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Large language models are powerful but
hard to understand.

4+ What aspegts of input does the model pay attention tor
) ]

+ What anwledge doe' 2 émodel learn to perform a task?

\. ——— A"

v

+ How is the 1nput/knowledge us d togenerate output’ |

4+ How does the information flow th1jrough the model?




What’s the Plan?

e A bit of History
e A bird’s-eye view
® (Selected) interpretability techniques

e Evaluation of interpretations



A Bit of History



COGNITIVE SCIENCE 1&, 179-211 (1990)

Finding Structure in Time

JEFFREY L. ELMAN
University of California, San Di¢go

Time underlies mony interesting human behaviors. Thus, the question of how to
represent time in connectionist models is very important. One approach is o rep-
resent time implicitly by its effects on processing rather than explicitly {os in @
spatial representation). The current report develops a proposal along these lines
first described by Jordan (1986) which involves the use of recurrent links in order
to provide networks with a dynamic memory. In this approach, hidden unit pat-
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Elman (1990): Simple RNN’s

e He applied the model to a “language modelling” task,
among others
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Categories of Lexical Hams Used in Santence Simulalion

Calegory Examnples
NOUN-HUM man, womun
NOUN-ANIM cat, moyss
NOQUN-IHANIM book, rack
NOUN-AGRESS dragon, morster
NOUN-FRAG glasa, plata
NCGUN-FQOD cookie, break
VERB-INTRAN think, slaep
VERB-TRAN s@w, chusa
VERB-AGPAT move, break
YERB-FERCEFT smell, see
VERB-DESTROY break, smash
VERB-EAT eat

TABLE 4

Templates for Sentence Generator

WORD 1 WORD 2 WORD 3
NOUN-HRUM VERB-EAT NQUN-FOOD
NOUN-HUN, VERB-PERCEPT NOUN-INANIM
NOUN-HUA VERB-DESTROY NCUN-FRAG
NOUN-HUAY VERB-INTRAN

NOUN-HUAM VERB-TRAN NCUN-HUM
NOUN-HUAM VERB-AGPAT NOGUN-INANIM
NOUN-HUA VERB-AGPAT

NOUN-ANIM VERB-EAT NCUN-FOOD
NOUN-ANIM VEREB-TRAN MNCOUN-ANIM
NOUN-ANIM VERB-AGPAT NOUN-INAMNIW.
NOUN-ANIM VERB-AGFPAT

NOUN-INANIM VERB-AGPAT

NOUN-AGRESS VERB-DESTROY MCUN-FRAG
NOUN-AGRESS VERB-EAT NOUN-HUM
NOUN-AGRES3 VERB-EAT NCUN-ANIM
NOUN-AGRESS VERB-EAT NOUN-FOOD

https://onlinelibrary.wiley.com/doi/abs/10.1207/s15516709cog1402 _1



What Does the Model Learn?

e Apply hierarchical clustering on extracted word embeddings
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Analysing Deep Models of Vision

® 2012-2014: looking for “feature detectors” in early deep
models of object classification (e.g. AlexNet, GoogleNet )



Analysing Deep Models of Vision

BUILDING HIGH-LEVEL FEATURES
USING LARGE SCALE UNSUPERVISED LEARNING

Quoc V. Le

Google Inc., USA

ABSTRACT

We consider the problem of building high-level, class-specific
feature detectors from only unlabeled data. For example, is
it possible to leam a face detector using only unlabeled im-
ages? To answer this, we train a deep sparse autoencoder on
a large dataset of images (the model has 1 billion connec-
tions, the dataset has 10 million 200x200 pixel images down-
loaded from the Internet). We train this network using model
parallelism and asynchronous SGD on a cluster with 1,000
machines (16,000 cores) for three days. Contrary to what ap-
pears to be a widely-held intuition, our experimental results
reveal that it is possible to train a face detector without hav-
ing to label images as containinge a face or not. Control ex-

that make use of inexpensive unlabeled data are often pre-
ferred, they have not been shown to work well for building
high-level features.

This work investigates the feasibility of building high-
level features from only unlabeled data. A positive answer
to this question will give rise to two significant results. Prac-
tically, this provides an inexpensive way to develop features
from unlabeled data. But perhaps more importantly, it an-
swers an intriguing question as to whether the specificity of
the “grandmother neuron” could possibly be learned from un-
labeled data. Informally, this would suggest that it is at least
in principle possible that a baby learns to group faces into one
class because it has seen many of them and not because it is

msidad he: cismamrinian ae sasscaeda

https://ieeexplore.ieee.org/abstract/document/6639343?¢casa_token=CYuG5JIZBGMAAAAA:Sh4MQcFPbylveM3Z4kN_UIBrULY G-

senEtSCHX5CpUTCsrBEOBcXecQeiBnTARDBBHBWHQEQOXyqmQ
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Analysing Deep Models of Vision
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Early Interpretability Attempts in NLP

Diagnostic classifiers: revealing how neural networks
process hierarchical structure

Sara Veldhoen, Dieww ke Hupkes and Villen Zuidena
ILLC, University of Amsterdam
PO Box 94242, 1050 CC Amsterdam. Netherlands
5. 0.veldhoen, d.wopkes, zuidemarSava.al

