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Overview

1 Session 1: Transfer Learning - Pretraining and representations
A Session 2: Transfer Learning - Adaptation and downstream tasks
[0 Session 3: Transfer Learning - Limitations, open-questions, future directions

Many slides are adapted from a Tutorial on
Transfer Learning in NLP | gave at NAACL
291 9 with my amazing collaborators
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Transfer Learning in NLP

Follow along with the tutorial:

[ Colab: https://tinyurl.com/NAACLTransferColab
A Code: https://tinyurl.com/NAACLTransferCode



https://tinyurl.com/NAACLTransferColab
https://tinyurl.com/NAACLTransferCode
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6. Open problems and future directions

Image credit: Yazmin Alanis



6. Open problems and future directions )
Computation and model size ——
Lack of robustness

Reporting/evaluation issues

More data or better models?

In-domain generalization versus out-of-domain generalization

The limits of NLU and the rise of NLG

The question of inductive bias

The question of common-sense

Continual learning and meta-learning
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Computation and model size

Recent trends
d  Going big on model sizes

Issues

A Narrowing the research competition
A Environmental costs
[ Is bigger-is-better a scientific research program?

Going the other way

A Models are over-parametrized
A SustaiNLP competition

Techniques
A Distillation
A Pruning

(A Quantization



Computation and model size

1 Recent trends
d  as become the norm for SOTAGoing big on model sizes - over 1 billion parameters as become
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Computation and model size

Rank Name
1 1 1 1 eam - Google ’ ..
Why is this a problem?Why is this a problem? it : 2 =
2 ERNIE Team - Baidu ERNIE C},' 90.0
. P 3 Microsoft D365 Al & MSR Al & GATECH MT-DNN-SMART C};' 89.9
A Narrowing the research competition field , .
4 IH ALICE v2 large ensemble (Alibaba DAMO NLP) C} 89.7
D What IS the place Of academla in tOday'S NLP? 5  Microsoft D365 Al & UMD FreeLB-RoBERTa (ensemble) C},' 88.4
fine-tuning? analysis and BERTology? critics? ey HIRE RoBERTa @ s
7  Facebook Al RoBERTa C),' 88.1
H 8  Microsoft D365 Al & MSR Al MT-DNN-ensemble C},' 87.6
4 Environmental costs ¢ .cumption e T}
Air travel, 1 passenger, NY <+SF 1984
Human life, avg, 1 year 11,023
“‘Energy and Policy American life, avg, 1 year 36,156
Learning in NLP” - Strubell, Training one model
GaneSh, MCCG"Um - ACL 201 9 SOTA NLP model (tagglng) 13 Q Frangois Chollet @ o
w/ tuning & experimentation 33,486 ML @rchollet
Transformer (1arge) 121 Training ever bigger convnets and LSTMSs on ever
w/ neural architecture search 394,863 bigger datasets gets us closer to Strong Al -- in the

same sense that building taller towers gets us closer to

[ Is bigger-is-better a scientific research program? ™™

Traduire le Tweet
4:44 AM - 28 avr. 2019 - Twitter for Android

621 Retweets 2,4 k J'aime 1 0



Computation and model size

o)
Yu, Haonan et al. “Playing the lottery with
. rewards and multiple languages: lottery
A Neural net are over parametrized tickets in RLand NLP? Arxiv
abs/1906.02768 (2019)
Optimal Brain Damage » = z: — o
2 - P A neural network Randomly initialized A subnetwork
es G iR D S e gz" Ezz 7 which achieves  neural network N 7' of N
AT Bell Laborateric, Holmdel, N 3. 07733 g i % 20 good performance
=2 -4 18
p=} " e 4 N
@ 10{ = Random ticket @ 1| = Random ticket Fi LIf iistworkewithicand st = £
o Winning ticket, i — Winning ticket, Ir gure 1. If a neural network with random weights (center) is suffi
LeCU n, Y., Denker, JS, & SO"a, SA (1 989) = i - Winningticket, nolr Pl — w;nn;ng ticket, no Ir ciently overparameterized, it will contain a subnetwork (right) that
Optima| Brain Damage_ NIPS. Winaing Hcket, o 1 one:shot 12 Winaing tcket;no r; one: shat N~ perform as well as a trained neural network (left) with the same
°S3RSBLEREIERS °S3rR8BLERREI8RY number of parameters.
Fraction of weights pruned Fraction of weights pruned,

excluding embeddings

Ramanujan, Vivek et al. “What's Hidden in a Randomly
Figure 2: Winning ticket initialization performance for Transformer Base models trained on machine translation. Welghted Neural Network?” ArXiv abs/'l 911.13299

(2019): n. pag.
A Training sparse models for scratch — the GPU |ssue

F.. PR T et . 4
- "5 g Yy - . 0.7
O Trading off speed/memorv/ﬂeX|b|I|tv m—- T
-
Q  CPU/IPU? P o ] S| &
H - . i SR
g b X Block Sparsity = By 03
BT ] R E T . Thw™® = 02
LE’*O’ Balanced Sparsity (Ours) 9o P 1 P LR PR e ™A T N
- = . aance‘ parsly‘ M 5 DenseI Model H T T . - - " _. .:. 3 e | e | 0.0
G R A Fl H CO Rl: 0 0.5 I1 . 1? , 2 25 3 (a) Random Sparsity (b) Balanced.Spa:sity . (c) Block Sparsil;'
Figure 1: Perplexity and Inference Time trade-off of differ- Yao, Z, Cao, S., ?(IaO, W, Zhang' C., & Nie, L. (201 8)'
ent sparsity patterns on the PTB dataset (Marcus et al. 1999). Balanced Sparsity for Efficient DNN Inference on GPU. 1"
All the methods prune the same pre-trained LSTM model AAAl

with single 1500-hidden-units cell to reach 90% sparsity.



Computation and model size

SustaiNLP 2020

First Workshop on Simple and Efficient Natural

Promoting smaller models

Language Processing

A Lack of incentive
[ Reviewing overload => focus on SOTA only

Workshop at EMNLP 2020

J  SustaiNLP 2020 co-located with EMNLP 2020

[ First Workshop on Simple and Efficient Natural Language Processing
d  @sustainlp2020 - https://sites.google.com/view/sustainlp2020

A Shared task to stimulate the development of more efficient models

Based on: GLUE/SuperGLUE
Goal: optimal trade-off between performance and efficiency
Evaluation: ranking models according to efficiency under model performance constraints
Focus on inference

3  training efficiency difficult to fairly evaluate

A training cost make headlines but... cumulative lifetime environmental cost of large-scale

production models is mostly constituted by inference computational cost

(N Wiy Hiy W
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https://sites.google.com/view/sustainlp2020

Computation and model size

Reducing the size of a pretrained model
Three main techniques currently investigated:

A Distillation
d  Pruning
4 Quantization

13



Computation and model size

Distillation

d  The best of both worlds (large models and small models)
O reduce inference cost
A capitalize on the inductive biases learned by a large model.

d DistilBert: 95% of Bert performances in a model 40% smaller and 60% faster

Input: ['[CLS]', 'i', 'think', 'this', 'is', 'the', 'beginning', 'of', 'a', 'beautiful', '[MASK]', '.', '[SEP]']

Rank @ - Token: day — Prob: 0.21348

Rank 1 - Token: life — Prob: 0.18380

Rank 2 - Token: future — Prob: 0.06267

Rank 3 - Token: story - Prob: 0.05854 L = — tl - 3 IOg(Sl)
Rank 4 - Token: world - Prob: 0.04935

Rank 5 - Token: era - Prob: 0.04555 :

Rank 6 - Token: time - Prob: 0.03210 1

Rank 7 - Token: year - Prob: 0.01722

Rank 8 - Token: history - Prob: 0.01663 With t the logits from the teacher and s the logits of the student
Rank 9 - Token: summer - Prob: 0.01335

Rank 10 — Token: adventure ~ Prob: 0.01233 To further expose the mass of the distribution over the classes, Hinton et al.
Rank 11 - Token: dream - Prob: 0.01209

Rank 12 - Token: moment - Prob: 0.01129 introduce a softmax-temperature:

Rank 13 - Token: night - Prob: 0.01084

Rank 14 - Token: beginning - Prob: 0.00937

Rank 15 — Token: season — Prob: 0.00664

Rank 16 — Token: journey - Prob: 0.00621 elp(;I/T)

Rank 17 - Token: period - Prob: 0.00553 P =

Rank 18 - Token: relationship - Prob: 0.00517 Z . e;lfp(:j/T)

Rank 19 - Token: thing - Prob: 0.00508 J

14

T is the temperature parameter.



