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Data quality is the single most impactful factor for LLM performance

• more than model architecture

• more than training tricks

Data Quality as a High Leverage Investment
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Some evidence:

1. ”we match a 350B token baseline with only 38B tokens” [1]

2. “quality classifier made us achieve competitive results at a fraction of cost” [2]

3. “we match Qwen3-32B with 6x fewer tokens through data curation” [3]

4. “our dataset enables 7.7x faster training through document rephrasing” [4]

Implication: If you have limited compute -> invest in data

Data Quality as a High Leverage Investment

[1] 2406.17557 [2] 2406.11794 [3] 2512.13961 [4] 2508.10975
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Efficiency multipliers of 6-9× from data work justify allocating 80%+ to data

The Compute Allocation Problem

Current practice My position
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1. Selection (annotation, quality filtering, …)

2. Transformation (rephrasing, restructuring, extraction, translation, …)

3. Generation (synthetic data at scale)

Three modes of data compute
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Scaling selection compute is among the highest-return uses of GPU-hours

Data investments compound across model generations; 
training runs depreciate within months

Motivation for our recent work
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Many advances in model-based filtering are English-only:

• FineWeb-Edu: English only

• DCLM: English only

• Nemotron-CC: English only

Significant performance gap between English and other languages.

The Multilingual Gap
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What does "quality" even mean?

• Wikipedia like?

• Educational value?

• Downstream-task-like?

• Benchmark-like?

Can a single scalar score capture the complexity of data quality?

The Quality Definition Problem



12

1. An excerpt of the landscape of filtered pretraining datasets

2. Heuristic Filtering: Rules and patterns

3. Early Model-Based Filtering: Perplexity / KenLM 

4. Modern Model-Based Filtering: FastText, Encoders, LLM-as-Judge 

5. propella: Multi-property annotation at scale 

6. Conclusion & Future Directions 

Roadmap for this talk



2. Heuristic filtering
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Common heuristic categories

The Heuristic Toolkit

Category Examples

Length
Min/max document length, 
min/max line length

Character ratios Alphabetic %, numeric %, symbol %

Repetition N-gram repetition, line repetition

Punctuation
Terminal punctuation required, 
excessive punctuation

Blocklists
Bad words, spam phrases, adult 
content

URL-based Domain blocklists, TLD filtering
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FineWeb [1] ablations revealed:

High impact:

• MinHash deduplication (≥75% 5-gram overlap)

• Language ID confidence threshold

• Terminal punctuation requirement

Moderate impact:

• Line length filters

• Repetition removal

Low/negative impact:

• Overly aggressive bad-word filters

• Some C4 rules hurt performance

Which Heuristics Actually Matter?

[1] 2406.17557 

Not all heuristics are created equal.
Ablate everything!
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1. Language-specific assumptions

• "Lines must end with punctuation" fails for languages without sentence-final punctuation

• Word length heuristics don't work for languages without spaces

2. Can't capture semantic quality

• A grammatically correct, well-formatted spam page passes all heuristics

• A valuable but messy forum post might get filtered

3. No nuance

• Often binary keep/discard, no quality gradation

• Can't do curriculum learning or targeted filtering

The Limits of Heuristics
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Despite limitations, heuristics remain valuable for:

• First-pass noise removal (boilerplate, HTML artifacts)

• Computational efficiency (fast, no GPU needed)

• Transparency (easy to understand and audit)

• Baseline filtering before model-based refinement

-> Use heuristics for gross noise removal, then apply model-based filtering for quality scoring.

“Don't apply heuristic filters to high-quality documents. They remove valuable content!” [1]

Heuristics Are Still Useful

[1] 2412.02595 



3: Early Model-based Filtering
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Language-specific (one model per language)

Fast inference (n-gram models are efficient)

Captures fluency and coherence

Works for any language with Wikipedia

Biased toward Wikipedia style/topics

Misses valuable non-encyclopedic content (code, conversational, technical)

Doesn't capture semantic quality (fluent nonsense scores well)

Wikipedia size varies dramatically by language

Perplexity Filtering: Pros and Cons
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Perplexity measures: How surprised is the model by this text?

But we want to know: Is this text useful for training an LLM?

These are different questions!

-> Move from fluency-based to content-based quality scoring.

Beyond Perplexity: The Need for Semantic Quality



4: Modern Model-based filtering
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What is "quality"? 

How do we get labels for it?

Two strategies emerged:

1. Curated positive examples: Use high-quality sources (Wikipedia, textbooks)

2. LLM-as-judge: Use large LLMs to annotate samples

The Classifier Paradigm Shift
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FastText

A shallow neural network with bag-of-n-grams

• Very fast: CPU inference, easily parallelized

• Subword features help with rare words

• No context modeling. Pure lexical signal

• Training data matters more than architecture [2]:

• Best: Diverse high-quality sources (not just Wikipedia)

[1] 1607.04606 [2] 2406.11794 
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Transformer Embedding + Classifier Approach

Upgrade: Use pretrained transformer embeddings.