Abstract

We Investigars bow neural nerwerks can be used for Wemrchical, connositional
semrentics. Toth s end. we define the simple i neririvial otificinl msk of peo-
cessing nestod anlhiretic exoressions and sudy wheler dillenant lypes ol necral
retwarks cmm lear (o add ané subtrct. We fircd that recorsive meuml networks
can nnplement = generalisimg suluton, snd we visualize e nlermediaste sLops:
o e, sumaation aod squashung, We also saow that gated recunent nevsal
retworss. which precess the sxpressions incrememstally, perform surpeisingly well

Published &s a confererce paper at [CLR 2017

FINE-GRAINED ANALYSIS OF SENTENCE
EMBEDDINGS USING AUXILIARY PREDICTION TASKS

Yossi Adi**, Einat Kermany®, Yonatan Belinkov”, Ofer Lavi®, Yoav Goldberg'

!Bar-Ilan University, Ramat-Gar, Isracl

;yoav .goldberg, yossiacidrur)lgmail.com

“IBM Haifa Rescarch Lab, Haife, Isracl

;e inatke, oferl}fil.ibm.com

“MIT Computer Science end Antificial Inelligence Laboratory, Cambridge, MA, USA
belirkov@mit.edu

Assessing the Ability of LSTMs to Learn Syntax-Sensitive Dependencies

Tal Linzen'? Emmanuel Dupoux’ Yoar Goldberg
LSCI" & UN?, UNRS, Computer Soienee Department
EHESS und ENS, PSL Rescarch University Bar Ilan University
{tal.linzen, yoav.goldkberglgmasl.con

sunanue L. dupouxiens . Lo

Abstract (Hochre ter and Schmidheher, 1997) ar pated recur-

rent units (GRU) (Cho et al., 2014), kas ko€ o sig-

The swccess of lomg shortterm memoesy mlean! guns m Jugaage modeling (NMikoloy el al
(LSTM) nzural netwocks in e guige process. 2000, Suncermever of 21, 2012, parsing (Vinyals
ing i cypically auribared <o cheir abdizy w et al.. 2015, Kiperwasse: and Goldberz, 2016, Dver
cuptare long-distunce statistical segulmwities et al, 2016), machine trarslation (Bahdanau et &,

Tompnst s rgaloritizs are oflen sensitive o

’ 13 ey
SHMINTIC srnkeure; can sech denendenmes ke m_' 5) and other tsks .
ciplered by LSTMMs, which & nol have ex L ellectveness of KNNs' 15 witnboied to ther

plicil strucluzal represe e lves T We bewior al ability to capture statistical contingencies that may

Representation of Linguistic Form and
Function in Recurrent Neural Networks

Akos Kadar*
Tilburg Unaversity

Grzegorz Chrupata®
Tilburg University

Afra Alishalu®
Tilburg University

We present novel methods for amalyzing the actioation pattzras of recurrent neural netwoorks
Jrom a linguisiic punt of vivw and explore the types of linguistic struclure they lirn. As u wse
sidy, we use a stendard stancolome lavguage modA, and a eoudti=!ask gated recurrenl netoork
archilecture covisisiing of two parallel patlacays with sikred word embeadings: The VISuAL
Jathiay is brained on prediciing the representalions of e visual scene corresponding o an inpul
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Natura! Language Engineering (2019), 25, pp. 543557 C AMBRIDGE
dos10.1017/5135132491200024X UNIVERSITY PRESS

ARTICLE

Analyzing and interpreting neural networks for NLP:
A report on the first BlackboxNLP workshop

Afra Alishahi'*, Grzegorz Chrupata' and Tal Linzen®

! Department of Cognitive Science and Artificial Intelligence, Tilburg University, The Netherlands and *Department of
Caognitive Science, Johns Hopkins University, Baltimore, (nited States
“Carresponding author. Email: A.Alishahi@uvt.nl

Abstract

The Empirical Methads in Natural Language Processing (EMNLP) 2018 workshop BlackboxNLP was
dedicated to resources and techniques specifically developed for analyzing and understanding the inner-
workings and representations acquired by neural models of language. Approaches included: systematic
manipulation of input to ncural networks and investigating the impact on their performance, testing
whether interpretable knowledge can be decoded from intermediate representations acquired by neu-
ral networks, proposing modifications to neural network architectures to make their knowledge state or
generated output more explainable, and examining the perfarmance of networks on simplified or formal
languages. Here we review a number of representative studies in each category.

Keywords: neural networks; interpretability; natural language processing
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Much has
ﬁa}oyenecf since!
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A Bird’s-eye View



How to Analyse a Model?

e Hypothesis-driven versus data-driven approaches

e Modality-specific approaches

17



Blackbox Approaches

v

Input Output

Systematically manipulate input, observe how it affects output

® Behavioural tests
® |nput manipulation/perturbation

® Adversarial attacks/investigations

18



Whitebox Approaches

/

Input \

Systematically manipulate input, look inside the model

® Hidden-layer representations, embeddings, ...
® Feature attribution, context mixing, ...

® Information flow, gradients, ...

Output

19



How to Analyse a Model?

e Blackbox versus whitebox approaches

4
o
-

e Modality-specific approaches

20



Hypothesis-driven: What do Models Learn?