Computation and model size

Distillation

[  Alot of fresh work in late 2019
Tsai et al., Turc et al., Tang et al.

O Jiao, X, Yin, Y, Shang, L., Jiang, X., Chen, X,, Li, L., Wang, F,, & Liu, Q. (2019). TinyBERT: Distilling
BERT for Natural Language Understanding. ArXiv, abs/1909.10351

Transformer Layer: )

Embedding Layer: C] ; Attngoss N

Prediction Layer: (Y i % — TR Y
! .

Layer Number: N > M ; s
& A " 4 Attention Matrices Attention Matrices . Task-specific
Teacher (BERT) Hidden Size: d > d ;, (Rheads:ly o (meattiy ‘_ —————— General Learning —-=:=+=-==-=.=.- P

! ! Learning !

i
Student (TinyBERT) | L Hidnoss l ﬂﬂﬂ‘ T Transformer Distillation | General I Transformer Distillation |  Fine-tuned
. CF Py Text Corpus | TinyBERT | TinyBERT
: i i Hidden States Hidden States ' !
e O @y
: Transformer ) - i DaitaiA .
—_— i
:> Distillation ; el ata Augmentation A 3
i Task Dataset
i

: Figure 2: The illustration of TinyBERT learning

Text Input Teacher Layer Student Layer

() (b)

Figure 1: An overview of Transformer distillation: (a) the framework of Transformer distillation, (b)

the details of Transformer-layer distillation consisting of Attn;,ss(attention based distillation) and

Hidn;,ss(hidden states based distillation). 15


https://arxiv.org/abs/1909.00100
http://arxiv.org/abs/1908.08962
http://arxiv.org/abs/1903.12136

Computation and model size

Head pruning

3

Elena Voita et al., “Analyzing Multi-Head Self-Attention:
Specialized Heads Do the Heavy Lifting, the Rest Can Be
Pruned,” ArXiv:1905.09418 [Cs], May 22, 2019,
http://arxiv.org/abs/1905.09418

Paul Michel, Omer Levy, and Graham Neubig, “Are Sixteen
Heads Really Better than One?,” ArXiv:1905.10650 [Cs],
November 4, 2019, htitp://arxiv.ora/abs/1905.10650.

Head ablation accuracies
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(a) Evolution of accuracy on the validation set of
SST-2 when heads are pruned from BERT according
to I.
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Percentage pruned
(b) Evolution of Matthew’s correlation on the valida-
tion set of CoLA when heads are pruned from BERT
according to I

35
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25
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0.0 9

0% 20% 0% 60% 80%  100%
Percentage pruned
(c) Evolution of F-1 score on the validation set of
MRPC when heads are pruned from BERT according
to Ij.

0% 20% 40%  60% 80%  100%
Percentage pruned
(d) Evolution of the BLEU score of our IWSLT 1 6
model when heads are pruned according to I, (solid
blue).


http://arxiv.org/abs/1905.09418
http://arxiv.org/abs/1905.09418
http://arxiv.org/abs/1905.10650

Computation and model size

Weights pruning
A ASAPP: Ziheng Wang, Jeremy Wohlwend, and Tao Lei, “Structured Pruning of Large Language

Models,” ArXiv:1910.04732 [Cs, Stat], October 10, 2019, httD://arxiv.orCl/abs/1 910.04732
Q  Low-rank matrix factorization + differential LO pruning — e o, 05 — =0
using a Hard Concrete distribution 4 4

Q  RoBERTa on GLUE (99% performances)
\/ \/

Parameters SST2 MRPC STS-B  QNLI Average
Christos Louizos, Max Welling, and Diederik P. Kingma, “Learning Sparse

125M  (100%) 92.43 90.9 90.22 89.77 90.83
80M  (65%) 92.09 88.61 88.18 89.05 89.48

Neural Networks through LO Regularization,” ArXiv:1712.01312 [Cs, Stat],
December 4, 2017, http://arxiv.org/abs/1712.01312.

Penalty
N

—2

Layer pruning
d  Facebook: Angela Fan, Edouard Grave, and Armand Joulin, “Reducing Transformer Depth on Demand with
Structured Dropout,” ArXiv:1909.11556 [Cs, Stat], September 25, 2019, htip://arxiv.org/abs/1909.11556.

MNLI SST2

= = 84 ‘ ' 94 ‘ 1 MNLI  SST2
= ) Prunedt0 9 = 3 93 |
%z Train 9 Layer Model X = §’ 82 § 9 | 6 Layers (50% Pruned)
= Pruned to 6 = £ 381 Y RoBERTa 823 921
S = = 3 80 3 A + LayerDrop 829 925
&= Train 6 Layer Model pruned o3 = = < 72 =< :g ] + more data 84.1 932
e ] runed to = 7 3
= Q< = 77 38 3 Layers (75% Pruned)
& Train 3 Layer Model 0 50 75 0 50 75 RoBERTa 78.1 90.3
e On Demand Train One Percentage of layers pruned Percentage of layers pruned + LayerDrop 78.6 90.5
rain Separate Depth Selection  Full Network + more data 822 920 1 7

Networks -+ BERT trained from scratch -O- LayerDrop
TRAIN + TEST TIME Decreasing Model Size TEST TIME TRAIN TIME A RoBERTa trained from scratch © DistilBERT



http://arxiv.org/abs/1910.04732
http://arxiv.org/abs/1712.01312
http://arxiv.org/abs/1909.11556

Computation and model size

Quantization

d  Quantized Tensors

. x
O  From FP32to INTS Q(z,scale, zero_point) = round(

+ zero_point>
scale

A Dynamic quantization on Bert
d  Applied on torch.nn.Linear — 438 MB FP32 => 181 MB INT8

| (experimental) Dynamic Quantization on BERT

| Prec | F1 score | Model Size | 1 thread | 4 threads |
A 0.6% F1 score accuracy after applying post-training | FP32 | ©.9019 | 438 MB | 160 sec | 85 sec |

dynamic quantization on fine-tuned BERT on the MRPC tagk | N8 | ©.8953 1 181 MB 1 90 sec | 46 sec |

O Q8BERT (Intel), a Quantized 8bit Version of BERT-Base
[d  https://www.intel.ai/g8bert/

A Ex: MRPC F1 0.8788 with post-training dynamic quantization and 0.8956 with quantization-aware training.
(4 Symmetric quantization: Quantize(x, scale, bits) = Clip(Round(x * scale), - (?*'s-71- 1), 2bits-1_ 1)

18


https://pytorch.org/tutorials/intermediate/dynamic_quantization_bert_tutorial.html
https://www.intel.ai/q8bert/

Lack of robustness

[ High variability - easy to fall in local minima
A Bert on STILS: variability
[ Hyper parameter search for fine-tuning

d  Solutions
O Better regularization? (Mix-out)
O Ensembles (distilled if necessary cf. Microsoft's MT-DNN))

19



Lack of robustness

100

Q High variability - easy to fall in local . TR T _E
minima w g P ‘f +
d  NYU: Jason Phang, Thibault Févry, and Samuel R. 20

Task Score

Bowman, “Sentence Encoders on STILTs: ° BER" = = =
Supplementary Training on Intermediate . ssT MRPC QP STS MUt owd RTE
Labeled-Data Tasks,” ArXiv:1 ?1 1.01088 [Cs], " T e o T’ -*— T o 'f' F
November 2, 2018, hitp://arxiv.ora/abs/1811.01088 ¢ wlap T T RS
g — ; 25 ’

d  Typically extensive hyper-parameter search * —

01 == 00
fo r ﬁ n e-t u n I n g : BERTBERT—»MNUBERTBERT—MNUBERTBERT—)MNUBERTBERT—~MNLIBERTBERT—»MNLIBERTBERT~MNUBERTBERT—MNUBERTBERT—vMNLl
ColA SST MRPC QQP sTS MNLI(*) QNLI RTE
H H H 100
Finetuning ROBERTa on Winograd Schema Challenge 2
80 e s o
(WSC) data ) T g + . BT,
5 60 PEX
(€) & ,:* X X * Kx e X BeX
The following instructions can be used to finetune RoBERTa on the WSC training data provided by SuperGLUE. ﬁ 40 *p©
= x X Rk
Note that there is high variance in the results. For our GLUE/SuperGLUE submission we swept over the learning rate 20
(1e-5, 2e-5, 3e-5), batch size (16, 32, 64) and total number of updates (500, 1000, 2000, 3000), as well as the random o e
seed. Out of ~100 runs we chose the best 7 models and ensembled them. BER

