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10,000-Meter Perspective: Parsing into Semantic Graphs

A similar technique is almost impossible to apply to other crops.
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10,000-Meter Perspective: Parsing into Semantic Graphs

• • • • • • • •
a similar technique almost impossible apply other crop
DT JJ NN RB JJ VB JJ NNS
q a_to n a a_for v_to a n

top

BV

ARG1 ARG1 ARG1

ARG2 ARG3

ARG1

2



Why Graph-Based Meaning Representation?
I saw Joe’s dog, which was running in the garden.

The dog was chasing a cat.
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Joe’s dog was chasing a cat in the garden.

surface realisation

Hardy & Vlachos (2018): 2+ ROUGE points over strong encoder–decoder.
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What do we Mean by ‘Meaning’?
Abrams gave Browne a book.

Abrams gave a book to Browne.
Browne was given a book by Abrams.

A book was given to Browne by Abrams.
Browne, Abrams gave the book to.

A book, Browne was given by Abrams. . . .

The question is difficult to answer precisely.
It is difficult to answer the question precisely.
To answer the question precisely is difficult.

the patient’s arrival the arrival by the patient
the office manager the manager of the office

I Superficially different linguistic forms can describe the same situation;
I hold true under the same circumstances; can substitute for each other;
→ close paraphrases: convey the ‘same meaning’ (in unmarked contexts).
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Semi-Formally: Trees vs. Graphs

Structural Wellformedness Conditions on Trees
I Unique root, connected, single parent, free of cycles; maybe: projective;
→ all nodes (but the root) reachable by unique directed path from root.

A similar technique is almost impossible to apply to other crops .

top
ARG2 ARG3

ARG1ARG1
BV

ARG1 ARG1

∃x : technique’(x) ∧ similar’(x, ),∃y : crop’(y) ∧ other’(y, )
→ almost’(¬possible’(apply’( , x, y)))

Beyond Trees: General Graphs
I Argument sharing: nodes with multiple incoming edges (in-degree > 1);
I some surface tokens do not contribute (as nodes; many function words);
I (structurally) multi-rooted: more than one node with zero in-degree;
→ massive growth in modeling and algorithmic complexity (NP-complete).

5



Semi-Formally: Trees vs. Graphs

Structural Wellformedness Conditions on Trees
I Unique root, connected, single parent, free of cycles; maybe: projective;
→ all nodes (but the root) reachable by unique directed path from root.

A similar technique is almost impossible to apply to other crops .

top
ARG2 ARG3

ARG1ARG1
BV

ARG1 ARG1

∃x : technique’(x) ∧ similar’(x, ),∃y : crop’(y) ∧ other’(y, )
→ almost’(¬possible’(apply’( , x, y)))

Beyond Trees: General Graphs
I Argument sharing: nodes with multiple incoming edges (in-degree > 1);
I some surface tokens do not contribute (as nodes; many function words);
I (structurally) multi-rooted: more than one node with zero in-degree;
→ massive growth in modeling and algorithmic complexity (NP-complete).

5



Semi-Formally: Trees vs. Graphs

Structural Wellformedness Conditions on Trees
I Unique root, connected, single parent, free of cycles; maybe: projective;
→ all nodes (but the root) reachable by unique directed path from root.

A similar technique is almost impossible to apply to other crops .

top
ARG2 ARG3

ARG1ARG1
BV

ARG1 ARG1

∃x : technique’(x) ∧ similar’(x, ),∃y : crop’(y) ∧ other’(y, )
→ almost’(¬possible’(apply’( , x, y)))

Beyond Trees: General Graphs
I Argument sharing: nodes with multiple incoming edges (in-degree > 1);

I some surface tokens do not contribute (as nodes; many function words);
I (structurally) multi-rooted: more than one node with zero in-degree;
→ massive growth in modeling and algorithmic complexity (NP-complete).

5



Semi-Formally: Trees vs. Graphs

Structural Wellformedness Conditions on Trees
I Unique root, connected, single parent, free of cycles; maybe: projective;
→ all nodes (but the root) reachable by unique directed path from root.

