experiments, we encode the train-
ing and validation sets using the encoder trained
on the main task, and train the attacker network
to predict the protected attributes based on these
vectors. This experiment suggests an upper bound
for the amount of leakage of protected attributes
when we do not actively attempt to prevent it.
The Balanced section in Table 2 summarizes the
validation-set accuracies. While the numbers are
lower than when training directly (Table 1), they
are still high enough to extract meaningful and
possibly highly sensitive information (e.g. DIAL
Race direct prediction prediction is 83.9% while
DIAL Race leakage on the balanced Sentiment
task is 64.5%).

Leakage: Unbalanced Data The datasets we
considered were perfectly balanced with respect to
both main task and protected attribute labels (Fig-
ure 1a). Such extreme case is not representative
of real-world datasets, in which a dataset may be
well balanced w.r.t. the main task labels but not
the protected attribute. For example, when train-
ing a classifier to predict a fit for managerial po-
sition based on Curriculum Vitae (CV) of candi-
dates, the CV dataset may be perfectly balanced
according to the managerial / non-managerial vari-

able, but, because of existing social biases, CVs of
females might be under-represented in the man-
agerial category and over-represented in the non-
managerial one. In such a situation, the classi-
fier may perpetuate the bias by learning to favor
males over females for managerial positions. We
simulate this more realistic scenario by construct-
ing unbalanced datasets in which the main tasks
(sentiment/mention) remain balanced but the pro-
tected class proportions within each main class are
not, as demonstrated in Figure 1b. For example,
in the sentiment/gender case, we set the positive-
sentiment class to contain 80% male and 20% fe-
male tweets, while the negative-sentiment class
contains 20% male and 80% female tweets. We
then follow the leakage experiment on the unbal-
anced datasets. The attacker is trained and tested
on a balanced dataset. Otherwise, the attacker can
perform quite well on the male/female task simply
by learning to predict sentiment, which does not
reflect leakage of gender data to the representa-
tion. When training the attacker on balanced data,
its decisions cannot rely on the sentiment informa-
tion encoded in the vectors, and must look for en-
coded information about the protected attributes.
The results in Table 2 indicate that both task accu-
racy and attribute leakage are stronger in the un-
balanced case.

5 Mitigating Data Leakage

Leakage of protected attributes information into
the internal representation of the network when
training on seemingly unrelated tasks is very com-
mon. We explore the means of mitigating such
leakage.

5.1 Adversarial Training

We repeat the experiments in Table 2 with an ad-
versarial component (Ganin and Lempitsky, 2015)
as described in Section 2, in order to actively re-
move the protected attribute information from the
encoded representation during training. Note that
the adversarial objective is in odds with the main-
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50%  male 50%  female
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high accuracies. But is information about them
being encoded when we train on the main tasks?
In this set of experiments, we encode the train-
ing and validation sets using the encoder trained
on the main task, and train the attacker network
to predict the protected attributes based on these
vectors. This experiment suggests an upper bound
for the amount of leakage of protected attributes
when we do not actively attempt to prevent it.
The Balanced section in Table 2 summarizes the
validation-set accuracies. While the numbers are
lower than when training directly (Table 1), they
are still high enough to extract meaningful and
possibly highly sensitive information (e.g. DIAL
Race direct prediction prediction is 83.9% while
DIAL Race leakage on the balanced Sentiment
task is 64.5%).

Leakage: Unbalanced Data The datasets we
considered were perfectly balanced with respect to
both main task and protected attribute labels (Fig-
ure 1a). Such extreme case is not representative
of real-world datasets, in which a dataset may be
well balanced w.r.t. the main task labels but not
the protected attribute. For example, when train-
ing a classifier to predict a fit for managerial po-
sition based on Curriculum Vitae (CV) of candi-
dates, the CV dataset may be perfectly balanced
according to the managerial / non-managerial vari-

able, but, because of existing social biases, CVs of
females might be under-represented in the man-
agerial category and over-represented in the non-
managerial one. In such a situation, the classi-
fier may perpetuate the bias by learning to favor
males over females for managerial positions. We
simulate this more realistic scenario by construct-
ing unbalanced datasets in which the main tasks
(sentiment/mention) remain balanced but the pro-
tected class proportions within each main class are
not, as demonstrated in Figure 1b. For example,
in the sentiment/gender case, we set the positive-
sentiment class to contain 80% male and 20% fe-
male tweets, while the negative-sentiment class
contains 20% male and 80% female tweets. We
then follow the leakage experiment on the unbal-
anced datasets. The attacker is trained and tested
on a balanced dataset. Otherwise, the attacker can
perform quite well on the male/female task simply
by learning to predict sentiment, which does not
reflect leakage of gender data to the representa-
tion. When training the attacker on balanced data,
its decisions cannot rely on the sentiment informa-
tion encoded in the vectors, and must look for en-
coded information about the protected attributes.
The results in Table 2 indicate that both task accu-
racy and attribute leakage are stronger in the un-
balanced case.