T BERT BERT BERT BERT BERT BERT BERT
BERT-MNLI BERT-MNLI BERT-MNLI BERT-MNLI BERT-MNLI BERT-MNLI BERT-MNLI BERT-MNLI

httDS//QIth Ub-Com/DVtO rCh/falrSGQ/bIOb/maSte r/eXGmDIeS/r Figure 1: Distribution of task scores across 20 random restarts for BERT, and BERT with intermediary fine-tuning

on MNLI. Each cross represents a single run. Error lines show mean=1std. (a) Fine-tuned on all data, for tasks
Oberta/WSC/READM E - md with <10k training examples. (b) Fine-tuned on no more than 5k examples for each task. (c) Fine-tuned on no
more than 1k examples for each task. (*) indicates that the intermediate task is the same as the target task.



http://arxiv.org/abs/1811.01088
https://github.com/pytorch/fairseq/blob/master/examples/roberta/wsc/README.md
https://github.com/pytorch/fairseq/blob/master/examples/roberta/wsc/README.md

Lack of robustness

What are our solutions?
1 Better regularization?

] Mixout: Cheolhyoung Lee, Kyunghyun Cho, and Wanmo Kang, “Mixout: Effective
Regularization to Finetune Large-Scale Pretrained Language Models,’
ArXiv:1909.11299 [Cs, Stat], September 25, 2019,
http://arxiv.org/abs/1909.11299.

(a) Vanilla network at u (c) mixout(u) network at w

(b) Dropout network at w

a Microsoft: Haoming Jiang et al., “SMART: Robust and Efficient Fine-Tuning for
Pre-Trained Natural Language Models through Principled Regularized
Optimization,” ArXiv:1911.03437 [Cs, Math], November 8, 2019,
http://arxiv.org/abs/1911.03437.

Opus — arg;nin F(8) + iDsreg 0, 61) . 5egularizers on x and params
Rs(0) = = bs(f(230), f(21:6))

= £(6) + ARa(6), Ly

max

minF () &~z p<

where £(6) is the loss function defined as

L DBreg(e Ht
L) = S (@i30), 1),

i=1

ZE (f(zi;0), f(i;64)

< 92.5 .
70 s 90.0 = 3
o .
g 6875 Wt
60 0
] 285.0
o a ‘
o - 82.5
50 e = e
- 5 80.0
Devlin Wiese  Our Our+W Devlin Wiese Our Our+W
(a) RTE (Accuracy) (b) MRPC (F1 accuracy)
100 | |
60 -xx;{-.r 80 I T -
o ]
bt o 4
1]
240 § 60
> >
9] 40
s &
20

0 sesesss  cesses . 3 ; .
Devlin Wiese  Our Our+W 0 Devlin Wiese  Our Our+W

(c) CoLA (Mattew’s correlation) (d) STS-B (Spearman correlation)

Figure 3: Distribution of dev scores on each task from 20 random restarts when finetuning
BERTarcE With Devlin et al| (2018)’s: both dropout(0.1) and wdecay(0, 0.01), Wiese et al.
(2017)’s: wdecay (wpre 0.01), ours: mixout(wpre, 0.7), and ours{Wiese et al.| (2017)’s: both
mixout(wpre, 0.7) and wdecay (wpre, 0.01). We write them as Devlin (blue), Wiese (orange), Our
(green), and Our+W (red), respectively. Error intervals show mean=std. For all tasks, the number
of finetuning runs that fail with the chance-level accuracy is significantly reduced when we use our
regularization mixout (wpre, 0.7) regardless of using wdecay (wpre, 0.01).

Symmetrized KL divergence

4(P, Q) = Dku(P||Q) + Dku(Q||P)
21


http://arxiv.org/abs/1909.11299

Lack of robustness

What are our solutions?
A Ensembles and multi-tasking

a  Microsoft: Xiaodong Liu et al., “lmproving Multi-Task Deep Neural Networks via Knowledge Distillation for Natural
Language Understanding,” ArXiv:1904.09482 [Cs], April 20, 2019, http://arxiv.org/abs/1904.09482

. . . o 4 .
Multi-task learning + ensembling + distillation
Pe(clX) Sim(Xy, X3) Fe(RIP, H) Multi-Task
(e.g., probability of (e.g., semantic (e.g., probability of :
labeling text X by c) similarity between X; logic relationship R Loss Function g
and X;) between P and H) L(©|X,6,,...67)
Task specific T T ¥
Output layers
Haureyer Single-Sentence Pairwise Text Pairwise Text Pairwise
Classification Similarity Classification Ranking
(e.g., ColA, SST-2) (e.g., STS-B) (e.g., RTE, MNLI, (e.g., QNLI)
'WNLI, QQP, MRPC)
¥
i i T Back
h Propagation Multi-Task
I, context embedding vectors, one for each token. Teacher pag: A
task 1 e
P.(y|x,0),
i Q(1%.61) t=1..T
....... layers)
Shared
layers - T ‘
13 input embedding vectors, one each token.
t
Lexicon Encoder (word, position and segment) Data ".!T”k 1 —
1

X:a sentence or a pair of sentences
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http://arxiv.org/abs/1904.09482

Reporting and evaluation issues

d  Current workflow for SOTA GLUE scores

[ Comparing single runs on single splits
A Show your work: asking people to report hyper-parameter searches
[ Reporting on standard splits leads to overfitting these splits

[ Training and fine-tuning on various quantity of data
d  Debates on more data versus better models
A How we solved the Winograd Schema Challenge

23



Reporting and evaluation issues

Typical workflow for fine-tuning to SOTA on GLUE

1.  Pre-train your model with as much data/compute as possible

2. Tune fine-tuning hyperparameters on the dev sets

3. Use the SuperGLUE rather than GLUE data for WNLI and implement rescoring trick in combination with using
additional labeled (“Definite Pronoun Resolution Dataset” http://www.hlt.utdallas.edu/~vince/data/emnlp12/) or unlabeled
data (Vid Kocijan et al., “A Surprisingly Robust Trick for Winograd Schema Challenge,” ACL 2019)

4. Use a special (and not officially allowed) pairwise ranking trick for QNLI and WNLI (users are not supposed to share
information across test examples)

5. Intermediate MNLI task fine-tuning for MRPC/STS/RTE

Fine-tune many models on each task. Ensemble the best 5-10 models for each task.

7. Submit a (single) final run to the test leaderboard

o

24


http://www.hlt.utdallas.edu/~vince/data/emnlp12/

Reporting and evaluation issues

Why is this not good

d Hyper-parameter search?

Jesse Dodge et al., “Show Your Work:
Improved Reporting of Experimental
Results,” ArXiv:1909.03004 [Cs, Stat],
September 6, 2019,
http://arxiv.org/abs/1909.03004.

ohn} AM, B, Dr, Dy) | n]
“Standard” splits overfitting?

£ [maxhe{hl

H

(Budget, [E.[accuracy])

0.40

)
w
®

S
w
()

<
w
=

current practice:

LR val. accuracy CNN val. accuracy

¥

S
w
S

Expected validation accuracy
o
w
N

Hyperparameter
assignments.

