
A constrained graph algebra for 
semantic parsing with AMRs

IWCS 2017

Jonas Groschwitz#+, Meaghan Fowlie#,
Alexander Koller#, Mark Johnson+

#: Saarland University, +: Macquarie University



Abstract Meaning Representation (AMR)
• Semantic representations of sentences.
• Rooted graphs.
• Graph nodes represent concepts of the sentence.
• Edges relate these concepts.

“The little cat wants to sleep.”
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Why AMRs
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• AMRs are available, have big corpora, and make a good 
place to start looking at semantic parsing

• However, we will define operations for composing graphs 
that are general enough that we think the basic principle 
could be applied to other domains



Dependency Parsing into AMRs
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Building Graphs
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Building Graphs
• Formally: algebra
• terms contain symbols representing operations

Training a system to find dependencies:
generate a lot of terms and try to find patterns.
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Building Graphs
• Formally: algebra
• terms contain symbols representing operations

Training a system to find dependencies:
generate a lot of terms and try to find patterns.
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Compositional complexity
There is more than one way to build a graph!
hidden compositional structure
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Our Goal

An algebra that
1. has low compositional complexity,
2. produces consistent, meaningful terms
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Our Goal

An algebra that
1. has low compositional complexity,
2. produces consistent, meaningful terms
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➣  Use linguistics!



HR algebra (Courcelle, 1993)

• Mark some graph nodes with source names.
• S-graphs: graphs with source names
• S-graphs can be merged along common source names.
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HR algebra (Courcelle, 1993)
• Source names are introduced in lexical constants:

• Can rename source names:

“The cat sleeps.”
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HR algebra (Courcelle, 1993)
• Can forget source names when we no longer need them:
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HR algebra (Courcelle, 1993)

Example:
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HR algebra (Courcelle, 1993)

Example:
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Apply operation

head complement

• Combines a head with a complement.

• Rename, merge and forget in one step!
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Modify operation

• Combines a modifier with a head.
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Example
APPS

MODM
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Example
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Example

The complement must be “done” before we combine it.
➢ This is the only term!

APPS

MODM
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Linguistic Intuitions: APP
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Linguistic Intuitions: APP

• Apply a function/head to its argument/complement
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Linguistic Intuitions: APP

• Apply a function/head to its argument/complement
• Two-way dependency: 

• argument needs to be selected
• Function needs an argument

• Unfilled argument slots marked with sources like S for subject
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Linguistic Intuitions: APP

• Apply a function/head to its argument/complement
• