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Large language models are powerful but       
hard to understand.
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✦  What aspects of input does the model pay attention to?


✦  What knowledge does the model learn to perform a task?


✦  How is the input/knowledge used to generate output?


✦  How does the information flow through the model?



What’s the Plan?

• A bit of History


• A bird’s-eye view


• (Selected) interpretability techniques


• Evaluation of interpretations
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A Bit of History
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https://onlinelibrary.wiley.com/doi/abs/10.1207/s15516709cog1402_1
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Elman (1990): Simple RNN’s

• He applied the model to a “language modelling” task, 
among others

https://onlinelibrary.wiley.com/doi/abs/10.1207/s15516709cog1402_1
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https://onlinelibrary.wiley.com/doi/abs/10.1207/s15516709cog1402_1



What Does the Model Learn?
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https://onlinelibrary.wiley.com/doi/abs/10.1207/s15516709cog1402_1

• Apply hierarchical clustering on extracted word embeddings



Analysing Deep Models of Vision
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• 2012-2014: looking for “feature detectors” in early deep 
models of object classification (e.g. AlexNet, GoogLeNet )



Analysing Deep Models of Vision
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https://ieeexplore.ieee.org/abstract/document/6639343?casa_token=CYuG5JIZBGMAAAAA:Sh4MQcFPbyIveM3Z4kN_UIBrULYG-
senEtSCHX5CpUTCsrBEOBcXecQeiBnTARDBBHBwHQEQ0XyqmQ



Analysing Deep Models of Vision
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https://ieeexplore.ieee.org/abstract/document/6639343?casa_token=CYuG5JIZBGMAAAAA:Sh4MQcFPbyIveM3Z4kN_UIBrULYG-
senEtSCHX5CpUTCsrBEOBcXecQeiBnTARDBBHBwHQEQ0XyqmQ



Early Interpretability Attempts in NLP
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First BlackboxNLP @EMNLP'2018
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Much has 
happened since!



A Bird’s-eye View



How to Analyse a Model?

• Blackbox versus whitebox approaches


• Hypothesis-driven versus data-driven approaches


• Modality-specific approaches
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Blackbox Approaches
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Input Output

Systematically manipulate input, observe how it affects output 

• Behavioural tests 


• Input manipulation/perturbation 


• Adversarial attacks/investigations



Whitebox Approaches
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Input Output

Systematically manipulate input, look inside the model

• Hidden-layer representations, embeddings, …


• Feature attribution, context mixing, …


• Information flow, gradients, …



How to Analyse a Model?

• Blackbox versus whitebox approaches


• Hypothesis-driven versus data-driven approaches


• Modality-specific approaches
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Hypothesis-driven: What do Models Learn?

• Probing/diagnostic classifiers or regressors


• Correlation analyses (e.g. CCA)


• Information-theoretic measures (e.g. Mutual Information)


• Representational Similarity Analysis (RSA)
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Hypothesise that knowledge X is needed for performing task Y


Look for evidence that a model trained on Y has encoded X



Data-driven: How do Models Work?

• Input perturbation 


• Feature attribution and context mixing


• Relevance propagation analysis


• Inducing explainable architectures


• Mechanistic interpretability
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Feed the model with controlled input

Analyse information processing that leads to the output




How to Analyse a Model?

• Blackbox versus whitebox approaches


• Hypothesis-driven versus data-driven approaches


• Modality-specific approaches
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Modality-specific Approaches
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Birds are flying 
over the pond

Text Speech

Birds are flying  
over the pond

Multimodal

Birds are flying  
over the pond

   پرندگان روی برکه
پرواز می کنند

Multilingual



Interpretability Techniques

• Probing/diagnostic classifiers or regressors


• Correlation analyses (e.g. CCA)


• Information-theoretic measures (e.g. Mutual Information)


• Representational Similarity Analysis (RSA)


• Input perturbation 


• Feature attribution and context mixing


• Relevance propagation analysis


• Inducing explainable architectures


• Mechanistic analysis


• …
25
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• Behavioural Tests


• Input Perturbation 

• Probing Classifiers


• Correlation Analyses (e.g. CCA)


• Mutual Information


• Representational Similarity 
Analysis (RSA)


• Feature Attribution

• Input Perturbation 


• Inducing Explainable 
Architectures


• Feature Attribution


• Relevance Propagation Analysis


• Mechanistic Analysis
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https://direct.mit.edu/tacl/article/doi/10.1162/tacl_a_00254/43503/Analysis-Methods-in-Neural-Language-Processing-A



Selected Interpretability 
Techniques



Interpretability Techniques
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1. Input perturbation 


2. Probing/diagnostic classifiers or regressors


3. Representational Similarity Analysis (RSA)


4. Attribution and context mixing scores


5. Neuron-level interpretation


6. Inducing explainable architectures



Interpretability Techniques
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1. Input perturbation 


2. Probing/diagnostic classifiers or regressors


3. Representational Similarity Analysis (RSA)


4. Attribution and context mixing scores


5. Neuron-level interpretation


6. Inducing explainable architectures



Input Perturbation

• Systematically manipulate aspects of input and monitor 
model output


• Example: manipulating “distractors" in verb-subject agreement 
test cases: 


• Example: inserting “not” in NLI test cases:

31

1. The roses in the vase by the door are red.

2. The roses in the vase by the chairs are red.

1. The robin is a bird.

2. The robin is not a bird.



Input Perturbation: 

Apply a "Behavioural Test” to an LLM

• Use a small-scale, controlled test set


• … often borrowed from a published psycholinguistic study


• Subject an LLM to these tests


• Make conclusions about 


• the nature of linguistic knowledge learned by the LLM


• the processing mechanisms employed by the LLM


• Compare their performance to that of human subjects

32
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https://aclanthology.org/D18-1151/
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https://aclanthology.org/D18-1151/



Input Perturbation: 

Grounded Language Learning
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https://direct.mit.edu/coli/article/43/4/761/1583/Representation-of-Linguistic-Form-and-Function-in
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Computational Linguistics Volume 43, Number 4
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Figure 2

Omission scores for the example sentence a baby sits on a bed laughing with a laptop computer open

for LM and the two pathways, TEXTUAL and VISUAL, of IMAGINET.

bed. Figure 2 also shows that in contrast to VISUAL, TEXTUAL distributes its attention
more evenly across time steps instead of focusing on the types of words related to the
corresponding visual scene. The peaks for LM are the same as for TEXTUAL, but the
variance of the omission scores is higher, suggesting that the unimodal language model
is more sensitive overall to input perturbations than TEXTUAL.

4.2 Omission Score Distributions

The omission scores can be used not only to estimate the importance of individual
words, but also of syntactic categories. We estimate the salience of each syntactic
category by accumulating the omission scores for all words in that category. We tag
every word in a sentence with the part-of-speech (POS) category and the dependency
relation label of its incoming arc. For example, for the sentence the black dog, we get

Figure 3

Images retrieved for the example sentence a baby sits on a bed laughing with a laptop computer open

(left) and the same sentence with the second word omitted (right).

768A baby sits on a bed laughing with a laptop computer open
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A sits on a bed laughing with a laptop computer open
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more evenly across time steps instead of focusing on the types of words related to the
corresponding visual scene. The peaks for LM are the same as for TEXTUAL, but the
variance of the omission scores is higher, suggesting that the unimodal language model
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4.2 Omission Score Distributions

The omission scores can be used not only to estimate the importance of individual
words, but also of syntactic categories. We estimate the salience of each syntactic
category by accumulating the omission scores for all words in that category. We tag
every word in a sentence with the part-of-speech (POS) category and the dependency
relation label of its incoming arc. For example, for the sentence the black dog, we get

Figure 3

Images retrieved for the example sentence a baby sits on a bed laughing with a laptop computer open

(left) and the same sentence with the second word omitted (right).
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Quantifying Contribution of Each Word
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more evenly across time steps instead of focusing on the types of words related to the
corresponding visual scene. The peaks for LM are the same as for TEXTUAL, but the
variance of the omission scores is higher, suggesting that the unimodal language model
is more sensitive overall to input perturbations than TEXTUAL.