A similar technique is almost impossible to apply to other crops .

top
ARG2 ARG3

ARG1ARG1
BV

ARG1 ARG1

∃x : technique’(x) ∧ similar’(x, ),∃y : crop’(y) ∧ other’(y, )
→ almost’(¬possible’(apply’( , x, y)))

Beyond Trees: General Graphs
I Argument sharing: nodes with multiple incoming edges (in-degree > 1);
I some surface tokens do not contribute (as nodes; many function words);

I (structurally) multi-rooted: more than one node with zero in-degree;
→ massive growth in modeling and algorithmic complexity (NP-complete).

5



Semi-Formally: Trees vs. Graphs

Structural Wellformedness Conditions on Trees
I Unique root, connected, single parent, free of cycles; maybe: projective;
→ all nodes (but the root) reachable by unique directed path from root.

A similar technique is almost impossible to apply to other crops .

top
ARG2 ARG3

ARG1ARG1
BV

ARG1 ARG1

∃x : technique’(x) ∧ similar’(x, ),∃y : crop’(y) ∧ other’(y, )
→ almost’(¬possible’(apply’( , x, y)))

Beyond Trees: General Graphs
I Argument sharing: nodes with multiple incoming edges (in-degree > 1);
I some surface tokens do not contribute (as nodes; many function words);
I (structurally) multi-rooted: more than one node with zero in-degree;

→ massive growth in modeling and algorithmic complexity (NP-complete).

5



Semi-Formally: Trees vs. Graphs

Structural Wellformedness Conditions on Trees
I Unique root, connected, single parent, free of cycles; maybe: projective;
→ all nodes (but the root) reachable by unique directed path from root.

A similar technique is almost impossible to apply to other crops .

top
ARG2 ARG3

ARG1ARG1
BV

ARG1 ARG1

∃x : technique’(x) ∧ similar’(x, ),∃y : crop’(y) ∧ other’(y, )
→ almost’(¬possible’(apply’( , x, y)))

Beyond Trees: General Graphs
I Argument sharing: nodes with multiple incoming edges (in-degree > 1);
I some surface tokens do not contribute (as nodes; many function words);
I (structurally) multi-rooted: more than one node with zero in-degree;
→ massive growth in modeling and algorithmic complexity (NP-complete).

5



Semi-Formally: Trees vs. Graphs

Structural Wellformedness Conditions on Trees
I Unique root, connected, single parent, free of cycles; maybe: projective;
→ all nodes (but the root) reachable by unique directed path from root.

A similar technique is almost impossible to apply to other crops .

top
ARG2 ARG3

ARG1ARG1
BV

ARG1 ARG1

∃x : technique’(x) ∧ similar’(x, ), ∃y : crop’(y) ∧ other’(y, )
→ almost’(¬possible’(apply’( , x, y)))

Beyond Trees: General Graphs
I Argument sharing: nodes with multiple incoming edges (in-degree > 1);
I some surface tokens do not contribute (as nodes; many function words);
I (structurally) multi-rooted: more than one node with zero in-degree;
→ massive growth in modeling and algorithmic complexity (NP-complete).

5



Semi-Formally: Trees vs. Graphs

Structural Wellformedness Conditions on Trees
I Unique root, connected, single parent, free of cycles; maybe: projective;
→ all nodes (but the root) reachable by unique directed path from root.

A similar technique is almost impossible to apply to other crops .

top
ARG2 ARG3

ARG1ARG1
BV

ARG1 ARG1

∃x : technique’(x) ∧ similar’(x, ), ∃y : crop’(y) ∧ other’(y, )
→ almost’(¬possible’(apply’( , x, y)))

Beyond Trees: General Graphs
I Argument sharing: nodes with multiple incoming edges (in-degree > 1);
I some surface tokens do not contribute (as nodes; many function words);
I (structurally) multi-rooted: more than one node with zero in-degree;
→ massive growth in modeling and algorithmic complexity (NP-complete).

5



High-Level Goals of the Shared Task

Cross-Framework Comparability and Interoperability
I Vast, complex landscape of representing natural language meaning;

I diverse linguistic traditions, modeling assumptions, levels of ambition;

→ clarify concepts and terminology; unify representations and evaluation.

Parsing into Graph-Structured Representations
I Cottage industry of parsers with output structures beyond rooted trees;

I distinct techniques, e.g. based on transitions, composition, ‘translation’;

I much framework-internal evolution: design reflects specific assumptions;

→ evaluate across frameworks; learning from complementary knowledge.