0.28
0.26 e tastet & i
LR report corresponding test-set accuracies
—e— CNN
0.24 :
10 16 20 930 40 50
Hyperparameter assignments
Budget that Budget that
favors LR favors CNN

PTB ON mie M
TnT  vs. Collins 20 20 Collins { i
Collins vs. LAPOS 20 7
LAPOS Fll
LAPOS vs. Stanford 1 0
Stanford vs. NLP4J 19 20 Stanford { Bl
NLP4J vs. Flair 20 20
NLP4J 4 HI
Table 3: The number of random trials (out of twenty) for Flair { N
which the second system has significantly higher token
accuracy than the first after Bonferroni correction. PTB, ~ (©racle)

Hi

V' For all reported experimental results

O Description of computing infrastructure
O Average runtime for each approach

O Details of train/validation/test splits
O

Corresponding validation performance for each
reported test result

O A link to implemented code

v For experiments with hyperparameter search

O Bounds for each hyperparameter

O Hyperparameter  configurations
performing models

O Number of hyperparameter search trials

O The method of choosing hyperparameter values
(e.g., uniform sampling, manual tuning, etc.) and
the criterion used to select among them (e.g., ac-
curacy)

O Expected validation performance, as introduced
in §3.1, or another measure of the mean and vari-
ance as a function of the number of hyperparam-
eter trials.

for  best-

Kyle Gorman and Steven Bedrick, “We Need to Talk about
Standard Splits,” in Proceedings of the 57th Annual Meeting
of the Association for Computational Linguistics (ACL 2019,
Florence, Italy: Association for Computational Linguistics,
2019), 2786-2791, hitps://doi.org/10.18653/v1/P19-1267.
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http://arxiv.org/abs/1909.03004
https://doi.org/10.18653/v1/P19-1267

More data or better models?

[ More data for fine-tuning
A How we solved the Winograd Schema Challenge?

d More data for pretraining
O More data or better models — Debates on large-scale pretrained models (XLNet, RoBERTa...)
[  Scaling laws for neural LM
[ But transfer-learning => sample effectiveness?

26



More data or better models

Comparing models fine-tuned or pre-trained on different (quantity) of data
A Finetuning: solving the Winograd Schema Challenge MaskedWiki Dataset. To get more data for

fine-tuning, we automatically generate a large-

3 Winograd Schema Challenge scale collection of sentences similar to WSC.
The trophy would not fit in the brown suitcase because More specifically, our procedure searches a large

text corpus for sentences that contain (at least) two

it was too big. What was too big? the trophy or the suitcase?  occurrences of the same noun. We mask the sec-
O MaskedWiki: Kocijan, V., Cretu, A., Camburu, O., Yordanoy, Y.,  ©nd occurrence of this noun with the [MASK] to-

ken. Several possible replacements for the masked

& LUkaSieWiCZ, T. (201 9). A SUprISingly RObUSt TrICk fOr the token are given’ for each noun in the sentence dif-
Winograd Schema Cha”enge_ ACL. ferent from the replaced noun. We thus obtain

examples that are structurally similar to those in
Wsc, although we cannot ensure that they fulfill

3 Pretraining: more data versus better models all the requirements (see Section 2)
Jd  XLNet versus Bert debates

https://medium.com/@xInet.team/a-fair-comparison-study-of-xlnet-and-bert-with-large-models-5a4257{59dc0

A RoBERTa versus XLNet
A Then entered GPT2/T5/XLM-R/mBART - Scaling laws

Jared Kaplan et al., “Scaling Laws for Neural Language Models,” ArXiv:2001.08361 [Cs, Stat], January 22, 2020,
http://arxiv.org/abs/2001.08361 27
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More data or better models

Scaling laws for neural language models

Loss vs Model and Dataset Size
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Figure 1 Language modeling performance improves smoothly as we increase the model size, datasetset
size, and amount of compute?| used for training. For optimal performance all three factors must be scaled 7.5 o
up in tandem. Empirical performance has a power-law relationship with each individual factor when not 6.0 — L)
bottlenecked by the other two. 45
The optimal model size grows smoothly E
with the loss target and compute budget = 3.0
—— Nheaa =8 —e— 50M Params —e— dmodel = 256 2
—+— dmocellhesd = 64 /| | 7 274M Params = dmodel = 512 Line color indicates .
—— 1.5B Params / —+— Gmodel = 1024 number of parameters
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Figure 5 Performance depends very mildly on model shape when the total number of non-embedding
parameters [NV is held fixed. The loss varies only a few percent over a wide range of shapes. Small differences

109 10% 109

Compute (PF-days)

_ Compute-efficient
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training stops far
short of convergenc

C* ~10* PF-Days N* ~ 102 parameters,

D* ~ 102 tokens, L* ~ 1.7 nats/token 28



More data or better models

Scaling laws for neural language models

L — the cross entropy loss in nats. Typically it will be averaged over the tokens in a context, but in
some cases we report the loss for specific tokens within the context.

N — the number of model parameters, excluding all vocabulary and positional embeddings
C ~ 6N BS - an estimate of the total non-embedding training compute, where B is the batch size,

and S is the number of training steps (ie parameter updates). We quote numerical values in PF-days,
where one PF-day = 101° x 24 x 3600 = 8.64 x 101 floating point operations.

D — the dataset size in tokens

Berit, — the critical batch size [MKAT1S8], defined and discussed in Section 5.1} Training at the
critical batch size provides a roughly optimal compromise between time and compute efficiency.

Chmin — an estimate of the minimum amount of non-embedding compute to reach a given value of
the loss. This is the training compute that would be used if the model were trained at a batch size
much less than the critical batch size.

Smin — an estimate of the minimal number of training steps needed to reach a given value of the loss.
This is also the number of training steps that would be used if the model were trained at a batch size
much greater than the critical batch size.

ax — power-law exponents for the scaling of the loss as L(X) o 1/X*X where X can be any of
N.D,C,S,B,cmn,

7 \‘\M 7
6 6
5 5
2 0 Layer 2
8,|l— 3
24 —— 1 Layer \ ';.4 —e— 1 Layer
S | —— 2Layers S | —— 2Layers
= AN =
3] — 3 Layers 3] — 3 Layers \.
—— 6 Layers —=— 6 Layers \\
> 6 Layers > 6 Layers
2 2
10° 107 108 109 103 10* 103 108 107 108 10°

Parameters (with embedding) Parameters (non-embedding)

Figure 6 Left: When we include embedding parameters, performance appears to depend strongly on the
number of layers in addition to the number of parameters. Right: When we exclude embedding parameters,
the performance of models with different depths converge to a single trend. Only models with fewer than 2
layers or with extreme depth-to-width ratios deviate significantly from the trend.

Operation | Parameters FLOPs per Token
Embed (”vocab il ”ctx) dmodel 4dmodel

Attention: QKV Nayerdmodel3dattn 2nayerdmodel 3dattn
Attention: Mask — 2n1ayerNetxdattn
Attention: Project Nayerdattndmodel 2nayerdatindembd
Feedforward n]ayeI-Qdmode]dff inayeermodeldﬁ
De-embed — 2dmodelvocab

Total (Non-Embedding) | N = 2dmodelnlayer (Qdattn =+ dff) Crorward = 2N + inayernctxdattn

Table 1 Parameter counts and compute (forward pass) estimates for a Transformer model. Sub-leading
terms such as nonlinearities, biases, and layer normalization are omitted.

Yu, H., Edunov, S., Tian, Y., & Morcos, A.S. (2019). Playing
the lottery with rewards and multiple languages: lottery
tickets in RL and NLP. ArXiv, abs/1906.02768.
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Figure 2: Winning ticket initialization performance for Transformer Base models trained on machine translation.



More data or better models

The question of generalization and data

Deep Mind: Dani Yogatama et al., “Learning and Evaluating General Linguistic Intelligence,” ArXiv:1901.11373 [Cs, Stat], January
31, 2019, http://arxiv.ora/abs/1901.11373.