5 Mitigating Data Leakage

Leakage of protected attributes information into
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Confidential Review Copy. DO NOT DISTRIBUTE.

AAE (“non-hispanic blacks”) SAE (“non-hispanic Whites”)
My Brew Eattin I want to be tan again

Naw im cool Why is it so hot in the house ?!
Tonoght was cool Been doing Spanish homework for 2 hours .
My momma Bestfrand died I wish I was still in Spain
Enoy yall day Ahhhhh so much homework .
Going over Bae house TWITTER-ENTITY I miss you too !
She not texting or calling ? Ok I want to move to california
Real relationships go thru real shit Lol , I don’t even go here .
About to spend my entire check IDGAF Ahhhhh so much homework .
Getting ready for school I’m so tired .

Table 7: Examples for correct dialectal/race predictions, which were predicted consistently by at least 9
different attacker-classifiers.

While usually considered a positive feature, it can
often have undesired consequences one should be
aware of and potentially control for. Several works
document biases and stereotypes that are cap-
tured by unsupervised word embeddings (Boluk-
basi et al., 2016; Caliskan et al., 2017) and ways
of mitigating them (Bolukbasi et al., 2016; Zhang
et al., 2018). Bias and stereotyping were also
documented on a common NLP dataset (Rudinger
et al., 2017). While these work are concerned with
the learned representations encoding unwanted bi-
ases about the world, our concern is with captur-
ing potentially sensitive demographic information
about individual authors of the text.

Removing sensitive attributes (demographic or
otherwise) from intermediate representations in
order to achieve fair classification has been ex-
plored by solving an optimization problem (Zemel
et al., 2013), as well as by employing adversar-
ial training (Edwards and Storkey, 2015; Louizos
et al., 2015; Zhang et al., 2018; Xie et al., 2017),
focusing on structured features. Adversarial train-
ing was also applied for the Image anonymization
(Edwards and Storkey, 2015; Feutry et al., 2018).
In contrast, we consider features that are based on
short user-authored text.

Several works apply adversarial training to tex-
tual data, in order to learn encoders that are in-
variant to some properties of the text (Chen et al.,
2016; Conneau et al., 2017; Zhang et al., 2017; Xie
et al., 2017). As their main motivation is to remove
information about domain or language in order to
improve transfer learning, domain adaptation, or
end task accuracy, they were less concerned with
the ability to recover information from the result-
ing representation, and did not evaluate it directly
as we do here.

Recent work on creating private representation
in the text domain (Li et al., 2018) share our mo-

tivation of removing unintended demographic at-
tributes from the learned representation using ad-
versarial training. However, they report only the
discrimination accuracies of the adversarial com-
ponent, and do not train another classifier to verify
that the representations are indeed clear of the pro-
tected attribute. As our work shows, trusting the
adversary is insufficient, and external verification
is crucial.

Finally, our work is motivated by the desire for
fairness. We use a definition in which a fair classi-
fication is one that does not condition on a certain
attribute (fairness by blindness), and evaluate the
ability to achieve text-derived representations that
are blind to a property we wish to protect. Many
other definitions of fairness exist, including demo-
graphic parity, equality of odds and equality of
opportunity (see e.g. discussion in (Hardt et al.,
2016; Beutel et al., 2017)). Under our setup, blind-
ness guarantees these metrics (Appendix A).

8 Conclusions

We show that demographic information leaks into
intermediate representations of neural networks
trained on text data. Systems that train on text data
and do not want to condition on demographic in-
formation must take active steps against accidental
conditioning. Our experiments suggest that:
(1) Adversarial training is effective for mitigating
protected attribute leakage, but, when dealing with
text data, may fail to remove it completely.
(2) When using the adversarial training method,
the adversary score during training cannot be
trusted, and must be verified with an externally-
trained attacker, preferably on unseen data.
(3) Tuning the capacity and weight of the adver-
sary, as well as using an ensemble of several ad-
versaries, can improve the results. However, no
single method is the most effective in all cases.
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(was presented at venue, but cannot be put online yet due to anon period)



Main idea:  
Restrict to the linear case.

We can remove protected information by 
projection to null-space of linear classifier.

We do this iteratively.

(was presented at venue, but cannot be put online yet due to anon period)



To summarize

• Neural networks learn representations.


• Sharing the representations (multi-task learning).


• Using the representations --- by querying them.


• Biases in representations.


• Controlling the representations.

Prevalent.

Hard, but we are 
 making progress.

Ask LM for words. 
Use as features.

Can be effective 
if careful.