1. Encode document with encoder-only transformer, such as

• XLM-RoBERTa 
• Snowflake Arctic Embed
• ModernBERT

2. Train lightweight classifier (MLP or linear regression) on top

3. Score documents

    Captures semantic similarity, not just lexical

    Cross-lingual transfer: Classifier trained on German can work for Dutch

    Better quality signal for nuanced content

    Requires GPUs
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Embed once, score for cheap:



27

The FineWeb-Edu Breakthrough

The recipe:

1. Collect LLM annotations: Use Llama-3-70B to score 460K documents 

for "educational value" (0-5 scale)

2. Distillation: Train linear regressor on transformer embeddings to predict 

LLM scores

3. Scale: Score all documents in FineWeb (15T)

4. Filter: score ≥ 3

-> FineWeb-edu: 1.3T tokens of "educational" content

-> Massive gains on various benchmarks

[1] 2406.17557 
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FineWeb-Edu Results

~10× token efficiency!

But: Edu filter biases towards certain topics (education, history, science) 
and away from others (entertainment, business, travel)

[1] 2406.17557 
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FineWeb-Edu Results

But: Edu filter biases towards certain topics (education, history, science) 
and away from others (entertainment, business, travel)

[1] 2406.17557 
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A simple FastText classifier, trained on carefully selected data, achieves competitive results.

The Recipe:

1. Labels:

• Positive: High-quality instruction data, Wikipedia, curated sources

• Negative: Random CommonCrawl sample

2. Train binary FastText classifier (2-gram features)

3. Score all documents in Pool, threshold to filter best N

Out of many positive/negative combinations, some beat the FineWeb-Edu-scorer performance at a 

fraction of compute cost.

DataComp-LM

[1] 2406.11794 
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DataComp-LM

[1] 2406.11794 

Make it a competition!
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FineWeb-2-HQ

Extending DCLM to multilingual:

1. Labels: 

• Positive: Aya Collection + Dataset, MMMLU, OpenAssistant-2, Include-Base-44)

• Negative: Random FineWeb-2 sample

2. Train separate FastText/MLP scorers per language

[1] 2502.10361 
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FineWeb-2-HQ

[1] 2502.10361 

The training data mixture matters: diverse sources outperform single-source.



34

Multilingual LLM-as-Judge

JQL: Judging Quality across languages

• Human edu-score labels: 511 English documents annotated by 15 humans

     -> Machine-translate to 35 languages

• Evaluate various LLM-judges

• Distillation: Train lightweight regressors on Snowflake Arctic Embed

[1] 2505.22232 
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Multilingual LLM-Judge Performance

[1] 2505.22232 

Strong open LLMs can judge educational value for many EU languages

Spearman Corr.
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FinePDFs-Edu - Domain-Specific Filtering

PDF challenges:

• OCR noise

• Layout complexity

• Mixed content (text, tables, figures)

• Teacher selection: Qwen3-235B for labeling

      (best MSE vs. Sonnet-4)

• Student: mmBERT-based classifier

      -> One model per language
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The Limitation of Single-Score Filtering

Since FineWeb-Edu in 2024, the community has largely relied on single scores to filter 
training data.

One scalar from tiny encoder or FastText models.

Is that a problem?
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The Limitation of Single-Score Filtering

Problems with single-score:

• Educational value ≠ all quality dimensions

• Not flexible (e.g., ”Now I want reasoning-heavy content")

• Want to compose various filters

A single scalar score cannot capture the complexity of data quality.
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Register Matters

Register annotation method:

• XLM-RoBERTa-Large fine-tuned on multilingual, register annotated data [2]

• Multi-label classification

• Hierarchical scheme: 9 main registers → 25 subregisters 

Examples:

Narrative (main) → News (subregister)

Informational Description (main) → Description (subregister)

[1] 2504.01542 [2] 2406.19892 
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Register Matters a Lot

[1] 2504.01542 [2] 2406.19892 

The type of text (register) has a substantial effect on model performance



5: Multi-property Annotation at Scale
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How we built propella-1



43

Motivation

Urgent need:

• Select good seed documents for synth data generation

-> garbage in, garbage out

X

MultiSynt: an open multilingual synthetic dataset for LLM pre-training
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Goals

• Score documents on various dimensions (beyond edu)

• Support all kinds of text

• Support many languages

-> Use small decoder models: strong performance, long context

[1] hf.co/pL-Community/GermanEduScorer-Qwen2-1.5b
 

German-edu-scorer [1]

Teacher: Command R plus

Students

• Bert (512): 85%

• T5 (512): 88%

• Qwen2-1.5b (32k): 95%
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Which Properties to Annotate?