[ Recent datasets easy to solve with little generalization or abstraction
d  gives models that only work well for a specific purpose

A overestimates our success at having solved the general task
O fails to reward sample efficient generalization

A Models typically evaluated in terms of performance at the end of training
[d  model A: 90% accuracy with 100 training samples does not improve with more training
[ model B: takes one million examples to get to 90% before plateauing at 92%

(1 Online code length

d ENS: Léonard Blier and Yann Ollivier, “The Description Length of Deep Learning Models,” ArXiv:1802.07044 [Cs],
February 20, 2018, http://arxiv.org/abs/1802.07044

d DeepMind: Dani Yogatama et al., “Learning and Evaluating General Linguistic Intelligence,” ArXiv:1901.11373 [Cs,
Stat], January 31, 2019, http://arxiv.org/abs/1901.11373

M
((A) = |81| 1082 |lj| - 21082 p(ySi | xS,-"wSi_1) 30
=2
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More data or better models

The question of generalization

[ On SQuUAD (and various QA datasets)

=
= Sy
BERT+supervised - __—+ ELM
. _a-a'd BERT 3 — o BERT
=3 —aF " ELMo S /+/o/°/°
A/ﬁ/ 3 Mo = */3 i
a A/ / B S *
o a a4 *®
B % A =
_ . =
&3 80 B
5 x i_._) 2 !/x/x ELMo+su pervised 1
x 'QU) =3 —,_,(/"/
= S e o —a——>8 BERT+suy |
& 1 - = PO e et
¥ PO o BERTcraten Q] a—a—
= =
T T T T 1 T T T T T T T 1
0 100 1000 10000 80000 0 1 2 3 4 5 6 7
number of examples example subset

A Code-length metric: models that perform worse at the beginning can have
problems catching up (catch-up phenomenon)

1 One key reason models generalize poorly to new tasks is that they rely on
task specific components 31



In-domain vs. out-of-domain generalization
Using more data and the question of in-domain versus out-of-domain

[ In-domain generalization versus out-of-domain generalization

d  What does out-of-domain generalization means?
[ train/test distribution shifts
[ In natural languages:
O different training and test datasets for the same underlying “task”
A designing new evaluation datasets
[ related to domain adaptation
O related to zero-shot (but not exactly identical)
3 In artificially constructed languages
A constructing different splits to evaluate performances under distributional shifts

Ky



In-domain vs. out-of-domain generalization

A few examples in NLP: -

. . . 58 75
d we've just seen an example on Question-Answering 8g
£ 504
On SQuAD: Dani Yogatama et al., “Learning and Evaluating General Linguistic 52 25
Intelligence,” ArXiv:1901.11373 [Cs, Stat], January 31, 2019, o4
httg://arxi\/ nra/ahe/10N1 1127 0.00 0.25 0.50 0.75 1.00
SQuAD Trivia QuAC | QA-SRL | QA-ZRE MNLI development set accuracy
BERT | 86.5 (78.5) | 35.6 (13.4) | 56.2 (43.9) | 77.5 (65.0) | 55.3 (40.0)
ELMo | 81.8 (72.2) | 32.9 (12.6) | 45.0 (34.5) | 68.7 (52.3) | 60.2 (42.0) Figure 2: In-distribution generalization: Performance

on the MNLI development set
Table 2: F; (exact match) scores of the best BERT and ELMo models trained on SQuAD and

evaluated on other question answering datasets.

. . « Lexical over Sub: Constituent
[d  onMNLI: R. Thomas McCoy, Junghyun Min, and Tal Linzen, “BERTs of a Feather Do Not .| _____
. T N . - 3 m
Generalize Together: Large Variability in Generalization across Models with Similar Test 8 o &
. 3 )
Set Performance,” ArXiv:1911.02969 [Cs], November 7, 2019, B =
http://arxiv.org/abs/1911.02969 5 100 z
£ 3
— — £ 501 =
Heuristic Definition Example = 1 %
Lexical overlap  Assume that a premise entails all hypothe- The doctor was paid by the actor. 0= : : T T T : : :
ses constructed from words in the premise =~ ————— The doctor paid the actor. 00 L3 1800 05 10 000 0> 0
WRONG Accuracy
Subsequence Assume that a premise entails all of its The doctor near the actor danced.
contiguous subsequences. ——— The actor danced. Figure 3: Out-of-distribution generalization: Perfor-
WRONG < 2
mance on the HANS evaluation set, broken down into
Constituent Assume that a premise entails all complete  If the artist slept, the actor ran. . . . .
L : six categories of examples based on which syntactic
subtrees in its parse tree. ———— The artist slept.

WRONG heuristic each example targets and whether the correct
label is entailment or non-entailment. The non-entailed
lexical overlap cases (lower left plot) display a large de-
gree of variability across instances.

Figure 1: The heuristics targeted by the HANS dataset, along with examples of incorrect entailment predictions
that these heuristics would lead to. (Figure from McCoy et al. (2019).)
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In-domain vs. out-of-domain generalization

A few examples in NLP:

[ OnMNLI: R. Thomas McCoy, Junghyun Min, and Tal Linzen, “BERTs of a Feather Do Not Generalize Together: Large Variability

in Generalization across Models with Similar Test Set Performance,” ArXiv:1911.02969 [Cs], November 7, 2019,
http://arxiv.org/abs/1911.02969

Category Example Accuracy distribution
G B 100
o
Subject-object swap  The doctor visited the lawyer. - The lawyer visited é § 504
[2]
the doctor. 2E ol el L
0.0 05 10
Accuracy
kS § 100
g g B [
Preposition The judges by the manager saw the artists. -+ The —gé 50+
artists saw the manager. 25 ol el |
0.0 0.5 1.0
Accuracy
“é § 100
Relative clause The actors advised the author who the tourists saw. é § 504
. o [2]
- The author advised the tourists. 3E ol ol |
0.0 0.5 1.0
Accuracy
5 § 100
2 [
Passive The senators were recommended by the managers. £ § 501 I
[%]
-» The senators recommended the managers. 2£ o e — —
Accuracy
ks § 100
. . . . % 5
Conjunction The doctors advised the presidents and the tourists. £ é 50+
- The presidents advised the tourists. 2£ 0—#
0.0 0.5 1.0
Accuracy

Figure 4: Results on the various subcategories within the non-entailed lexical overlap examples of the HANS
dataset. We do not include the other 25 subcategories of the HANS dataset in this figure as there was little 34
variability across instances for those subcategories.
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In-domain vs. out-of-domain generalization

A few examples in NLP:

[ Work on compositionality: systematicity & generalization

[ SCAN (Brenden M. Lake and Marco Baroni, “Generalization without Systematicity: On
the Compositional Skills of Sequence-to-Sequence Recurrent Networks,”

40

N
S

Accuracy on new commands (%)

o

LTURN LTURN JUMP

Figure 1. Examples of SCAN commands (left) and the corresponding action sequences (right).

24 25 26 27 28 30 32 33 36 40 48
ArXiv:1711.00350 [Cs], October 30, 2017, http://arxiv.org/abs/1711 .00350) Ground-truth action equence length
jump = JUMP S
jump left = LTURN JUMP o
jump around right = RTURN JUMP RTURN JUMP RTURN JUMP RTURN JUMP g 80
turn left twice = LTURN LTURN €
jump thrice = JUMP JUMP JUMP g 60
jump opposite left and walk thrice = LTURN LTURN JUMP WALK WALK WALK 2
jump opposite left after walk around left = LTURN WALK LTURN WALK LTURN WALK LTURN WALK g 4w
c
>
g
3
<

O PCFG SET (Dieuwke Hupkes et al., “The Compositionality of Neural Networks: ‘O Scommandiengi
Integrating Symbolism and Connectionism,” ArXiv:1908.08351 [Cs, Stat], August 22, I - e
igure 4. Zero-sl ot general ization to commands with action se-
201 9’ httD //a erV OFQ/a bS/1 908 . 08351 ) quence lengths not seen in training. Top: accuracy distribution by

action sequence length. Bottom: accuracy distribution by com-
mand length (only lengths attested in the test set shown, in both
cases). Bars show means over 5 runs of overall-best model with

- - repeat A B C — ABCABC +1SEM.
echo remove first D , E F — EFF
a0 30 append swap F G H ,repeat I J — HGF I JIJ |Unary functions Fy: Binary functions Fp:

S0 4 50 COpy T1 *** Tp R append X, y —+ XYy
2 i 2 reverse &y --- Ip — Ty e 1 prepend X, y = ¥y x
° I 1 / shift z1 - -+ Ty —¥ @ v Ty 1 remove_first X, y -y
o o swap &y - Tnp — &p T2 +++ Tp—1 T3 remove second X,y — X
’ depth * * ° ¢ depth ° * repeat x1--- Ip — T1 r Tp T1 v Tp
(a) WMTIT (b) PCFG SET data. echo Ty-e Tp — Ty Ty Tp
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In-domain vs. out-of-domain generalization

Dieuwke Hupkes et al., “The Compositionality of Neural Networks: Integrating Symbolism and
Connectionism,” ArXiv:1908.08351 [Cs, Stat], August 22, 2019, http://arxiv.org/abs/1908.08351

Testing compositionality
@0 +000
NON N N

(b) Productivity

@ 000 ©
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(a) Systematicity (c) Substitutivity
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number of functions

depth length
Figure 9: Accuracy of the three models on the productivity test set as a function of several properties
of the input sequences: depth of the input’s parse tree, the input sequence’s length and the number of
functions present. The results are averaged over three model runs and computed over ten thousand
test samples.