4.2 Omission Score Distributions

The omission scores can be used not only to estimate the importance of individual
words, but also of syntactic categories. We estimate the salience of each syntactic
category by accumulating the omission scores for all words in that category. We tag
every word in a sentence with the part-of-speech (POS) category and the dependency
relation label of its incoming arc. For example, for the sentence the black dog, we get

Figure 3

Images retrieved for the example sentence a baby sits on a bed laughing with a laptop computer open

(left) and the same sentence with the second word omitted (right).
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https://direct.mit.edu/coli/article/43/4/761/1583/Representation-of-Linguistic-Form-and-Function-in



Accumulating Omission Scores
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https://direct.mit.edu/coli/article/43/4/761/1583/Representation-of-Linguistic-Form-and-Function-in



Looking for Linguistic Structure
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Input sentence: 

“a brown teddy bear lying on top of a dry grass covered ground .”

• Does the model learn and use any knowledge about 
sentence structure?
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Scrambled input sentence: 

“a a of covered laying bear on brown grass top teddy ground . dry”

Input sentence: 

“a brown teddy bear lying on top of a dry grass covered ground .”

Looking for Linguistic Structure
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https://direct.mit.edu/tacl/article/doi/10.1162/tacl_a_00321/96452/BLiMP-The-Benchmark-of-Linguistic-Minimal-Pairs



Interpretability Techniques

43

1. Input perturbation 


2. Probing/diagnostic classifiers or regressors


3. Representational Similarity Analysis (RSA)


4. Attribution and context mixing scores


5. Neuron-level interpretation


6. Inducing explainable architectures



Probing Classifiers/Regressors

44

Classifier/

Regressor

Trained to predict 

knowledge Y

Trained to perform 

Task X

• Also diagnostic classifiers, auxiliary tasks, …



Sample Auxiliary Tasks

• Utterance length


• Presence of specific words


• Part of speech


• Dependency labels


• Similarity judgment


• Homonym/synonym detection


• Semantic roles


• …

45



Analyse Internal Representations

• What aspects of language does the model encode?


• Does the model encode linguistic form, and where?


• Does the model encode meaning, and where?

46
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https://aclanthology.org/K17-1037.pdf
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https://ieeexplore.ieee.org/abstract/document/9688093?casa_token=9i9SkqxnXM0AAAAA:GSL5eW_VCmvYFjvpdF_Ju1vvJM_5crGci2R4zm6EgUIV_RK-
kwVZqOwuYiX4wsZLCJGLNaeJRrMIgw
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https://ieeexplore.ieee.org/abstract/document/9688093?casa_token=9i9SkqxnXM0AAAAA:GSL5eW_VCmvYFjvpdF_Ju1vvJM_5crGci2R4zm6EgUIV_RK-
kwVZqOwuYiX4wsZLCJGLNaeJRrMIgw



Limitations of Probing

• Probes’ negative results are hard to interpret


• Lack of knowledge in the original model?


• Wrong probe or insufficient probing data?


• Probes’ positive results can be accidental


• Prone to false positives : they can learn beyond the original 
model’s encoded knowledge


• Often not reliable when applied to complex, structured 
knowledge

52
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https://aclanthology.org/D19-1275.pdf



Interpretability Techniques
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1. Input perturbation 


2. Probing/diagnostic classifiers or regressors


3. Representational Similarity Analysis (RSA)


4. Attribution and context mixing scores


5. Neuron-level interpretation


6. Inducing explainable architectures



Looking for Structured Knowledge

55

  

Linguistic structured

spaces



Representational Similarity Analysis (RSA)

• RSA (Kriegeskorte et al., 2008): Measuring correlations 
between representations A and B in a similarity space 


• Compute representation (dis)similarity matrices in two spaces


• Measure correlations between upper triangles

56



RSA: An Example

• Sentence similarity according to


• Sim A: human judgment


• Sim B: estimated by a model


• RSA score: correlation between Sim A and Sim B

57



Applying RSA to Language

• What we need: a similarity metric within two spaces A & B


• Eg., A is a vector space, B is a space of trees or graphs


• What we do not need: a mapping between space A & B  

58

x

y

z

x

y

z

A B



Applying RSA to Language
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A B

  

Representational 
Similarity Analysis

Kriegeskorte, N., Mur, M., & Bandettini, P. A. (2008). Representational similarity 
analysis-connecting the branches of systems neuroscience. Frontiers in systems 
neuroscience, 2, 4.