Hypothesise that knowledge X is needed for performing task Y

Q

L ook for evidence that a model trained on Y has encoded X

® Probing/diagnostic classifiers or regressors
® Correlation analyses (e.g. CCA)
® |nformation-theoretic measures (e.g. Mutual Information)

® Representational Similarity Analysis (RSA)

21



Data-driven: How do Models Work?

Feed the model with controlled input

£

Analyse information processing that leads to the output

® |nput perturbation

® Feature attribution and context mixing
® Relevance propagation analysis

® Inducing explainable architectures

® Mechanistic interpretability

22



How to Analyse a Model?

e Blackbox versus whitebox approaches

e Hypothesis-driven versus data-driven approaches

==
=

(_ ® Modality-specific approaches

23



Modality-specific Approaches

over the pond

Birds are flying
over the pond

|

Birds are flying ]

S §

Birds are flying
over the pond

S 55 OB

k)
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Interpretability Techniques

Probing/diagnostic classifiers or regressors

Correlation analyses (e.g. CCA)

Information-theoretic measures (e.g. Mutual Information)
Representational Similarity Analysis (RSA)

Input perturbation

Feature attribution and context mixing

Relevance propagation analysis

Inducing explainable architectures

Mechanistic analysis

25



Behavioural Tests

Input Perturbation

Probing Classifiers
Correlation Analyses (e.g. CCA)
Mutual Information

Representational Similarity
Analysis (RSA)

Feature Attribution

Input Perturbation

Inducing Explainable
Architectures

Feature Attribution
Relevance Propagation Analysis

Mechanistic Analysis

26



Analysis Methods in Neural Language Processing: A Survey

Yonatan Belinkov!? and James Glass'

IMIT Computer Science and Artificial Intelligence Laboratory
?Harvard School of Engineering and Applied Sciences
Cambridge, MA, USA
{belinkov, glass}@mit.edu

Abstract

The field of natural language processing has
seen impressive progress in recent years, with
neural network models replacing many of the
traditional systems. A plethora of new mod-

the networks in different ways.! Others strive to
better understand how NLP models work. This
theme of analyzing neural networks has connec-
tions to the broader work on interpretability in
machine learning, along with specific characteris-
tics of the NLP field.

https://direct.mit.edu/tacl/article/doi/10.1162/tacl_a_00254/43503/Analysis-Methods-in-Neural-Language-Processing-A
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Selected Interpretability
Techniques



Interpretability Techniques

1. Input perturbation

2. Probing/diagnostic classifiers or regressors
3. Representational Similarity Analysis (RSA)
4. Attribution and context mixing scores

5. Neuron-level interpretation

6. Inducing explainable architectures

29



Interpretability Techniques

3.
4.

5.

.

2.

—_—

Input perturbation )
i}ianostic classifiers or regressors
Representational Similarity Analysis (RSA)
Attribution and context mixing scores

Neuron-level interpretation

Inducing explainable architectures

30



Input Perturbation

e Systematically manipulate aspects of input and monitor
model output

® Example: manipulating “distractors" in verb-subject agreement
test cases:

1. The roses in the vase by the door are red.
2. The roses in the vase by the chairs are red.

® Example: inserting “not” in NLI test cases:

1. The robin is a bird.
2. The robin 1s not a bird.

31



Input Perturbation:
Apply a "Behavioural Test” to an LLM

e Use a small-scale, controlled test set

e .. often borrowed from a published psycholinguistic study
e Subject an LLM to these tests

® Make conclusions about
® the nature of linguistic knowledge learned by the LLM

® the processing mechanisms employed by the LLM

® Compare their performance to that of human subjects

32



Targeted Syntactic Evaluation of Language Models

Rebecca Marvin
Department of Computer Science
Johns Hopkins University
becky@jhu.edu

Abstract

We present a dataset [or evaluating the gram-
maticality of the predictions ol a language
model. We automatically construct a large
number of minimally different pairs of En-

Tal Linzen
Department of Cognitive Science
Johns Hopkins University
tal.linzen(@jhu.edu

cations, semantics, pragmatics, syntax, and so on.
The guality of the syntactic predictions made by
the LM is arguably particularly difficult to mca-
sure using perplexity: since most sentences are
grammatically simple and most words can be pre-

- . av

https://aclanthology.org/D18-1151/
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Targeted Syntactic Evaluation of Language Models

Reb RNN Multitask n-gram  Humans # sents
e
Department SUBJECT-VERB AGREEMENT:
Tohns He Simple 0.94 1.00 0.79 0.96 280
o In a sentential complement 0.99 0.93 0.79 0.93 3360
S2CK Short VP coordination 0.90 0.90 0.51 0.94 1680
Long VP coordination 0.61 0.81 0.50 0.82 800
Across a prepositional phrase 0.57 0.69 0.50 0.85 44800
Across a subject relative clause 0.56 .74 0.50 0.88 22400
Across an object relative clause 0.50 0.57 0.50 0.85 44800
Absf Across an object relative (no that) 0.52 0.52 0.50 0.82 44800
‘ In an object relative clause 0.84 0.89 0.50 0.78 44800
We present o datasel [ Inanobject relative (no that) 0.71 0.81 0.50 0.79 44300
maticality ol the pred REFLEXIVE ANAPHORA:
model. We automatic Simple 0.83 0.86 0.50 0.96 560
umber of minimally In a sentential complement 0.86 0.83 0.50 0.91 6720
Across arelative clause 0.55 0.56 0.50 0.87 44800
NEGATIVE POLARITY ITEMS:
Simple 0.40 0.48 0.06 0.98 792
Across a relative clause 041 0.73 0.60 0.81 31680