How it started:
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Which Properties to Annotate?

[1] hf.co/ellamind/propella-1-4b/blob/main/property_descriptions.md

Two weeks of iterating:

…

• 17 initial properties

• Later 18, added 

     “one sentence description” 

• ~14k tokens long rubric

hf.co/ellamind/propella-1-4b/blob/main/property_descriptions.md
hf.co/ellamind/propella-1-4b/blob/main/property_descriptions.md
hf.co/ellamind/propella-1-4b/blob/main/property_descriptions.md
hf.co/ellamind/propella-1-4b/blob/main/property_descriptions.md
hf.co/ellamind/propella-1-4b/blob/main/property_descriptions.md
hf.co/ellamind/propella-1-4b/blob/main/property_descriptions.md
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Category Properties

Core Content Content Integrity, Content Ratio, Content Length

Classification
One-Sentence Description, Content Type, Business Sector, Technical 

Content

Quality & Value
Content Quality, Information Density, Educational Value, Reasoning 

Indicators

Audience & Purpose Audience Level, Commercial Bias, Time-Sensitivity

Safety & Compliance Content Safety, PII Presence

Geographic Regional Relevance, Country Relevance

Multi-select, ordinal, and free-text properties

propella-1 Properties
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lang percent

eng_Latn 35.08

spa_Latn 3.98

ita_Latn 3.97

fra_Latn 3.95

deu_Latn 3.86

pol_Latn 3.81

code 2.82

math 2.77

sft 2.41

ukr_Cyrl 0.95

… …

source percent

hplt3_unfiltered 39.59

fineweb 16.01

fineweb2 13.23

finepdfs 8.09

fineweb2_removed 6.28

fineweb_edu_dedup 3.92

thestack 2.04

finemath 2.00

openhermes 2.00

finewiki 1.35

… …

A Diverse Data Sample
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• Obtained from various frontier models (Dec. 2025)

• Problem: Strict content-filters

     -> labeled some very bad documents by hand

Training Data
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• Base: Qwen-3 architecture (0.6B, 1.7B, 4B variants)

• Target: Annotations as a JSON-object

• Training:

• 64K context length (recommend truncating at 50K chars)

• fp8 precision

• 4x H100 (couple of hours)

Training Setup

[1] https://axolotl.ai

no whitespace, saves output tokens later

hf.co/ellamind/propella-1-4b/blob/main/property_descriptions.md
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Inference
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Output
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Evaluation Against Frontier Models

• Ground truth: Gemini-3-Pro annotations (reasoning_effort: high) for 3K documents.

• Metrics by property type:

• Ordinal (11 properties): Quadratic Weighted Kappa

• Binary (1 property): F1

• Multi-select (5 properties): IoU/Jaccard

• Overall Score

• A weighted average of the primary metric for each property type:

 overall = (11/17 × avg_QWK) + (1/17 × avg_F1) + (5/17 × avg_IoU)

Evaluation Setup
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55[1] hf.co/ellamind/propella-1-4b/blob/main/res/per_property_scores_by_model.png

hf.co/ellamind/propella-1-4b/blob/main/property_descriptions.md


56[1] hf.co/ellamind/propella-1-4b/blob/main/res/per_property_scores_by_model.png

hf.co/ellamind/propella-1-4b/blob/main/property_descriptions.md
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Going Fast

[1] github.com/sgl-project/sglang [2] guidance-ai.github.io/llguidance/llg-go-brrr  

+ llguidanceKey enablers:

hf.co/ellamind/propella-1-4b/blob/main/property_descriptions.md
https://github.com/sgl-project/sglang
https://github.com/sgl-project/sglang
https://github.com/sgl-project/sglang
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Scaling up

[1] github.com/ellamind/inference-hive

hf.co/ellamind/propella-1-4b/blob/main/property_descriptions.md
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Scaling up
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propella-annotations

[1] hf.co/datasets/openeurollm/propella-annotations

Lots of annotations available, including:

FineWeb-2 FinePDFs FineWiki  HPLT3

Nemotron-CC German-commons SYNTH

hf.co/ellamind/propella-1-4b/blob/main/property_descriptions.md
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propella-annotations

[1] hf.co/datasets/openeurollm/propella-annotations

Lots of annotations available, including:

FineWeb-2 FinePDFs FineWiki  HPLT3

Nemotron-CC German-commons SYNTH

hf.co/ellamind/propella-1-4b/blob/main/property_descriptions.md
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The Synthetic Pretraining Future

[1] vintagedata.org/blog/posts/synthetic-pretraining

Filter-then-augment

• Filtering improves training token efficiency but reduces dataset size

     -> Synthetic data generation is the solution

Recommended Reading: Synthetic Pretraining – Blog from Alexander Doria [1]

hf.co/ellamind/propella-1-4b/blob/main/property_descriptions.md
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