Learning from Complementary Knowledge
I Cross-Framework Perspective: Seek commonality and complementarity.
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A Selection of Semantic Graphbanks

Selection Criteria
I ‘Full-sentence’ semantics: all content-bearing units receive annotations;

I natively graph-based: meaning representation through (directed) graphs;

I large-scale, gold-standard annotations and parsers are publicly available;

→ five distinct frameworks, bi-lexical to unanchored; sadly, English only.

(With Apologies to) Non-Graph or Non-Meaning Banks
I PropBank (Palmer et al., 2005), Framenet (Baker et al., 1998), . . . ;

I Groningen Parallel Meaning Bank: GMB, PMB (Basile et al., 2012);

I Universal Decompositional Semantics (White et al., 2016);

I Enhanced Universal Dependencies (Schuster & Manning, 2016);

I . . .
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Arguably Basicest: Bi-lexical Semantic Dependencies

I Two decades of great advances in syntactic dependencies and parsing;
I recently, renewed interest in meaning; algorithmic interest in graphs;

I nodes limited to surface lexical units (words):

I edges encode argument roles and maybe some construction semantics;
I limited expressivity, e.g. no lexical decomposition, no covert meaning.

A similar technique is almost impossible to apply to other crops.

• • • • • • • •
〈0:1〉 〈2:9〉 〈10:19〉 〈23:29〉 〈30:40〉 〈44:49〉 〈53:58〉 〈59:65〉

a similar technique almost impossible apply other crop
DT JJ NN RB JJ VB JJ NNS
q a_to n a a_for v_to a n

top

BV
ARG1 ARG1 ARG1

ARG2 ARG3
ARG1
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(0) Two Bi-Lexical Frameworks: DM & PSD

DM: DELPH-IN MRS Bi-Lexical Dependencies (Ivanova et al., 2012)
I Simplification from underspecified logical forms (ERS; coming later);

a similar technique almost impossible apply other crop

top

BV

ARG1 ARG1 ARG1

ARG2 ARG3

ARG1

PSD: Prague Semantic Dependencies (Hajič et al., 2012)
I Simplification from FGD tectogrammatical trees (Sgall et al., 1986).

similar technique be almost impossible apply other crop

RSTR

top

ACT

PAT

EXT

ADDR

PAT

RSTR
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(1) Elementary Dependency Structures (EDS)

Break Free of Bi-Lexical Limitations (Oepen & Lønning, 2006)
I Decomposition or construction meaning; anchors: arbitrary sub-strings.

_almost_a_1
〈23:29〉

_impossible_a_for
〈30:40〉

ARG1

_a_q
〈0:1〉

_technique_n_1
〈10:19〉

BV

_similar_a_to
〈2:9〉

ARG1

comp
〈2:9〉

ARG1

_apply_v_to
〈44:49〉

ARG1

ARG2

_crop_n_1
〈59:65〉

ARG3

udef_q
〈53:100〉

BV

_other_a_1
〈53:58〉

ARG1

A similar technique is almost impossible to apply to other crops.
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_almost_a_1
〈23:29〉

_impossible_a_for
〈30:40〉

ARG1

_a_q
〈0:1〉

_technique_n_1
〈10:19〉

BV
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〈2:9〉

ARG1

comp
〈2:9〉

ARG1

_apply_v_to
〈44:49〉

ARG1

ARG2

_crop_n_1
〈59:65〉

ARG3

udef_q
〈53:100〉

BV

_other_a_1
〈53:58〉

ARG1

A similar technique is almost impossible to apply to other crops.
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(1) Universal Conceptual Cognitive Annotation (UCCA)

Multi-Layered Design (Abend & Rappoport, 2013); Foundational Layer
I Tree backbone: semantic ‘constituents’ are scenes (‘clauses’) and units;

I scenes (Process or State): pArticipants and aDverbials (plus F and U);
I complex units distinguish Center and Elaborator(s); allow remote edges.
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(2) Abstract Meaning Representation (AMR)

possible-01
polarity -

almost

mod (domain)

apply-02

ARG1

technique

ARG1

crop

ARG2

resemble-01

(ARG1)-of

other

mod (domain)

Banarescu et al. (2013)

I Abstractly (if not linguistically)
similar to EDS, but unanchored;

I verbal senses from PropBank++;

I negation as node-local property;

I tree-like annotation: inversed
edges normalized for evaluation;

I originally designed for (S)MT;
various NLU applications to date.