% LSTMS2S ConvS2S Transformer
memorisation
-~ 'overgeneralisation overgeneralisation
1.00 ————_ e
memorisation
0.05

vergeneralisation

1.00
5075 \—/—’\—\,
8
(04l 5050
8
®0.25
vergenel n
0.00

overgeneralisation

memorisation
Q
overgeneralisati

> isati

memorisation
L/&

1.00
memorisation memorisation memorisation
>0.75
5050
0.5
®0.25
0.00 — =
0 5 10 0 15 20 25 0 5 10 15 20 25
epoch epoch epoch
1.0
038
306
5
804
8
02
0.0

2345678 9101112131415 2 3 4 56 7 8 9101112131415 2 3 4 5 6 7 8 9 101112131415
number of characters number of characters number of characters

(a) LSTMS2S (b) ConvS2S (c) Transformer

Figure 10: Accuracy of the three architectures on different functions with increasingly long character 36
string inputs. The maximum character string length observed during training is 5. While Trans-

former and ConvS2S can, for most functions, generalise a little beyond this string length, LSTMS2S

models cannot
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In-domain vs. out-of-domain generalization

Measuring train/test distribution shifts: large body of work in domain adaptation

- Plank, B., & Noord, G.V. (2011). Effective Measures of Domain Similarity for Parsing. ACL.
- Ruder, S., & Plank, B. (2017). Learning to select data for transfer learning with Bayesian Optimization. EMNLP.
- EISahar, H., & Gallé, M. (2019). To Annotate or Not? Predicting Performance Drop under Domain Shift. EMNLP/IJCNLP.

0  Similarity metrics: distance between the source and target domain
Kullback-Leibler (KL) divergence

Jensen-Shannon (JS) divergence

Renyi divergence

Maximum Mean Discrepancy (MMD)

Wasserstein distance

Proxy A distance

0  Feature Representations for computing domain similarity measures
Term/n-grams distributions

Topic distributions (for instance by an LDA)

Word embeddings

Autoencoder representations

Token-sequence representations (diversity, n-grams)

(I N Ny Wy Oy W

(I Wy Wy Wy W
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The limits of NLU and the rise of NLG

[ Online code highlighted the question of training a task-specific head

[ should we even have task-specific elements?

d  Welcome text-to-text models
A GPT2 and language modeling as a multi-task learning objective
[ Facebook’'s BART and mBART: pretraining as text-to-text objective
[  Google’s T5: finetuning as a text-to-text generation task

d  NLU and NLG

A Sam: nothing better than GLUE/SuperGLUE in the short-term
O NLU and NLG - the problem of metrics
[ NeuralGen workshop

38



The limits of NLU and the rise of NLG

Question Context Answer

What is a major importance ...Southern California is a major

4 Online code highlighted the question of training a oo Gl e mricommnat |

of California and the US....

1 What is the translation Most of the planet is Der Grofiteil der
t a S k_s p eC I I C h e a d from English to German? ocean water. Erde ist Meerwasser
What is the Harry Potter star Daniel Harry Potter star

summary? Radcliffe gains access to a Daniel Radcliffe gets
e COl I Ie text_to_text I I IO e S reported £320 million fortune... £320M fortune...

Hypothesis: Product and geography Premise: Conceptually cream
are what make cream skimming skimming has two basic Entailment

[ The Natural Language Decathlon: getting rid of = & mea™ S s

or contradiction?
A stirring, funny and finally
transporting re-imagining of

task-specific modules Bl ik el

Bryan McCann et al., “The Natural Language Decathlon: Multitask Learning as Question
Answering,” ArXiv:1806.08730 [Cs, Stat], June 20, 2018, http://arxiv.org/abs/1806.08730
d  GPT2: language modeling as a multi-task learning  wrstsimmdimiig ="
In a now-deleted post from Aug. 16, Soheil Eid, Tory candidate

b H -t' in the riding of Joliette, wrote in French: "Mentez mentez,
O J eC Ive il en restera toujours quelque chose,” which translates as,
"Lie lie and something will always remain.”

Alec Radford et al., “Language Models Are Unsupervised Multitask Learners” “I hate the word ‘perfume,” Burr says. ‘Its somewhat better

in French: ‘parfum.

If listened carefully at 29:55, a conversation can be heard
between two guys in French: “-~-Comment on fait pour aller

LAMBADA LAMBADA CBT-CN CBT-NE WikiText2 PTB  enwik8 text8 WikiTextl03 ~ IBW

(PPL) (ACC) (ACC) (ACC) (PPL) (PPL) (BPB) (BPC) (PPL) (PPL) de ’autre coté? -Quel autre coté?”, which means “- How

S Woapdn

SOTA 998 56.25 85.7 823 3914 4654 099 108 183 218 e
If this sounds like a bit of a stretch, consider this ques-
117M 3513 45.99 87.65 83.4 29.41 65.85 1.16 1.17 37.50 75.20 tion in French: As-tu aller au cinéma?, or Did you go to
345M 15.60 55.48 92.35 87.1 22.76 47.33 1.01 1.06 26.37 55.72 the movies?, which literally translates as Have-you to go to

762M 10.87 60.12 93.45 88.0 19.93 40.31 0.97 1.02 22.05 44.575 g (i

1542M 8.63 63.24 93.30 89.05 18.34 35.76 0.93 0.98 17.48 42.16 “Brevet Sans Garantie Du Gouvernement”, translated to

English: “Patented without government warranty”.

Table 3. Zero-shot results on many datasets. No training or fine-tuning was performed for any of these results. PTB and WikiText-2 . .
; 5 Table 1. Examples of naturally occurring demonstrations of En- 39
results are from (Gong et al., 2018). Other language model results are from (Dai et al., 2019). glish to French and French to English translation found throughout

the WebText training set.
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The limits of NLU and the rise of NLG

A Therise of pretrained NLG models

a

Facebook’s BART: pretraining as text-to-text objective

Mike Lewis et al., “BART: Denoising Sequence-to-Sequence Pre-Training for Natural Language Generation,
Translation, and Comprehension,” ArXiv:1910.13461 [Cs, Stat], October 29, 2019, http://arxiv.org/abs/1910.13461.

Encoder-decoder scheme:

Bidirectional
' E>

A_B_E

ABCDE

Autoregressive
Decoder

<s>ABCD

Denoising objective:

Token Masking  Sentence Permutation Document Rotation

(AoED) & (Rsc.0E) (3 (ADiE)

Token Deletion Text Infilling

mMBART: Yinhan Liu et al., “Multilingual Denoising Pre-Training for Neural Machine Translation,” ArXiv:2001.08210

[Cs], January 23, 2020, http://arxiv.org/abs/2001.08210.

Who am | ? </s> Where did | come from ? </s> <En>

- £, D

Where did __ from ? </s> Who _| __ </s> <En> <En> Who am | ? </s> Where did | come from ? </s>

EN U+ 3. </s> Bl BBE . </s><Ja>

_—

_BH. <s>Fh _</s> <Ja> <Ja>EFN Ue & . </s> B BBH . </s>

Multilingual Denoising Pre-Training (mBART)

FhiZ a2 </s><la>

-—

Sent-MT

/ Who am 12 </s> <En> <Ja>h ZH#? </s>

Well then . </s> See you tomorrow .</s> <En>

e
4 [}

<En> Well then . </s> See you tomorrow .</s> 40

Doc-MT
EN U+ & . </s> BI2BB . </s><la>

Fine-tuning on Machine Translation
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The limits of NLU and the rise of NLG

A Therise of pretrained NLG models

O  Google's T5: fine-tuning as a text-to-text generation task
Colin Raffel et al., “Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer,” ArXiv:1910.10683
[Cs, Stat], October 24, 2019, http://arxiv.org/abs/1910.10683.
Pretraining: Fine-tuning:

Original text

Thank you fef inviting me to your party Jast week.

[ "translate English to German: That is good."

T "cola sentence: The
nputs course is jumping well."

Thank you <X> me to your party <Y> week.

