The Simplest Compositional Semantics

Jerry R. Hobbs

Information Sciences Institute University of Southern California Marina del Rey, CA USA

Representation

Pat believes Chris is tall.

believe(Pat, tall(Chris))

Representation

Pat believes Chris is tall.

believe(Pat, tall(Chris))

==> believe(Pat, T/F)

Modal Operators

Maybe the boy wanted to build a boat slowly.

Modal Operators

Two Principles of Representation

- 1. All morphemes are created equal.
- 2. Every morpheme conveys a predication

Reification

tall(Chris) : Chris is tall.

tall' (e, Chris) : e is the eventuality of Chris's being tall.

believe(Pat, e) & tall' (e, Chris)

Reification

The boy built a boat slowly.

Reification

Maybe the boy wanted to build a boat slowly.

maybe(e5) & the(x3,e3) & boy' (e3,x3) & want' (e4,x3,e6) & Past' (e5,e4) & build' (e6,x3,y8) & a(y8,e8) & boat' (e8,y8) & slow(e6)

> All first-order logic: Predicates applied to arguments where the arguments are existentially quantified variables with widest possible scope, ranging over a universe of possible individuals.

Morphemes as Predicates

Maybe the boy wanted to build a boat slowly.

maybe(e5) & the(x3,e3) & boy' (e3,x3) & want' (e4,x3,e6) & Past' (e5,e4) & build' (e6,x3,y8) & a(y8,e8) & boat' (e8,y8) & slow(e6)

x3 is uniquely mutually identifiable in context by the speaker and hearer by virtue of the property e3

==> uniquely-mutually-identifiable-in-context-by-virtue-of-property(x3,e3)

==> the(x3,e3)

Restrictive vs. Nonrestrictive

the tall professor

```
the(x1,e2&e3) & tall'(e2,x) & professor'(e3,x)
```

where e2&e3 means e1 s.t. and'(e1,e2,e3)

the philosophical Greeks

the philosophical Greeks

the(x1,e3) & philosophical'(e2,x) & Greek'(e3,x) & Plural(x,s)

nonrestrictive

Modality

Scope of modals recast as predicate-argument relations.

Individuating Eventualities

Eventuality: State or event under a description. Therefore individuated very finely.

run'(e1,P) & fast(e1)

go'(e2,P) & slow(e2)

e1 generates e2: they share the same location and time (stronger than implication)

Plurals and Quantifier Scope

Sets, type elements of sets, and functional dependencies

professors: professor'(e,x) & Plural(x,s)

Most professors like several textbooks.

most(s1,s) & Plural(x1,s1) & professor'(e,x) & Plural(x,s) & like'(e3,x1,y) & several(s2) & textbook'(e5,y) & Plural(y,s2)

This is neutral wrt scope. Inferencing discovers Indiv(y) or FD(y,x) Advantage: We don't force linear order on quantifiers

Quantifiers are properties of and relations among entities, sets and descriptions: several, most, the

Underspecification

```
Lexical ambiguity:
In Logical Form: bank(x)
In KB: (A x) bank1(x) \rightarrow bank(x)
(A x,y) bank2(x,y) \rightarrow bank(x)
```

Pronouns:

Pat gave Kris his computer. LF: give(p,k,c) & he(x) & Poss(x,c) & computer(c) Inference discovers x=p or x=k or something else

Syntactic ambiguity:

I see the man with the telescope.

LF: see'(e,I,m,t) & man(m) & with(x,t) & telescope(t) & [x=e | x=m]

Pass on to Inferential Processing the problems that require inference.

But Wait ...

John is tall. ==> john'(e1,x) & tall'(e3,x)

John is not tall. ==> john' (e1,x) & not' (e2,e3) & tall' (e3,x)

P & Q & R --> P & R

So "John is not tall." implies "John is tall."

John is not tall. ==> john' (e1,x) & not' (e2,e3) & tall' (e3,x)

P & Q & R --> P & R

So "John is not tall." implies "John is tall."

Content vs. Claim

What's True and What Isn't

The lazy man did not manage to avoid attending the meeting.

- Step 1: Identify the claim. not
- Step 2: Propagate truth and falsity. not = T ==> manage = F ==> avoid = F ==> attend =T

```
Step 3: As a courtesy to the speaker, assume the other propositions are true.
lazy = T; man = T; meeting = T
```

```
(But note: in belief contexts, ambiguity between
Rexist: de re
believe: de dicto)
```

Compositional Semantics: The Standard View

Simple Compositional Semantics

- 1. The lexicon provides predicate-argument relations.
- 2. Syntax identifies variables.

Syntax and Compositional Semantics

The only purpose of syntactic analysis is to recover the predicate-argument structure of the text. Syntax IS natural language's way of encoding predicate-argument structure in strings.

The primary reason to discover predicateargument structure is to do inference.

What are the Problems?

Morphemes convey predications,

i.e., predicates applied to arguments **p(x)**:

1. What is the predicate? **p**

lexical disambiguation interpreting vague predicates (prepositions, "have", ...) interpreting the implicit relation in nominal compounds vivification, concretization ("go" ==> "fly")

- 2. What is the argument? x coreference resolution syntactic disambiguation
- 3. In what way are the predicate and argument congruent? p(x) metonymy metaphor

"Local Pragmatics"

What are the Problems?

Local Pragmatics

Local Coherence:

What information is conveyed by the adjacency of segments of discourse?

Global Coherence:

What role does the discourse play in the participants' plans to achieve things in the world?