
LUMI: BERT in an Hour,
GPT in a Week

David Samuel and Risto Luukkonen

Introduction to the LUMI supercomputer

Introduction to the LUMI supercomputer

- The fastest supercomputer in Europe, 5th in the world (as of November
2023)

- 380 petaflop/s in the GPU partition

- It is also the seventh greenest supercomputer on the planet

- using 100% hydro-powered energy. LUMI’s waste heat is used to heat hundreds of
households in the city of Kajaani

- Hosted by EuroHPC and the LUMI consortium – Finland, Belgium, the Czech
Republic, Denmark, Estonia, Iceland, Norway, Poland, Sweden and
Switzerland

https://www.lumi-supercomputer.eu/lumi-retains-its-position-as-europes-fastest-supercomputer/
https://www.lumi-supercomputer.eu/lumi-retains-its-position-as-europes-fastest-supercomputer/

Introduction to the LUMI supercomputer

Introduction to the LUMI supercomputer

- 23,824 AMD MI250X GCDs (64 GB each) on 2,978 nodes

- AMD, not NVIDIA with its CUDA and NCCL platforms!

- Your software has to be compatible with ROCm (Radeon Open Compute) and RCCL (The
ROCm Collective Communication Library)

- PyTorch officially supports ROCm since version 1.8 — you shouldn’t need to change a single
line of code to get it working

- Each node has 4x200Gbps Slingshot-11 network interconnects

- Allows for efficient multi-node distributed training

- More on scaling later

Case study 1:
Training BERT on LUMI

Training a BERT language model on LUMI

- The original BERT-base model can be trained in approximately 6 hours

- This utilizes the wonderful batch-scaling property of neural-network
training

- Instead of batch size 256 and 1,000,000 optimization steps, we can equivalently use batch
size 8,192 and train for 31,250 steps

- Parallelize over 128 GPUs and you are done in a few hours

- Our models are trained with a custom optimized Pytorch-based codebase:
https://github.com/ltgoslo/ltg-bert

https://github.com/ltgoslo/ltg-bert

75 monolingual BERTs coming soon

- The HPLT project has released new text corpora that cover 75 languages

- LUMI allows us to train a monolingual language model for each of these
languages

- Often the first specialized language model for that language

- Future research: is it better to stay monolingual or go multilingual? How
many languages can be combined before we reach the “curse of
multilinguality”?

Case study 2:
Pretraining Finnish GPTs

7 monolingual models 180M – 13B (FinGPT)
1 continued pre-training of BLOOM 175B

BLOOM architecture: GPT model with
• ALiBi - positional encoding
• Additional layer normalization

after the first embedding layer

Custom Finnish tokenizer with a vocabulary of 131,072 tokens

FinGPT-project / TurkuNLP

7 monolingual models 180M – 13B (FinGPT)
1 continued pre-training of BLOOM 175B

BLOOM architecture: GPT model with
• ALiBi - positional encoding
• Additional layer normalization

after the first embedding layer

Custom Finnish tokenizer with a vocabulary of 131,072 tokens

FinGPT-project / TurkuNLP

FinGPT-project / TurkuNLP

FinGPT-project / TurkuNLP

Current / future work

1. Can we leverage cross-lingual transfer for small languages?

→ English – Finnish – Code (33B) for 1T tokens

→ Great in Finnish, performant in code, good in English

2. Can we go for a single model for all the Nordic languages?

→ English – Finnish – Code + (swe – nor – dan– isl)

→ “Poro - Viking”: (7B, 13B, 33B) for 2T tokens

3. Can we train a performant multilingual European LLM (70B+ params)?

→ Trained for 3-4 T tokens

Curse of multilinguality?