Table 1: Overall accuracies for the LSTMs, n-gram model and humans on each test case.

https://aclanthology.org/D18-1151/



Input Perturbation:
Grounded Language Learning

Representation of Linguistic Form and
Function in Recurrent Neural Networks

Akos Kadar*
Tilburg University

Grzegorz Chrupata®
Tilburg University

Afra Alishahi*
Tilburg University

We present novel methods for analyzing the activation patterns of recurrent neural networks

from a linquistic point of view and explore the types of linguistic structure they learn. As a case
study, we use a standard standalone language model, and a multi-task gated recurrent network

architecture consisting of two parallel pathways with shared word embeddings: The VISUAL

- - -
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https://direct.mit.edu/coli/article/43/4/761/1583/Representation-of-Linguistic-Form-and-Function-in
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A sits on a bed laughing with a laptop computer open
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Quantitying Contribution of Each Word

omission(i, §) = 1 — cosine(hg,y (), hepq(S.,))
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https://direct.mit.edu/coli/article/43/4/761/1583/Representation-of-Linguistic-Form-and-Function-in
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Accumulating Omission Scores

POS category contributions

000 005 010 015 020 025 030 035 040 045
Mean cosine distance from previous state

https://direct.mit.edu/coli/article/43/4/761/1583/Representation-of-Linguistic-Form-and-Function-in
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Looking for Linguistic Structure

Input sentence:
“a brown teddy bear lying on top of a dry grass covered ground .”

e Does the model learn and use any knowledge about
sentence structure

40



Looking for Linguistic Structure

Input sentence:
“a brown teddy bear lying on top of a dry grass covered ground .”

Scrambled input sentence:
“a a of covered laying bear on brown grass top teddy ground . dry”

41



BLiMP: The Benchmark of Linguistic Minimal Pairs for English

Alex Warstadt!, Alicia Parrish!, Haokun Liu?, Anhad Mohananey?,
Wei Peng?, Sheng-FuWang', Samuel R. Bowman'??

' Department of Linguistics *Department of Computer Science *Center for Data Science
New York University New York University New York University

{warstadt,zlicia.v.parrish, haokunliu, anhad,
welpeng, shengfu.wang, bowman}@nyu.edu

Abstract of these studies uses a different set of metrics,
and focuses on a small set of linguistic
We introduce The Benchmark of Linguistic pamdjgnls, severely hnutmg any possible blg-
Minimal Pairs (BLIMP),! a challenge set for picture conclusions.
evaluating the linguistic knowledge of lan-
guage models (LMs) on major grammatical (1Y a. The cats annoy Tim. (grammatical)

phenomena in English. BLIMP consists of

b. *¥The cats annoys Tim. (ungrammatical)
67 individual datasets. each containing 1,000

https://direct.mit.edu/tacl/article/doi/10.1162/tacl_a_00321/96452/BLiMP-The-Benchmark-of-Linguistic-Minimal-Pairs
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Interpretability Techniques

1. Input perturbation

—

3. Repre | /

sentational Similarity Analysis (RSA)
4. Attribution and context mixing scores
5. Neuron-level interpretation

6. Inducing explainable architectures

43



Probing Classifiers/Regressors

e Also diagnostic classifiers, auxiliary tasks, ...

Trained to predict

Trained to perform
Task X knowledge Y

44



Sample Auxiliary Tasks

Utterance length

Presence of specific words
Part of speech

Dependency labels

Similarity judgment
Homonym/synonym detection

Semantic roles

45



Analyse Internal Representations

> > > > > —

I

1

e \What aspects of language does the model encode?

® Does the model encode linguistic form, and where?

® Does the model encode meaning, and where?

46



Encoding of phonology in a recurrent neural model of grounded speech

Afra Alishahi Marie Barking Grzegorz Chrupata
Tilburg University Tilburg University Tilburg University
d.alishahifuvt.nl m.barking@uvt.nl g.chrupalauvt.nl
Abstract commonly via the analysis of neuro-imaging data

We study the representation and encod-
ing of phonemes in a recurrent neural net-
work model ol grounded speech. We
use a model which processes images and
their spoken descriptions, and projects the
visual and auditory representations into

Y r ~

of participants exposed to simplified, highly con-
trolled inputs. More recently. naturalistic data has
been used and patterns in the brain have been cor-
related with patterns in the input (e.g. Wehbe et al.,
2014; Khalighinejad et al., 2017).