  

Representational 
Similarity Analysis

Kriegeskorte, N., Mur, M., & Bandettini, P. A. (2008). Representational similarity 
analysis-connecting the branches of systems neuroscience. Frontiers in systems 
neuroscience, 2, 4.

• What we need: a similarity metric within two spaces A & B


• Eg., A is a vector space, B is a space of trees or graphs


• What we do not need: a mapping between space A & B  
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Tree Kernels

• Measuring the similarity between two syntactic trees: count 
their overlapping subtrees

61

https://aclanthology.org/P19-1283/



Applying RSA to BERT
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BERT layers

  

BERT layers

  

BERT layers

https://aclanthology.org/P19-1283/



RSA for Stability Analysis
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Interpretability Techniques
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1. Input perturbation 


2. Probing/diagnostic classifiers or regressors


3. Representational Similarity Analysis (RSA)


4. Attribution and context mixing scores


5. Neuron-level interpretation


6. Inducing explainable architectures



Feature Attribution & Context Mixing

• Feature attribution: the contribution of each input token to 
the model’s output


• Context mixing: the contribution of each input token to the 
representation of other tokens

65
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Feature Attribution
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https://www.mdpi.com/1099-4300/23/1/18



Where to Look?
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Where to Look?
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Where to Look?
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Where to Look?
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Where to Look?
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Context Mixing
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Context Mixing: Current Landscape

74

Kobayashi et al. (2020)

Kobayashi et al. (2021)

Mohebbi et al. (2023)



75

https://aclanthology.org/2023.eacl-main.245.pdf

https://aclanthology.org/2023.eacl-main.245.pdf


 Value Zeroing

76

Set the value vector of a cue token to zero, 

then measure impact on the target token



 Value Zeroing
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Information Rollout & Flow
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Information Rollout & Flow
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• The same techniques can be applied to more complex 
attribution and context-mixing scores 

https://www.mdpi.com/1099-4300/23/1/18



Interpretability Techniques
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1. Input perturbation 


2. Probing/diagnostic classifiers or regressors


3. Representational Similarity Analysis (RSA)


4. Attribution and context mixing scores


5. Neuron-level interpretation


6. Inducing explainable architectures
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https://direct.mit.edu/tacl/article/doi/10.1162/tacl_a_00519/113852/Neuron-level-Interpretation-of-Deep-NLP-Models-A



Overview of Neuron Analysis Methods
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https://direct.mit.edu/tacl/article/doi/10.1162/tacl_a_00519/113852/Neuron-level-Interpretation-of-Deep-NLP-Models-A
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https://direct.mit.edu/tacl/article/doi/10.1162/tacl_a_00519/113852/Neuron-level-Interpretation-of-Deep-NLP-Models-A



Mechanistic Interpretability

84



Mechanistic Interpretability

• Aim: discovering algorithmic explanations of the inner-
mechanisms of deep neural models 


• Causal interpretability


• Sub-layer levels (individual attention heads, single neurons)


• How is it different from earlier methods?
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Mechanistic Interpretability

• A framework for finding task-specific circuits


• Minimal computational subgraphs: minimal set of components 
(nodes, edges) in a network sufficient for performing a task


• If all other components are ablated, the task-specific loss is not 
affected 


• Various methods are proposed for ablation/intervention 


• Often computationally expensive (work in progress)

86



Interpretability Techniques
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1. Input perturbation 


2. Probing/diagnostic classifiers or regressors


3. Representational Similarity Analysis (RSA)


4. Attribution and context mixing scores


5. Neuron-level interpretation


6. Inducing explainable architectures



Student-Teacher Knowledge Distillation

88

Input Output



Evaluation of Interpretability Methods



Are Interpretations Plausible?

90

Saliency maps in an 

image classification model

Attention weights 

in an NMT model

• How much do you trust what your interpretability 
technique tells you?