"Das ist gut.”
"not acceptable"

"six people hospitalized after ]

Targets
<X> for inviting <Y> last <z>

on the grass. sentence2: A rhino

"stsb sentencel: The rhino grazed
is grazing in a field."

"summarize: state authorities : .
a storm in attala county.

. i . dispatched emergency crews tuesday to
GLUE 90’3 (Human base“ne' 87’1 . ) survey the damage after an onslaught
. H of severe weather in mississippi.."
SuperGLUE: 89,3 (Human baseline 89,8) s
D N LU and N LG Sam Bowman @sleepinyourhat - 27 oct. 2019 v Sam Bowman @sleepinyourhat - 27 oct. 2019 v
En réponse a @julesgm4 ...but I'm not sure that we've accumulated a big/diverse enough set over
I:I P re a ri n a “*" We aren't at the moment. My coauthors might feel differently, but | don't /%" the last nine months that we'd be able to create something much harder
p g think there's a straightforward way to do it. than SuperGLUE in the same style.
Q3 n 2 L & Q1 n ¥4 &

The biggest lesson we learned from creating SuperGLUE is that most So, where could one go? Generation/structured prediction is an obvious

tO G I_U E a n d " 'typical' NLU datasets are already solved at human level. We left out a and reasonable direction, but | think that's just a different problem—NLU

*lot* of tasks (many of which looked hard a priori) for that reason. The is still interesting and unsolved
community is getting better at dataset creation...

SupeI’GLUE7 O 1 1 3 ¥ 22 1 41

Sam Bowman @sleepinyourhat - 27 oct. 2019 v ﬁ Sam Bowman @sleepinyourhat - 27 oct. 2019 v
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http://arxiv.org/abs/1910.10683

The inductive bias question

1 Let's go back to the generalization problem
[ Models are brittle: fail when text is modified, even though its meaning is preserved
[ Models are spurious: memorize artifacts and biases instead of truly learning

[ Out-of-domain generalization and inductive biases

A How should we formulate inductive bias
A Linguistics tasks gives hints
3  Architectures: Graph Convolutional neural nets and Transformers
A Let’s enrich our datasets
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The inductive bias question

Let's go back to the generalization problem

[ Models are brittle: fail when text is modified, even with meaning preserved

d Models are spurious: memorize artifacts and biases instead of truly learning
Brittle Spurious

Heuristic Definition Example
Article: Super Bowl 50 Lexical overlap ~ Assume that a premise entails all hypothe- The doctor was paid by the actor.
Paragraph: “Peyton Manning became the first quarter- ses constructed from words in the premise W The doctor paid the actor.
back ever 2‘0. lead two dlﬁreren[ leams 1o multtple Super Subsequence Assume that a premise entails all of its The doctor near the actor danced.
Bowls. He is also the oldest quarterback ever to play contiguous subsequences. — - Thewuctor danced.
in a Super Bowl at age 39. The past record was held WRONG

Constituent Assume that a premise entails all complete If the artist slept, the actor ran.

by John Elway, who led the Broncos to victory in Super Y 4 2 e e
. 5 subtrees 1n 1ts parse tree. —_— € artist siept.

Bowl XXXIII at age 38 and is currently Denver’s Execu- 3 WRONG i

tive Vice President of Football Operations and General

Manager. Quarterback Jeff Dean had jersey number 37 o Cexicslioverlap]| [EStibsequencelll IRConsutuent
in Champ Bowl XXXIV.” % -
Question: “What is the name of the quarterback who § 50 é
was 38 in Super Bowl XXXIII?” g g
Original Prediction: John Elway E o
Prediction under adversary: Jeff Dean ; 100 z
€ 50 )
5 5
< _i §
Robin Jia and Percy Liang, “Adversarial Examples for Evaluating Reading Comprehension 0_010 05 10 00 05 10 00 05 10
Systems,” ArXiv:1707.07328 [Cs], July 23, 2017, http://arxiv.org/abs/1707.07328 Accuracy
R. Thomas McCoy, Junghyun Min, and Tal Linzen, “BERTs of a Feather Do Not Generalize Together: Large Variability in Generalization across Models with Similar 43

Test Set Performance,” ArXiv:1911.02969 [Cs], November 7, 2019, http://arxiv.org/abs/1911.02969.



The inductive bias question

[ A possible solution:
A Providing better inductive bias in our models Takeaways
1 How should we test/design inductive bias

« Because we want to learn task-independent representations

. . . | of language, which requires asking and answering:
A Linguistics! e
What components of linguistic meaning are “intrinsic”, and

Q  Ellie Pavlick 2018 — Why should we care N

If these representation can't be trained in end-to-end tasks:

. . . how to we know what is the “right" representation? Which
a bo ut | N g ul St ICS tasks should be viewed as “fundamental” and trained/test
http://www.ipam.ucla.edu/abstract/?tid=14546

explicitly, and which ones should come along “for free"?

3

Dieuwke Hupkes et al., “The Compositionality of Neural Networks: Integrating Symbolism and Connectionism,”
ArXiv:1908.08351 [Cs, Stat], August 22, 2019, http:/arxiv.org/abs/1908.08351

0 +000 @ 0{0/0 ©

l ‘l: 1.0
Q0000 @ 0®0 0 it

/
N

@/,/O O O

LSTMS2S
=«x Convs2S

+a= Productivity

g o — Transformer
(2) Systematicity (B ettty (c) Substitutivity 20'4 ......... i
0.2 IS EEREE
O O e <> <> 0AO4 56 7 8 91011121314 15 20 25 30 35 40 45 50 9 100 11 12 13 14 15

depth length number of functions
L Rk R

Figure 9: Accuracy of the three models on the productivity test set as a function of several properties
of the input sequences: depth of the input’s parse tree, the input sequence’s length and the number of

‘ functions present. The results are averaged over three model runs and computed over ten thousand
{:} <> test samples.

00

44
(d) Localism (e) Overgeneralisation


http://www.ipam.ucla.edu/abstract/?tid=14546
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The inductive bias question

How should we formulate inductive bias

[ Inthe architectures:
[  With Graph Convolutional neural networks or Transformers
Syntactically-informed self-attention

0000 0O000) (0000 OO00) O00Q0) (©00Q) (O0OJ

Feed Feed Feed Feed
Fonward Forward Forward Forward

(e]e]e]e) 0000 (e]e]e]o) 0000

optics
advanced

John gave his wonderful wife a nice present ?3 e
K
vV
Figure 2: Two layers of semantic GCN on top of a (not Layer p (@000

Nobel committee awards Strickland who advanced optics
[Dozat and Manning 2017]

shown) BiRNN or CNN encoder.

Diego Marcheggiani, Joost Bastings, and Ivan Titov, “Exploiting Semantics in Neural Machine Translation with Graph

Convolutional Networks,” ArXiv:1804.08313 [Cs], April 23, 2018, http://arxiv.org/abs/1804.08313
Emma Strubell et al., “Linguistically-Informed Self-Attention for Semantic Role Labeling,” ArXiv:1804.08199 [Cs], April 22, 2018,

http://arxiv.org/abs/1804.08199. 45
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The inductive bias question

A possible solution:
A Providing better inductive bias in our models
1 How should we formulate inductive bias

A Enriching the data with inductive bias
“Overcoming the Lexical Overlap Bias Using Predicate-Argument Structures | OpenReview,” accessed January 6, 2020,
https://openreview.net/forum?id=2AGZUDRsHg

CGl: Adversarial SWAG Linguistically informed data augmentation Improved robustness
Premise: A woman is packing a suitcase.
Hypothesis: A suitcase is packing a woman. Evaluation Model Orig Aug
Figure 3: Example of the GCI’s syntactic variations set. Original: Someone takes the drink, then holds it. BERT 80.74 78.56
; _ : Augmented: Someone takes the drink, then holds In-domain RoBERTa | 83.22 81.39
Pr(?mlse: A lot of peop}e are Sfttm.g on terraces in it. [PRD] takes [AGO] Someone [AG1] the XLNET 7947 76.96
a big field and people is walking in the entrance drink [PRE] [PRD] holds [AGO] Someone
of a big stadium. [AG1] it [PRE] BERT 2492 47.19
Ending: A lot of people are standing on terraces Syntactic ROBERTa | 42.84 57.98
. b{g ﬁeld.and people is walking in the entrance Figure 7: Augmenting the text of an input sentence XILNET 41.35 55.20
of a big stadium. with its predicate-argument structures. BERT 1533 35.10
Figure 4: Example of the GCI’s antonym test set. Antonym RoBERTa | 29.83 48.94
Premise: The reflection he sees is Harrison Ford XLNET 2798 42.34
as someone Solo winking back at him. BERT 7.93 15.87
Ending: The reflection he sees is Eve as someone Named Entities | RoBERTa | 21.16 43.91
Solo winking back at him. ’ )
Gl i XLNET | 1957 4021 46

Figure 5: Example of the GCI’s named entities test set.


https://openreview.net/forum?id=2AGZUDRsHg
https://openreview.net/forum?id=2AGZUDRsHg

The inductive bias question

Specialized pretraining tasks that teach what our model is missing

A Develop specialized pretraining tasks that explicitly learn such relationships
O Word-pair relations that capture background knowledge (Joshi et al., NAACL 2019)
O Span-level representations (Swayamdipta et al., EMNLP 2018)
O Different pretrained word embeddings are helpful (Kiela et al., EMNLP 2018)

A Other pretraining tasks could explicitly learn reasoning or understanding
[ Arithmetic, temporal, causal, etc.; discourse, narrative, conversation, etc.