This type of approach 1s relevant also when the
goal 1s the understanding of the dynamics in com-

https://aclanthology.org/K17-1037.pdf
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LAYER-WISE ANALYSIS OF A SELF-SUPERVISED SPEECH REPRESENTATION MODEL
Anlata Pasad, Ju-Chieh Chou, Karen Livescu

Toyola Technological Institute at Chicago

{ankitap, jechou, klivessul@rtic.edn:

local acoustic features
(Sec. 5.2.1)

= = phone identity (Sec. 5.2.2)
==+« word identity (Sec. 5.2.3)
w==word meaning (Sec. 5.3)

wav2vec 2.0 LARGE wav2vec 2.0 BASE

I |

112 13 14 15 16 17 18 19 20 21 22 23 24

123415678910l
Transformer layer number

https://ieeexplore.ieee.org/abstract/document/9688093 ¢casa_token=9i9SkqgxnXMOAAAAA:GSL5eW_VCmvYFjvpdF_JuTvvJM_5crGei2R4zm6EgUIV_RK-
kwVZqOwuYiX4wsZLCJGLNaeJRrMIgw
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LAYER-WISE ANALYSIS OF A SELF-SUPERVISED SPEECH REPRESENTATION MODEL
Anlita Pasad, Ju-Chieh Chou, Karen Livescu

Toyola Technological Institute at Chicago

{ankitap, jechou, klivessul@rtic.edn:

— pre-trained
=== {t-960h

(b) Large-60k
012345678 91011121314151617 1819202122232
Transformer layer number

Fig. 6. MI with word labels (max: 6.2).

) ' Ll L) ' | I ! 1

https://ieeexplore.ieee.org/abstract/document/9688093?casa_token=9i9SkgxnXMOAAAAA:GSL5eW_VCmvYFjvpdF_JulvvJM_5crGei2R4zm6EgUIV_RK-
kwVZqOwuYiX4wsZLCJGLNaeJRrMIgw
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Limitations of Probing

® Probes’ negative results are hard to interpret

® |ack of knowledge in the original model?

® \Wrong probe or insufficient probing data?

® Probes’ positive results can be accidental

® Prone to false positives : they can learn beyond the original
model’s encoded knowledge

e Often not reliable when applied to complex, structured
knowledge

52



Designing and Interpreting Probes with Control Tasks

John Hewitt Percy Liang
Stanford University Stanford University
johnhew@stanford.edu pliang@cs.stanford.edu
Control 3 10 15¢
Task g : ran quickly
after The .+ dog
Vocab 42 37

Sentence I  The cat r1an quickly
Part-of-speech DT NN VBD RB :
Controltask 10 37 10 15 3

Sentence 2 The dog ran  after !

Part-of-speech DT NN VBD IN :
Controltask 10 15 10 42 42

https://aclanthology.org/D19-1275.pdf
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Interpretability Techniques

1. Input perturbation

2. Probing/diagnostic classifiers or regressors

i

3. Representational Similarity Analysis

\\\ —

ey

4. Attribution and context mixing scores
5. Neuron-level interpretation

6. Inducing explainable architectures

(RSA)
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Looking for Structured Knowledge

/S\
NP VP
\
D/ \N V/ NP
o A
o boy hugs T N - h; b) B
DET NOUN VERB = i instance(a, hug-Ol) A
DET  NOUN instance(b, boy) A

instance(c, girl) A
ARGO(a, b) A
ARG1(a, c)
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Representational Similarity Analysis (RSA)

® RSA (Kriegeskorte et al., 2008): Measuring correlations
between representations A and B in a similarity space

® Compute representation (dis)similarity matrices in two spaces

® Measure correlations between upper triangles

dissimilarity matrix dissimilarity matrix
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RSA: An Example

® Sentence similarity according to
® Sim A: human judgment

® Sim B: estimated by a model

Stimulus 1 Stimulus 2 Sim A Sim B
A slice of pizza A bowl of salad 7.0 6.2
Two dogs run A kitty running 8.0 9.0
A vellow and white bird A kitty running 1.0 4.5

® RSA score: correlation between Sim A and Sim B



Applying RSA to Language

A B

® \What we need: a similarity metric within two spaces A & B

® Fg., Aisa vector space, B is a space of trees or graphs

¢ \What we do not need: a mapping between space A & B
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Applying RSA to Language
A B

‘>

¢ \What we need: a similarity metric within two spaces A & B

® Fg., Aisa vector space, B is a space of trees or graphs

¢ \What we do not need: a mapping between space A & B
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Correlating neural and symbolic representations of language

Grzegorz Chrupala
Tilburg University
g.chrupala@uvt.nl

Abstract

Analysis methods which enable us to better
understand the representations and functioning
of neural models of language are increasingly
needed as decp learning becomes the domi-
nant approach in NLP. Here we present two
methods based on Representational Similarity
Analysis (RSA) and Tree Kernels (TK) which

'\III\I‘I R TR 72N A;m’\fl‘f rn-nnf;;mv hl\“‘ Fhl\“nl!' f‘\n

Afra Alishahi
Tilburg University

a.alishazhi@uvt.nl

structure prediction algorithms, running the risk
that thc analytic method becomes no simpler than
the actual neural model.

Here we introduce an altemative approach
based on correlatung neural representations of sen-
tences and structured symbolic representations
commonly used in linguistics. Crucially, the cor-
relation 1s in similarity spacc rather than in the

R PR [ S S
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Tree Kernels

® Measuring the similarity between two syntactic trees: count
their overlapping subtrees

a) S b) N P NP D N NP NP
NP VP 5 N D N e alec D N D N
lll VNP thle ap;l)le 1h|e apl)le
lff e DN

tlle apll)le

https://aclanthology.org/P19-1283/
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Applying RSA to BERT

RSA
0.3-
0.2-
. 0.1-
0.0- '
'A:'--O - - > ~0---9 - -
_0.1_ :,’ -e -z --®
0 5 10 15 20

oa = 05 -+« 1 mode °* random 4 trained

https://aclanthology.org/P19-1283/

25
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RSA for Stability Analysis

