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Goal of PropBank

n Supply consistent, simple, general purpose 
labeling of semantic roles

n Provide consistent argument labels across 
different syntactic realizations

n Support the training of automatic semantic 
role labelers

n Improved downstream IE, QA, RTE, MT 
evaluation, etc.



Goal of AMRs

n Supply consistent, simple, general purpose 
labeling of sentence semantics that 
seamlessly incorporates NE, SRL, DTB and 
fills in gaps. 

n Provide consistent semantic representations 
across different syntactic realizations

n Support the training of automatic AMR 
parsers



Abstract Meaning Representation (AMR)
- USC-ISI, Colorado, LDC, CMU

n How to consistently represent the meanings of sentences?
n Which concepts and relations?
n How to put them together?

n First guidelines released April 24, 2012
n Laura Banarescu; Claire Bonial; Shu Cai; Madalina

Georgescu; Kira Griffitt; Ulf Hermjakob; Kevin Knight; 
Philipp Koehn; Martha Palmer; Nathan Schneider, Abstract 
Meaning Representation for Sembanking, LAW-2013.

n ISI Downloads: 
q 100 sentences from WSJ; 244 sentences from webtext, 80 with 

consensus agreement; The Little Prince, etc. – funded by NSF
n LDC – DARPA DEFT, 60K+ sentences



Abstract Meaning Representation (AMR)

n Basic “who-is-doing-what-to-whom”
n Cover all sentence content in single, rooted 

structure
n Builds upon PropBank

q Uses PB rolesets: e.g. describe.01
n Arg0: describer
n Arg1: thing described
n Arg2: secondary attribute, described-as

q http://verbs.colorado.edu/propbank/framesets-
english/

http://verbs.colorado.edu/propbank/framesets-english/


Abstract Meaning Representation (AMR)

n AMR composed of concepts and relations, 
not nouns and verbs
q Currently ~100 relations, plus inverses

n AMR is not enslaved to syntax, or even mildly 
indentured:

He described her as a genius. (d / describe-01
As he described her, she is a genius. :ARG0 (h / he)
His description of her: a genius. :ARG1 (s / she)

:ARG2 (g / genius))



AMR vs. PB

PropBank differences for 2nd sentence:
2 structures

Describe-01: same except for empty ARG2
Be-01: she-ARG1, genius-ARG2, as he described her-
ADV



Copulas

She is a genius
n AMR

(g / genius
:domain (s / she))

n PropBank
(b / be.01

:arg0 (s / she)
:arg1 (g / genius))



AMR=PB: Single rooted structures, 
abstracts away from surface syntax

(s / see-01
:ARG0 (b / boy)
:ARG1 (g / girl

:ARG0-of (w / want-01
:ARG1 b)))

n The boy saw the girl who wanted him.
n The boy saw the girl who he was wanted by.
n The girl who wanted the boy was seen by him.



AMR=PB: Single rooted structures, 
abstracts away from surface syntax

(s / slice-01
:ARG0 (w / woman)
:ARG1 (o / onion))

n [T] A woman is slicing an onion.
n [H] An onion is being sliced by a woman.



AMR=PB: Single rooted structures, 
abstracts away from surface syntax

(w / woman : polarity -
:ARG0-of (s / slice-01

:ARG1 (o / onion)))
n [T] There is no woman slicing an onion.

(s / slice-01
:ARG0 (w / woman)
:ARG1 (o / onion))

n [H] A woman is slicing an onion.



AMR=PB: Single rooted structures, 
abstracts away from surface syntax

(s / dice-01
:ARG0 (w / woman)
:ARG1 (c / carrot))

[T] The woman is dicing a carrot.

(s / slice-01
:ARG0 (w / woman)
:ARG1 (o / onion))

[H] A woman is slicing an onion.



AMR=PB: Single rooted structures, 
abstracts away from surface syntax

(s / dice-01
:ARG0 (w / woman)
:ARG1 (c / carrot))

[T] The woman is dicing a carrot.

(s / slice-01
:ARG0 (w / woman)
:ARG1 (o / onion))

[H] A woman is slicing an onion.