A similar technique is almost impossible to apply to other crops.
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Anchoring in the Surface String

Relating Pieces of Meaning to the Linguistic Signal
I Intuitively, sub-structures of meaning relate to sub-parts of the input;
I semantic frameworks vary in how much weight to put on this relation;

I anchoring of graph elements in sub-strings of the underlying utterance;
I can be part of semantic annotations or not; can take different forms;
I hierarchy of anchoring types: Flavor (0)–(2); bilexical graphs strictest;
I anchoring central in parsing, explicit or latent; aka ‘alignment’ for AMR;
I relevant to at least some downstream tasks; should impact evaluation.

Flavor Name Example Type of Anchoring

(0) bilexical DM, PSD nodes are sub-set of surface tokens
(1) anchored EDS, UCCA free node–sub-string correspondences
(2) unanchored AMR no explicit sub-string correspondences
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Training and Evaluation Data in the Shared Task

DM PSD EDS UCCA AMR

Flavor 0 0 1 1 2

tr
ai

n Text Type newspaper newspaper newspaper mixed mixed
Sentences 35,656 35,656 35,656 6,572 56,240
Tokens 802,717 802,717 802,717 138,268 1,000,217

te
st

Text Type mixed mixed mixed mixed mixed
Sentences 3,359 3,359 3,359 1,131 1,998
Tokens 64,853 64,853 64,853 21,647 39,520

I DM, PSD, and ESD annotate the same text (Sections 00–20 of WSJ);
I UCCA: samples of EWT & Wikipedia; AMR: twelve different sources;

I linguistics: 100-item WSJ sample in all frameworks publicly available;
I evaluation: subset of 100 sentences from The Little Prince also public.
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Cross-Framework Evaluation: MRP Graph Similarity
I Break down graphs into types of information: per-type and overall F1;

I

I requires node–node correspondences; search for overall maximum score;
I maximum common edge subgraph isomorphism (MCES) is NP-hard;
→ smart initialization, scheduling, and pruning yield strong approximation.

_retire_v_1
〈7:14〉

named
CARG Pierre

〈0:6〉

ARG1

proper_q
〈0:6〉

BV

Pierre retired.

Different Types of Semantic Graph ‘Atoms’

DM PSD EDS UCCA AMR

Top Nodes 3 3 3 3 3

Labeled Edges 3 3 3 3 3

Node Labels 3 3 3 7 3

Node Properties 3 3 3 7 3

Node Anchoring 3 3 3 3 7

Edge Attributes 7 7 7 3 7
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A Coarse Taxonomy of Parsing Approaches

Approach Decomposes Graph to ...
Factorization-based Parts (edges/subgraphs) scored separately
Transition-based Actions to build it incrementally
Composition-based Derivation operations of a grammar
Translation-based Linearized sequence of tokens

Generalize -based dependency parsers.
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High-Level Overview of Submissions

Teams DM PSD EDS UCCA AMR MTL Approach

ERG∦§† 3 7 3 7 7 7 Composition
TUPA§† 3 3 3 3 3 7/3 Transition

HIT-SCIR 3 3 3 3 3 7 Transition
SJTU–NICT 3 3 3 3 3 7 Factorization
SUDA–Alibaba 3 3 3 3 3 (3) Factorization
Saarland 3 3 3 3 3 7 Composition
Hitachi 3 3 3 3 3 (3) Factorization
ÚFAL MRPipe 3 3 3 3 3 7 Transition
ShanghaiTech 3 3 3 7 3 7 Factorization
Amazon 3 3 7 7 3 7 Factorization
JBNU 3 3 7 3 7 7 Factorization
SJTU 3 3 3 3 3 3 Transition
ÚFAL–Oslo 3 3 3 3 3 7 Transition
HKUST 3 3 7 3 7 ?
Bocharov 7 7 7 7 3 ?