Pretraining big GPTs on LUMI: requirements

Massive computational budgets

 FinGPT – family < 1M GPUh altogether

33B model trained on 1T tokens: ~900k GPUh

Our estimation for a 70-75B param model with 4T
tokens: ~8M GPUh with GBS 6.3M tokens

For a 100B model with 4T tokens 8M+ GPUh

Runtime environment for AMD/LUMI

A singularity container with all the software with
AMD-specific plugins/patches/kernels (e.g.
aws-ofi-rccl-plugin to enable libfabric)

https://github.com/ROCmSoftwarePlatform/aws-ofi-rccl

Pretraining big GPTs on LUMI: uptime vs. queue-time

Time-wise expectation management

A shared system
 → LUMI-queues are difficult to predict

Pretraining can take a lot more calendar
time as you'd expect

Hardware failures are to be expected

Software – Megatron-DeepSpeed

3D parallelism from Megatron-LM
- Data parallelism
- Tensor Parallelism
- Pipeline Parallelism

+ (Sequence Parallelism)

+ Zero redundancy optimizer from
Megatron-DeepSpeed

Reducing Activation Recomputation in Large Transformer Models
(Korthikanti et al. 2022)https://huggingface.co/docs/transformers/v4.15.0/parallelism

Software – Megatron-LM / -DeepSpeed

microsoft/Megatron-DeepSpeed/

Implements Flash-Attention-support, GQA, sequence
parallelism, DeepSpeed-sequence parallelism

Better throughput but more instabilities

Sequence parallelism currently broken on LUMI ❌

TurkuNLP/Megatron-DeepSpeed/ [fingpt-tag]

Our fork of BigScience/BLOOM

Stable

Had a hipify-related bug on fused-layer-norm.
(Patched with HugginFace and TurkuNLP)

FinGPT-models

Poro 33B

No patched upstream features after 12/2022
Megatron-LM: commit id 4e79e71

Sequence Parallelism works on LUMI ✅
Currently our best throughput for big models with large GBS

More stable than V2

V1
V2

V3

https://github.com/microsoft/Megatron-DeepSpeed
https://github.com/TurkuNLP/Megatron-DeepSpeed/tree/fingpt
https://github.com/NVIDIA/Megatron-LM/tree/4e79e712ea4a8c0e4328d888060c4adc172cbfa0

Scaling to thousands of GPUs

Effect of global batch size

● Large → reduced sample efficiency?
● Llama GBS: 4M tokens
● DeepSeek GBS:

○ 9.4M for 7B model,
○ 18M for a 67B model

● Larger GBS → More computation / pipeline stage before
synchronization
 → smaller pipeline bubble

DeepSeek LLM Scaling Open-Source Language Models with Longtermism (Bi et al, 2024) https://www.lumi-supercomputer.eu/scaling-the-pre-training-of-large-lang
uage-models-of-100b-parameters-to-thousands-of-amd-mi250x-gpus-on-lu
mi/

https://www.lumi-supercomputer.eu/scaling-the-pre-training-of-large-language-models-of-100b-parameters-to-thousands-of-amd-mi250x-gpus-on-lumi/
https://www.lumi-supercomputer.eu/scaling-the-pre-training-of-large-language-models-of-100b-parameters-to-thousands-of-amd-mi250x-gpus-on-lumi/
https://www.lumi-supercomputer.eu/scaling-the-pre-training-of-large-language-models-of-100b-parameters-to-thousands-of-amd-mi250x-gpus-on-lumi/

Case study 3:
Pretraining 7B Norwegian LLMs

LLMs for small-ish languages

- What’s a good way to pretrain a large language model for a
“lower”-resource language?

- Norwegian has about 30B words of available text data
- That’s about 100x less than English!

- Muennighoff et al. (2023): “a few repetitions are okay” → we can get to
120B words or more

Where to find data?

Chinchilla compute-optimality estimates

LLMs for small-ish languages

- 7B parameters are a sweet spot for a monolingual Norwegian model

- We augment with some code data and repeat the Norwegian texts → 260B
tokens

- When parallelized over 512 GCDs on LUMI, training such a model takes less
than a week

LLMs for small-ish languages

- 260B tokens is still nothing compared to English models trained on trillions of tokens

- What if we start from a pretrained English model?

- Then we will inherit a suboptimal tokenizer

- But we can overcome this with two-stage continual pretraining:

- 1. Train a new tokenizer and train new embeddings for the tokens (freezing the rest of the model)

- 2. Unfreeze everything and continue pretraining on your corpus

- Very promising results, it substantially outperforms a model pretrained from scratch

- But what about cultural bias?

- https://huggingface.co/norallm/normistral-7b-warm

https://huggingface.co/norallm/normistral-7b-warm