Relational nouns
n [T] The guitar is being played by the man
(p / play-11

:ARG0 (m / man)
:ARG2 (g / guitar))

n [H] The man is a guitar player
(p / person

:ARG0-of (p2 / play-11
:ARG2 (g / guitar))

:domain (m / man))



“John  could  not  have heard about the
professor’s creation of the microbial viruses 
that Mary sold to Russia yesterday.”

(p2 / possible
:polarity -
:domain (h / hear-01

:ARG0 (p / person 
:name (n / name :op1 "John"))

:ARG1 (c / create-01
:ARG0 (p3 / professor)
:ARG1 (v / virus

:mod (m / microbe)
:ARG1-of (s / sell-01

:ARG0 (p4 / person 
:name (n2 / name :op1 "Mary"))

:ARG2 (c2 / country 
:name (n3 / name :op1 "Russia"))

:time (y / yesterday))))))



Have-org-role-91 (also have-rel-role-91)

USC Associate Professor for Mathematics Jay Bartroff

(p / person :wiki - :name (n / name :op1 "Jay" :op2 "Bartroff")

:ARG0-of (h / have-org-role-91

:ARG1 (u / university :wiki 

"University_of_Southern_California”

:name (n2 / name :op1 "USC"))

:ARG2 (p2 / professor

:mod (a / associate)

:topic (m / mathematics))))



How is it really different from 
PropBank? 
n Numbered Args, + ArgMs: 

q COM: Comitative
q LOC: Locative
q DIR: Directional
q GOL: Goal
q MNR: Manner
q TMP: Temporal
q EXT: Extent
q REC: Reciprocals
q PRD: Secondary Predication
q PRP: Purpose
q CAU: Cause
q DIS: Discourse
q ADV: Adverbials
q ADJ: Adjectival
q MOD: Modal
q NEG: Negation
q DSP: Direct Speech



How is it really different from 
PropBank? More semantic relations 
n LOTS of additional relations/concepts in addition to numbered args, 

modifier tags of PB (types of ArgM’s): 
General semantic 
roles (incl. shortcuts): :accompanier ex :age ex :beneficiary ex :cause ex :co
ncession ex :condition ex :consist-
of ex :cost ex :degree ex :destination ex :direction ex :domain ex :duration e
x :employed-
by ex :example ex :extent ex :frequency ex :instrument ex :li ex :location ex

:manner ex :meaning ex :medium ex :mod ex :mode ex :name ex :ord ex
:part ex :path ex :polarity ex :polite ex :poss ex :purpose ex :role ex :sourc
e ex :subevent ex :subset ex :superset ex :time ex :topic ex :value ex
In quantities: :quant ex :unit ex :scale ex examples quantity types
In date 
entity: :day :month :year :weekday :time :timezone ex :quarter :dayperi
od :season :year2 :decade :century :calendar ex :era ex :mod date-entity 
examples
Named Entity types - dozens



How is it really different from 
PropBank? Discourse relations
n Introduction of additional discourse elements: 

q But = contrast: “The House has voted to raise the 
ceiling to $ 3.1 trillion , but the Senate isn't 
expected to act until next week at the earliest.”

q Even though = concession: “Workers described 
‘clouds of blue dust’ that hung over parts of the 
factory, even though exhaust fans ventilated the 
area.”

n Penn Discourse Treebank – inter-sentential
n AMR – intra-sentential



How is it really different from 
PropBank? 
n Provides more structuring of noun phrases & 

prepositional phrases, intra-sentential 
coreference and discourse relations

n Collapses more ways of saying the same 
thing, making much more use of PropBank 
predicates.

n Provides a (partial) representation for  
negation and modals; PropBank just marks 
them.



Semantic similarity challenges

n Etymologically related terms are aliased, 
same representation
q destruction/destroy

n What if they aren’t etymologically related? 
q fear.v/fear.n/afraid.adj
q travel/take a trip?
q desire/want???

n Automatic clustering? Word embeddings?