Blackbox meets blackbox: Representational Similarity and Stability
Analysis of Neural Language Models and Brains

Samira Abnar Lisa Beinborn Rochelle Choenni Willem Zuidema

Institute for Logic, Language and Computation
University of Amsterdam

{abnar,l.beinbern}@uva.nl, rochelle.choenni@student.uva.nl, zuidema@uva.nl

Abstract

In this paper, we detine and apply represen-
tational stability analysis (ReStA), an intu-
itive way of analyzing neural language maod-
els. ReStA is a variant of the popular repre-
sentational similarity analysis (RSA) in cog-

“;f;‘fﬂ nﬂ“.‘l\ﬂh“ﬂ“"ﬂ “"\;‘ﬂ Dc A FaXal .Y kﬂ 1'{":"

1s simple: instead of directly trying to map mod-
cls to brains, we first construct two similarity ma-
trices that record how similar brain responses are
to each other for different stimuli, and how simi-
lar the computational model’s representations for
each stimulus are to each other. The representa-

tional eimilarity score 1€ then defined a< the cimi-
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Interpretability Techniques

1. Input perturbation
2. Probing/diagnostic classifiers or regressors

3. Representatlonal Slmllarlty Ana|y5|s (RSA)

5. Neuron level mterpretatlon

6. Inducing explainable architectures
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Feature Attribution & Context Mixing

® [eature attribution: the contribution of each input token to
the model’s output

e Context mixing: the contribution of each input token to the
representation of other tokens
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Explainable AI: A Review of Machine Learning
Interpretability Methods

Pantelis Linardatos * ", Vasilis Papastefanopoulos ' and Sotiris Kotsiantis

Department of Mathematics, University of Patras, 26504 Patras, Greece;
vasileios. papastefanopoulos@upatras.gr (V.P.); sotos@math.upatras.gr (SK.)
* Correspondence: p.linardatos@upnet.gr

Abstract: Recent advances in artificial intelligence (Al) have led to its widespread industrial adoption,
with machine learning systems demonstrating superhuman performance in a significant number
of tasks. However, this surge in performance, has often been achieved through increased model
complexity, turning such systems into “black box” approaches and causing uncertainty regarding
the way they operate and, ultimately, the way that they come to decisions. This ambiguity has
made it problematic for machine learning systems to be adopted in sensitive yet critical domains,
where their value could be immense, such as healthcare. As a result, scientific interest in the field
of Explainable Artificial Intelligence (XAl), a field that is concerned with the development of new
methods that explain and interpret machine learning models, has been tremendously reignited over
recent years. This study focuses on machine learning interpretability methods; more specifically, a
literature review and taxonomy of these methods are presented, as well as links to their programming
implementations, in the hope that this survey would serve as a reference point for both theorists
and practitioners.

Keywords: xai; machine learning; explainability; interpretability; fairness; sensitivity; black-box
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Feature Attribution

Prediction probabilities slpcere msincere

sincere | 0l8+

insincere 0.16

Text with highlighted words

Why does the generation thunk that just because
they don't understand video games and technology, they
feel like thev have to hate them and Blame everv bad
thing &n them?

Figure 4. Local interpretable model-agnostic explanations (LIME) is used to explain the rationale behind the classification
of an instance of the Quora Insincere Questions Dataset.

https://www.mdpi.com/1099-4300/23/1/18
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Where to Look?
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Where to Look?

Ashish Viewsni®

Coogle
avaivanidg:

Llion
Coogle B

113 andge:

Nman Shurser®

Attention Is All You Need

Niki Purmus* Tuknls Tlorkarsdt*

Attention is not Explanation

Sarthak Jain Byrun C. Wallace

S N

Northeastern University Northeastern University
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Attention is not not Explanation

Sarah Wiegreffe* Yuval Pinter*
Schonl of Interactive Computing Schoal of Interactive Computin
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Is Attention Explanation? An Introduction to the Debate

Adrien Bibal, Rémi Cardon, David Alfter, Rodrige Wilkens, Xiaoou Wang,
Thomas Frangois® and Patrick Walrin®
CENTAL, [L&C, University of Louvain, Belgium
{fad:rlien.bibal, reni.cardon,daevid.alfller, xiaoou.wany,
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Where to Look?
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Where to Look?

Cutput
Probatbiities
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Where to Look?

Cutput
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Encoding
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Context Mixing

Target

has (singular)

have (plural)

O

My friend [MASK] fixed this chair.

~ Cue word_ ~
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Context Mixing: Current Landscape

Transformer Encoder Layer

Multi-Head Attention

X
-

L

oro

—

Add & Norm#2

|

|
|
=
v |
[¥9 )
o |

|

v »

Add & Norm#1

=)

Concat & Linear

T

Ed

/'

i

«f

MatMul l

{

Scale

i

MatMul

N\

/

Fr====p Value Zeroing

[ === Attn-norm+RES+LN

---.--u---.--b Attn-norm

Mohebbi et al. (2023)

Kobayashi et al. (2021)

Kobayashi et al. (2020)
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Quantifying Context Mixing in Transformers

Hosein Mohebbi'! Willem Zuidema® Grzegorz Chrupata’ Afra Alishahi’
! CSAL Tilburg University 2 ILLC, University of Amsterdam
{h.mohebbi, a.alishahi}@tilburguniversity.edu
w.h.zuidema@uva.nl
grzegorz@chrupala.me