• It makes sense to me! ➡ Plausibility

https://arxiv.org/pdf/1312.6034.pdf https://arxiv.org/abs/1409.0473



Are Interpretations Reliable?

91

https://aclanthology.org/D19-1275.pdf

• Measure the difference between the accuracy of the 
linguistic and the control tasks

➡ Selectivity



(In)consistency of Predictions

• Encoding of phonemes according to different methods:

92
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Figure 1: Correspondence of codes to phonemes according to four different metrics as a function of
codebook size, type of model and level of VQ layer placement (in the visually-supervised case). Top left:

Accuracy of the diagnostic classifier. Top right: NMI between codes and phoneme labels. Bottom left:

RSA score measured against phonemic transcriptions. Bottom right: Accuracy on the ABX task. RSA
is computed on full utterances; ABX on phoneme-triple segments. DC and NMI are computed on full
utterances forced-aligned to the phonemic transcriptions. Higher scores are better for all metrics.

model input size skew kurtosis

SS complete 32 0.14 0.21
SS triplet 32 -0.67 0.55
SS complete 1024 -0.20 0.29
SS triplet 1024 -2.79 8.99
VS complete 32 0.04 0.35
VS triplet 32 -1.66 3.20
VS complete 1024 -1.40 4.71
VS triplet 1024 -7.92 87.20

Table 4: Skew and excess kurtosis of edit dis-
tance distributions, for the self-supervised (SS) and
visually-supervised level 1 (VS) models.

less pronounced and layer-specific. The difference
in patterns of results between the metrics might be
due to the different testing stimuli used by ABX
versus the other three metrics: whereas diagnostic
classifiers, NMI and RSA are tested on full utter-
ance audio files, ABX is tested on small phoneme
trigram files.

Role of stimulus size We thus re-calculate RSA
using the same phoneme trigram files used for

ABX. The correlation coefficient between ABX
and this version of RSA is much stronger (see Ta-
ble 3), suggesting that the type of stimulus used to
test the model does play a role. 7

The impact of stimulus size on results is likely
related to the fact that, with very short stimuli, most
normalized edit distances will be maximum, or
near maximum, and this will especially be the case
for large codebook sizes, giving very skewed and
long-tailed edit distance distributions: this can be
appreciated in Table 4.

Overall, DC, NMI and RSA yield similar pat-
terns of results when applied to phonemic annota-
tions using learned representations. In contrast, the
ABX discriminability metric as implemented in Ze-
roSpeech 2019/2020 is of limited generality and is
likely to only show the usefulness of induced codes
for the specific scenario of testing on very short

7In order to check whether training the target model on full
sentences but applying it to short segments plays a role, we run
an additional set of experiments where we apply the model to
the full utterance and generate ABX stimuli by extracting the
portion of the code sequence corresponding to each phoneme
trigram: the correlation with RSA is still low (0.14) which
indicates that this issue is not at play here.



(In)consistency of Predictions

• Context mixing for Subject-Verb Agreement according to 
different scores:

93

https://aclanthology.org/2023.eacl-main.245/



Using Controlled Case Studies

• A carefully controlled experimental setup provides strong 
hypotheses and expectations


• Example: synthetic languages or arithmetic expressions

94

https://arxiv.org/pdf/1905.06401.pdf

https://arxiv.org/pdf/1905.06401.pdf



Are Interpretations Faithful?

• Faithfulness: an interpretation must accurately describe 
how the model behaves


• E.g. removing features hypothesised as salient must hurt model 
performance


• Plausibility and faithfulness are not always compatible


• Model might pick up on data artefacts that are effective for the 
target task but not plausible

95
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Figure 2

Omission scores for the example sentence a baby sits on a bed laughing with a laptop computer open

for LM and the two pathways, TEXTUAL and VISUAL, of IMAGINET.

bed. Figure 2 also shows that in contrast to VISUAL, TEXTUAL distributes its attention
more evenly across time steps instead of focusing on the types of words related to the
corresponding visual scene. The peaks for LM are the same as for TEXTUAL, but the
variance of the omission scores is higher, suggesting that the unimodal language model
is more sensitive overall to input perturbations than TEXTUAL.