Light Verb Constructions- differ

n Similarly to PropBank, AMR isn’t confounded 

by syntactic idiosyncrasies, function words, 

and light verb constructions. 

n PB (“issue a warning” 
q issue à issue.lv

q warning à warn.01, 

q final REL= issue_warning, 
with warn.01 arguments

n AMR (“issue a warning” à warn-01)



PropBank Today – synched w/ AMR

n More flexible coverage
n http://propbank.github.io/

q Noun annotation (re-merging NomBank frames)
n Eventive nouns: destruction, escape
n Stative nouns: fault, love
n NOT relational nouns, smoker becomes
p4 / person

:ARG0-of (s / smoke-02

q Adjectives
n Comfortable, valuable

http://propbank.github.io/


Accuracy & Agreement

n AMR uses the smatch metric to calculate 
agreement rates against consensus AMR 
annotations

n 4 annotators provided AMRs for all 180 
adjudicated sentences (100 wsj, 80 webtext)

n average smatch agreement rates with 
consensus AMRs were 0.83 (wsj) and 0.73 
(webtext)

n PB IAA generally between 92-98%
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AMR Approach to Constructions

2
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Representing meanings associated with 
syntactic patterns required a novel approach: 
Annotating constructions…

The more we include, the better the 
representation. 
n Include.01, representation à represent.01, 

better à good.02
n Correlation à correlate.91

Bonial, et. al., LREC 2018
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Adding Constructional Rolesets

2
6

n Degree-Related Constructions – Have-Degree-91: 
q Comparison
q Superlative
q Degree-consequence

n Quantity-Related Constructions – Have-Quant-91:
q Comparison
q Superlative
q Quantity-consequence

n The X-er, The Y-er – Correlate-91
n Comparing Resemblance – Have-Degree-of-

Resemblance-91

Bonial, et. al., LREC 2018
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Degree-Related Constructions

2
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Comparison: Superlative:

Bonial, et. al., LREC 2018
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Degree-Related Constructions

2
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Degree-
Consequence:
The watch is too 
wide; therefore, it 
does not fit my wrist. I was too tired to 
drive. 

Bonial, et. al., LREC 2018



Alexander knew Spencer too well to think him 
naive or thick-skulled.
(h / have-degree-91

:ARG1 (w / know-01
:ARG0 (p / person

:name (n / name :op1 ”Alexander"))
:ARG1 (p1 / person

:name (n / name :op1 ”Spencer")) 
:ARG2 (w2 / well)
:ARG3 (t / too)
:ARG6 (t2 / think-01

:ARG0 p
:ARG2 p1
:ARG3 (o / or

:op1 naive
:op2 thick-skulled)))



Alexander knew Spencer too well to think him 
naive or thick-skulled.
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The X-er, The Y-er

3
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Bonial, et. al., LREC 2018
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Evaluation, Implementation

3
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n New guidelines, rolesets piloted on ‘Challenge Set’
q 50 sentences from AMR 2.0
q Selected using keyword searches, manual analysis
q Represents variety of degree/quantity related 

constructions
q Includes tricky cases with clear inconsistencies in past 

annotation
n Double annotated: 1 CU annotator, 1 SDL annotator
n Agreement: 88.6% (‘smatch’ score (Cai and Knight, 2013))
n Manual retrofitting of approximately 4700 annotations

Bonial, et. al., LREC 2018
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Current Status
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• AMR	3.0	released	2018
– 59783	total	AMRs
– 6112	instances	of		
degree/quantity-based	
constructions

• Coverage	of	constructional	
semantics:	a	layer	of	meaning	
critical	for	translation,	natural	
language	understanding
– 4	construction	entries	
added	to	the	AMR	lexicon

– 5	distinct	constructions

Bonial, et. al., LREC 2018



Summarizing
n A more abstract labeled dependency tree 

q w/out function words
q many nouns/adjectives have predicate-argument 

structures as well as verbs
q wikified NE’s
q abstract discourse relations
q interpretation of modality and negation 
q “some” implicit arguments/relations
q AND equivalence relations for coreference –

makes it a graph.



Challenges AMR doesn’t address

n Sense distinctions and semantic similarity
n Metonymy, Metaphors, new usages
n Implicit arguments
n Tense and Aspect
n Logic

q Scope
q Singular/Plural, Definite/Indefinite

n Temporal and causal relations between 
events
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