Abstract point for understanding this flow, and these weights
‘raw altention’) have been used in many studies

Self-attention weights and their transformed (‘raw ention’) have bee ¢ ‘ Y . _Udle
variants have been the main source of infor- (Clark et al., 2019; Kovaleva ct al., 2019; Reif et al.,
mation for analyzing token-lo-token interac- 2019; Htut et al., 20194, inter alia). However, the
tions in Transformer-based models. But de- reliability and usefulness of raw attention weights
spite their ease of interpretation, these weights has also been questioned (Jain and Wallace, 2(19;
are not faithful to the models’ decisions as they Bibal et al., 2022). In particular, attention weights

are only one part of an encoder, and other com- tend to concentrate on uninformative tokens in the

https://aclanthology.org/2023.eacl-main.245.pdf
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Value Zeroing

Layer
1 2 3 45 6 7 8 9101112

Dot Product
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Information Rollout & Flow

Quantifying Attention Flow in Transformers

Samira Abnar
ILLC, Unmiversity of Amsterdam
s.abnar@uva.nl

Abstract

In the Transformer model, “self-attention”
combines information from attended embed-
dings into the representation of the focal em-
bedding in the next layer. Thus, across lay-
ers of the Transformer, information originating
from different tokens gets increasingly mixed.

Willem Zuidema
ILLC, Umversity of Amsterdam

w.h.zuidemaluva.nl

We propose two simple but effective methods to
compute attention scores to input tokens (i.c., token
attention) at each layer, by taking raw attentions
(i.c., embedding attention) of that layer as well as
those from the precedent layers. These methods
are based on modelling the information flow in the
network with a DAG (Directed Acyclic Graph), in

/8



Information Rollout & Flow
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(a) Embedding attentions (b) Attention rollout

Figure 1: Visualisation of atlention weights.

https://www.mdpi.com/1099-4300/23/1/18

® The same techniques can be applied to
attribution and context-mixing scores
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Interpretability Techniques

1. Input perturbation
2. Probing/diagnostic classifiers or regressors
3. Representational Similarity Analysis (RSA)

4. Attribution and context mixing scores

E— - m

Neuron-level interpretation

S

30



Neuron-level Interpretation of Deep NLP Models: A Survey

Hassan Sajjad** Nadir Durrani®* Fahim Dalvi®**

*Faculty of Computer Science, Dalhousie University, Canada'
#Qatar Computing Research Institute, HBKU, Doha, Qatar

hsajjad@dal.ca, {ndurrani, faimaduddin}@hbku.edu.ga

Abstract

The proliferation of Deep Neural Networks in
various domains has seen an increased need
for interpretability of these models. Prelimi-
nary work done along this line, and papers that
surveyed such, are focused on high-level rep-
resentation analysis. However, a recent branch
of work has concentrated on interpretability
at a more granular level of analyzing neurons
within these models. In this paper, we survey
the work done on neuron analysis including: 1)

models and to answer one question in particular:
What knowledge is learned within representa-
tions? We term this work as the Representation
Analysis.

Representation Analysis thrives on post-hoc
decomposability, where we analyze the embed-
dings to uncover linguistic (and non-linguistic)
concepts' that are captured as the network is
trained towards an NLP task (Adi et al., 2016;
Belinkov et al., 2017a; Conneau et al., 2018; Liu

~t ANTN. Tawmemmasr ~tb al ANTNON A PRONPN- POy P

https://direct.mit.edu/tacl/article/doi/10.1162/tacl_a_00519/113852/Neuron-level-Interpretation-of-Deep-NLP-Models-A
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Overview of Neuron Analysis Methods
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Scope

Input

Output

Scalability

HITL

Supervision

Causation

Visualization
Karpathy et al. (2015) local

Causation-based methods
Ablation (Lakretz et al., both
2019)

Knowledge attribution local
(Dai et al., 2021)

Miscellaneous methods

Corpus generation global
(Poerner et al., 2018)

Matrix  factorization local
(Alammar, 2020)

Clustering (Dalvi et al.,  global
2020)

Multi  model search global
(Bau et al., 2019)

neuron

concept/

class
concept/
class
neuron
neurons

neurons

neurons

concept

neurons

concept
neurons
neurons

neurons

low

medium

low
low
high
high

yes

yes

yes

yes
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no
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no
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https://direct.mit.edu/tacl/article/doi/10.1162/tacl_a_00519/113852/Neuron-level-Interpretation-of-Deep-NLP-Models-A



Mechanistic Interpretability

Zoom In: An Introduction to Circuits

By studying the connections between neurcns, we can find

meaningful algorithms in the weights of neural networks.
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Mechanistic Interpretability

e Aim: discovering algorithmic explanations of the inner-
mechanisms of deep neural models

® (Causal interpretability

® Sub-layer levels (individual attention heads, single neurons)

e How is it different from earlier methods?
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Mechanistic Interpretability

e A framework for finding task-specific circuits

® Minimal computational subgraphs: minimal set of components
(nodes, edges) in a network sufficient for performing a task

e |f all other components are ablated, the task-specific loss is not
affected

® Various methods are proposed for ablation/intervention

® Often computationally expensive (work in progress)
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Interpretability Techniques

1.