4.2 Omission Score Distributions

The omission scores can be used not only to estimate the importance of individual
words, but also of syntactic categories. We estimate the salience of each syntactic
category by accumulating the omission scores for all words in that category. We tag
every word in a sentence with the part-of-speech (POS) category and the dependency
relation label of its incoming arc. For example, for the sentence the black dog, we get

Figure 3

Images retrieved for the example sentence a baby sits on a bed laughing with a laptop computer open

(left) and the same sentence with the second word omitted (right).

768A baby sits on a bed laughing with a laptop computer open
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bed. Figure 2 also shows that in contrast to VISUAL, TEXTUAL distributes its attention
more evenly across time steps instead of focusing on the types of words related to the
corresponding visual scene. The peaks for LM are the same as for TEXTUAL, but the
variance of the omission scores is higher, suggesting that the unimodal language model
is more sensitive overall to input perturbations than TEXTUAL.

4.2 Omission Score Distributions

The omission scores can be used not only to estimate the importance of individual
words, but also of syntactic categories. We estimate the salience of each syntactic
category by accumulating the omission scores for all words in that category. We tag
every word in a sentence with the part-of-speech (POS) category and the dependency
relation label of its incoming arc. For example, for the sentence the black dog, we get

Figure 3

Images retrieved for the example sentence a baby sits on a bed laughing with a laptop computer open

(left) and the same sentence with the second word omitted (right).
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https://direct.mit.edu/coli/article/43/4/761/1583/Representation-of-Linguistic-Form-and-Function-in
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for LM and the two pathways, TEXTUAL and VISUAL, of IMAGINET.

bed. Figure 2 also shows that in contrast to VISUAL, TEXTUAL distributes its attention
more evenly across time steps instead of focusing on the types of words related to the
corresponding visual scene. The peaks for LM are the same as for TEXTUAL, but the
variance of the omission scores is higher, suggesting that the unimodal language model
is more sensitive overall to input perturbations than TEXTUAL.

4.2 Omission Score Distributions

The omission scores can be used not only to estimate the importance of individual
words, but also of syntactic categories. We estimate the salience of each syntactic
category by accumulating the omission scores for all words in that category. We tag
every word in a sentence with the part-of-speech (POS) category and the dependency
relation label of its incoming arc. For example, for the sentence the black dog, we get

Figure 3

Images retrieved for the example sentence a baby sits on a bed laughing with a laptop computer open

(left) and the same sentence with the second word omitted (right).

768A baby sits on a bed laughing with a laptop computer open

Computational Linguistics Volume 43, Number 4

0.0

0.1

0.2

0.3

0.4

a
ba
by sits on a

be
d

lau
gh
ing wit

h a
lap
top

co
mp
ute
r

op
en

sc
or
e lm

textual
visual

Figure 2

Omission scores for the example sentence a baby sits on a bed laughing with a laptop computer open

for LM and the two pathways, TEXTUAL and VISUAL, of IMAGINET.

bed. Figure 2 also shows that in contrast to VISUAL, TEXTUAL distributes its attention
more evenly across time steps instead of focusing on the types of words related to the
corresponding visual scene. The peaks for LM are the same as for TEXTUAL, but the
variance of the omission scores is higher, suggesting that the unimodal language model
is more sensitive overall to input perturbations than TEXTUAL.

4.2 Omission Score Distributions

The omission scores can be used not only to estimate the importance of individual
words, but also of syntactic categories. We estimate the salience of each syntactic
category by accumulating the omission scores for all words in that category. We tag
every word in a sentence with the part-of-speech (POS) category and the dependency
relation label of its incoming arc. For example, for the sentence the black dog, we get

Figure 3

Images retrieved for the example sentence a baby sits on a bed laughing with a laptop computer open

(left) and the same sentence with the second word omitted (right).

768



99

https://aclanthology.org/2023.eacl-main.245/







Interpretability vs. Explainability

• Who is the target audience?


• Interpretability is aimed at researchers/developers


• Explainability is aimed at users (e.g. explanation of MT systems 

for human translators/interpreters)


• Explainability requires human in the loop (e.g. 
experimental studies of understandability of explanations)
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