A Pretrained representations could be connected in a sparse and modular way

O Based on linguistic substructures (Andreas et al., NAACL 2016) or experts (Shazeer et al., ICLR
2017)
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https://arxiv.org/abs/1808.10485
https://arxiv.org/abs/1804.07983
https://arxiv.org/abs/1601.01705
https://openreview.net/forum?id=B1ckMDqlg
https://openreview.net/forum?id=B1ckMDqlg

The common-sense question

Models are brittle and spurious because they lack common-sense

[ Limits of distributional hypothesis—difficult to learn certain types of
information from raw text

3
u
3
L

Human reporting bias: not stating the obvious ( )
Common sense isn't written down

Facts about named entities

No grounding to other modalities

d Possible solutions:

3
u
3

Incorporate other structured knowledge (e.g. knowledge bases like ERNIE, )
Multimodal learning (e.g. with visual representations like VideoBERT, )
Interactive/human-in-the-loop approaches (e.g. dialog, )
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https://openreview.net/forum?id=AzxEzvpdE3Wcy
http://arxiv.org/abs/1905.07129
https://arxiv.org/abs/1904.01766
https://arxiv.org/abs/1901.05415

The common sense question

Definition of Common Sense (Yejin Choi’s Talk at NeurlPS 2019 LIRE workshop)

O the basic level of practical knowledge and reasoning
a concerning everyday situations and events
o that are commonly shared among most people.

For example, it's ok to keep the closet door open, but it's not ok to keep the fridge
door open, as the food inside might go bad.

Past failures (in 70s — 80s):

weak computing power

not much data

no crowdsourcing

not as strong computational models

not ideal conceptualization / representations

(I I W
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https://drive.google.com/file/d/1-6YfnNDdbkXHoLVypfuHTqkUhjXjwgLW/view

The common sense question

/+ Commonsense Reasoning Challenges

1 Winogrande (AAAI 2020)
2 Physical IQA (AAAI 2020)
3. Social IQA (EMNLP 2019)
4
2

Important Observations:

Cosmos QA (EMNLP 2019)

VCR: Visual Commonsense Reasoning

(CVPR 2019)

Abductive Commonsense Reasoning

(ICLR 2020)

TimeTravel: Counterfactual Reasoning - "
(EMNLP 2019) Yejin Choi's Talk at NeurlPS

. HellaSwag: Commonsense NLI (ACL 2019) 2019 LIRE WOFkShOp



https://drive.google.com/file/d/1-6YfnNDdbkXHoLVypfuHTqkUhjXjwgLW/view

The common sense question

A few nice recent reads from Yeijin Choi's team:

o ATOMIC
Maarten Sap et al., “ATOMIC: An Atlas of Machine Commonsense for If-Then

Reasoning,” ArXiv:1811.00146 [Cs], February 7, 2019,
http://arxiv.org/abs/1811.00146

/¢ Xrepels
(E%)
?;\ Y’s attack

a COMET

Antoine Bosselut et al., “COMET: Commonsense Transformers for Automatic
Knowledge Graph Construction,” ArXiv:1906.05317 [Cs], June 12, 2019,
http://arxiv.org/abs/1906.05317.

o  Winogrande

Keisuke Sakaguchi et al., “WinoGrande: An Adversarial Winograd Schema
Challenge at Scale,” ArXiv:1907.10641 [Cs], November 21, 2019,
http://arxiv.org/abs/1907.10641.
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The common sense question

W . d Twin sentences Options (answer)
I n O g ra n e X The monkey loved to play with the balls but ignored the blocks because he found them exciting. balls / blocks
. . . The monkey loved to play with the balls but ignored the blocks because he found them dull. balls / blocks
£ . —
Keisuke Sakaguchl et al » WinoGrande: An X William could only climb begginner walls while Jason climbed advanced ones because he was very weak. William / Jason
Adversarial Wang rad Schema Challenge at Scale,” William could only climb begginner walls while Jason climbed advanced ones because he was very strong. ~ William / Jason
ArXiv:1907.10641 [Cs], November 21, 2019, Robert woke up at 9:00am while Samuel woke up at 6:00am, so he had [ess time to get ready for school. Robert / Samuel
) . Robert woke up at 9:00am while Samuel woke up at 6:00am, so he had more time to get ready for school. Robert / Samuel
http://arxiv.org/abs/1907.10641 The child was screaming after the baby bottle and toy fell. Since the child was hungry, it stopped his crying.  baby bottle / toy
The child was screaming after the baby bottle and toy fell. Since the child was full, it stopped his crying. baby bottle / toy

@  Crowdsourcing:
a Enhancing Crowd Creativity with random “anchor words” => 77k questions

T WINOGRANDE ; (44k) WINOGRANDE ;. (12k)
4 Data Validation from crowd => 53k
3 Light-weight adversarial filtering
. . 2 d;
[  fine-tune RoBERTa on 6k instances (removed from the dataset) => 46k i <
d  ensemble of linear classifiers (logistic regressions) trained on random K
subsets of the data determine whether the representation used in RoBERTa — @
is strongly indicative of the correct answer => 13k questions (not all pairs) ,
KL-divergence=2.53 KL-divergence=0.12
Methods dev acc. (%) testacc.(%) 100"~ sabaint 26215 4000 L
94
WKH 494 49.6 90 3000 100
Ensemble LMs 53.0 50.9 8 S
BERT 65.8 64.9 § | 1 50
ROBERTa 79.3 79.1 D o =S 1000
BERT (local context) 525 51.9 2 B 0 @ ! @
RoBERT (1 i i 3 @
o a (local context) 52.1 50.0 g /
BERT-DPR* 50.2 51.0 50 !
RoBERTa-DPR* 59.4 58.9
40

Human Perf. 94.1 94.0 100 1000 10000 100000 52

No. of Training Examples


http://arxiv.org/abs/1907.10641
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Continual and meta-learning

Current transfer learning performs adaptation once.

Ultimately, we'd like to have models that continue to retain and accumulate
knowledge across many tasks ( ).

No distinction between pretraining and adaptation; just one stream of tasks.
Main challenge towards this: Catastrophic forgetting.

Different approaches from the literature:
[ Memory, regularization, task-specific weights, etc.
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https://arxiv.org/abs/1901.11373

Continual and meta-learning

Objective of transfer learning: Learn a representation that is general and
useful for many tasks.

Objective does not incentivize ease of adaptation (often unstable); does not
learn how to adapt it.

Meta-learning combined with transfer learning could make this more
feasible.

However, most existing approaches are restricted to the few-shot setting and
only learn a few steps of adaptation.
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Bias

Bias has been shown to be pervasive in word embeddings and neural models
in general

Large pretrained models necessarily have their own sets of biases

There is a blurry boundary between common-sense and bias

We need ways to remove such biases during adaptation

A small fine-tuned model should be harder to misuse
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Conclusion

Themes: words-in-context, LM pretraining, deep models
Pretraining gives better sample-efficiency, can be scaled up
Predictive of certain features—depends how you look at it
Performance trade-offs, from top-to-bottom

Transfer learning is simple to implement, practically useful

Still many shortcomings and open problems
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That's all for this year ;-)
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