Peking∦ 3 3 3 3 7 7 Factorization
CUHK§ 3 3 3 3 3 3 Transition
Anonymous§ 7 3 7 7 7 ?
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Score Distributions

Overall DM PSD EDS UCCA AMR
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?
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Composition-Based Approaches

Overall DM PSD EDS UCCA AMR
0

0.2

0.4

0.6

0.8

1

I Explicitly modeling the derivation process.
I A parser evaluates a derivation licensed by a symbolic system.
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Factorization-Based Approaches

Overall DM PSD EDS UCCA AMR
0

0.2

0.4

0.6

0.8

1

I Inspired by graph-based dependency parsers.
I Explicitly modeling the target structure.
I A parser evaluates factors of a candidate graph.
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Transition-Based Approaches

Overall DM PSD EDS UCCA AMR
0

0.2

0.4

0.6

0.8

1

I Inspired by transition-based dependency parsers.
I Incremental (left-to-right, word-by-word).
I Partial parse constrains subsequent actions.
I Greedy/beam search to get a parse.
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Score Distributions: Zoom In

Overall DM PSD EDS UCCA AMR
0.7
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0.9

0.95

1
Composition
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Transition
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State of the Art
Submissions from established top-performing teams:
I ShanghaiTech (DM, PSD)
I Peking (EDS)
I SUDA–Alibaba (UCCA)
I Saarland (AMR)
Outperformed in most cases!
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A Transition-based Parser
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A Transition-based Parser

DM & PSD UCCA EDS AMR
Shift Shift Shift Shift
Reduce Reduce Reduce Reduce
Left-Edge Left-Edge Left-Edge Left-Edge
Right-Edge Right-Edge Right-Edge Right-Edge
Pass Left-Remote Drop Drop
Finish Right-Remote Node-Start Pass

Node Node-End Merge
Swap Pass Confirm
Finish Finish Entity

New
Finish 24



A Transition-based Parser
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A Transition-based Parser

Fine-tuning BERT
Narrows the gap between transition- and factorization-based
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Potential for Multitask/Transfer Learning?
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Potential for Multitask/Transfer Learning?

TUPA multitask: no improvement over single-task
S

gazed

B

at the...

G

The fox
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fox

Shared BiLSTM ⊕
Private BiLSTM

BERT
⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

MLP

transition

MLP

transition

MLP

transition

MLP

transition

MLP

transition
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The Composition-Based Saarland Submission

Compositional Parsing Across
All Graphbanks

*

Saarland at MRP 2019
L. Donatelli, M. Fowlie, J. Groschwitz, A. Koller, M. Lindemann, M. Mina, P. Weißenhorn

• Compositional neural parser with competitive results across all 
MRP shared task graphbanks (only compositional parser to do so!)
• 4th place overall
• 1st on PSD 
• 1st The Little Prince subset

• Parser previously held SOTA on MRP graphbanks apart from UCCA 
at ACL 2019 
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Dependency Trees Drive Semantic Composition

Apply-Modify (AM) Algebra and graph decomposition

The tall gira↵e wants to eat

neural supertagging
+ dependency parsing

The

?

tall

tall M
mod

gira↵e

giraffe

wants

want-01

S

ARG0

O[S]

ARG1

to

?

eat

eat-01 S
ARG0

AppS
AppomodM

Evaluates
deterministically

want-01

giraffe

ARG0

eat-01

ARG1

tall

mod

ARG0

AM dependency tree

Output

Input

• Linguistically-motivated
compositional structure

• Diverse meaning representations
mapped to similar AM trees

1

2

3

1 Sentence

2 AM Dependency tree

Graph3
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Interim Conclusions & Outlook

Lessons Learned
I Great community interest: 160 subscribers; 38 data licenses (via LDC);

I task complexity is technical barrier to entry: 16+ 2 teams submitted;

→ advanced state of the art on four frameworks (but possibly not AMR);

→ greatly increased cross-framework uniformity; but limited MTL so far.

Outlook: Toward MRP 2020
I Invitation from SIGNLL to re-run (a follow-up variant) at CoNLL 2020;

? add Discourse Representation Graphs; maybe a few other languages;

? increased focus on evaluation metrics: score ‘larger pieces’; SEMBLEU;

→ ongoing discussions; announcement imminent; active phase: April–July.

Come Join Us, Team Up!
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? increased focus on evaluation metrics: score ‘larger pieces’; SEMBLEU;

→ ongoing discussions; announcement imminent; active phase: April–July.

Come Join Us, Team Up!
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