C 6. Inducing explainable architectures

Input perturbation

Probing/diagnostic classifiers or regressors
Representational Similarity Analysis (RSA)
Attribution and context mixing scores

Neuron-level interpretation

e _ — =
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Student-Teacher Knowledge Distillation
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Evaluation of Interpretability Methods



Are Interpretations Plausible?

Saliency maps in an Attention weights
image classification model in an NMT model

accard

ézoncmicue
eurnpéerna

1
éta
inné

aolt
1992

T

https://arxiv.org/pdf/1312.6034.pdf https://arxiv.org/abs/1409.0473

¢ How much do you trust what your interpretability
technique tells you?

———
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Are Interpretations Reliable?

High Accuracy
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https://aclanthology.org/D19-1275 .pdf
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(In)consistency of Predictions

® Encoding of phonemes according to different methods:

Diagnostic classifier
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(In)consistency of Predictions

e Context mixing for Subject-Verb Agreement according to
different scores:
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Using Controlled Case Studies

e A carefully controlled experimental setup provides strong
hypotheses and expectations

e Example: synthetic languages or arithmetic expressions

E
Svntax Meaning https://arxiv.org/pdf/1905.06401.pdf f'j;";”"\‘\j‘\ —_
E— LE OEyR [E]=|O|([E],[E:) I E 0 E R
E D E] = (D] A |
00—+ O = Az, y.xz — y mod 10 TN AT TN
O 0] = Ae,y.z — y mod 10 (LEOERS-LEOETR)
L ( | o |
R—) (D + D) (D + D)
D—0 D=0
: f 6 2 17
ID—9 D] =9 _ :
Figurc 4: Syntax trec of the cxpression
((e+2)—-(3+7)).

https://arxiv.org/pdf/1905.06401.pdf

94



Are Interpretations Faithful?

e Faithfulness: an interpretation must accurately describe
how the model behaves

® E.g. removing features hypothesised as salient must hurt model
performance

e Plausibility and faithfulness are not always compatible

® Model might pick up on data artefacts that are effective for the
target task but not plausible
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A baby sits on a bed laughing with a laptop computer open
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omission(i, §) = 1 — cosine(hg,q(.S), hepq(S.,))
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https://direct.mit.edu/coli/article/43/4/761/1583/Representation-of-Linguistic-Form-and-Function-in
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blank-out: the PiSHIEES B some hat [NEMSEY scar ##ing marcus . [SEP]
Attn: B8 the pictures of some hat [MASK] scar ##ing marcus . [SEP]
Attn-norm: [CLS] the pictures of some hat [MASK] scar ##ing marcus . [SEP]

Attn-norm+RES: [CLS] the pictures of some hat [MASK] scar ##ing
Attn-norm+RES+LN: [GIES] the pictures of some hat |

GlobEnc: [CLS] the pictures of some hat [MASK] scar ##ing

ALTI: [CLS] the PiGHIIeS of some hat [MASK ) 868l ##ing marcus . [SEP]
GradXinput: [CLS] the pictures of some hat [MASK] 868 ##ing marcus . [SEP]
IG: [CLS] the pictures of some hat [MASK] scar ##ing marcus . [SEP]
DL: [CLS] the pictures of some hat [MASK] §8af ##ing Marcus . [SEP]
Value Zeroing: [CLS] the picHires of some hat [MASK] scar ##ing marcus . [SEP]

https://aclanthology.org/2023.eacl-main.245/
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Towards Faithfully Interpretable NLP Systems:
How should we define and evaluate faithfulness?

Alon Jacovi Yoav Goldberg
Bar Ilan University Bar Ilan University and Allen Institute for Al
alonjacovildgmail.com yoav.goldberg@gmail.com
Abstract One such pain is the challenge of defining—and
evaluating—what constitutes a quality interpreta-
With the growing popularity of decp-learning tion. Current approaches define interpretation in a
based NLP models, comes a need for inter- rather ad-hoc manner, motivated by practical use-

pretable systems. But what 1s interpretlability.
and what conslilules a high-qualily inlerprela-
ton? In this opinion piece we rellect on the

cascs and applications. However, this view often
fails to distinguish between distinct aspects of the

intarnratation’o Aanalityr onnech ne randahilitsr nlanos



Towards Faithful Model Explanation in NLP:
A Survey

Qing Lyu Marianna Apidianaki
University of Pennsylvania University of Pennsylvania
_yuging€sas.upenn.edu marapllsezs.upenn.edu

Chris Callison-Burch
University of Pennsylvania
ccblésezs.upenn.edu

Cnd-to-end neural Natural Language Processing (NLP) models are notoriously difficult
to understand. This has given rise to numerous efforts towards model explainability in re-
cent years. One desideratum of model explanation is faithfulness, i.e. an explanation should
accurately repmcent the rcacomng process behind the model’s prediction. Tn this qurvm,/, we

snmmenmmrn mmnman TN 0 T T eV e e d e aaa T T L ATY Y T a0 a7 D W 2T, - YAT_ .



Interpretability vs. Explainability

¢ Who is the target audience?

® Interpretability is aimed at researchers/developers

® Explainability is aimed at users (e.g. explanation of MT systems

for human translators/interpreters)

e Explainability requires human in the loop (e.g.
experimental studies of understandability of explanations)
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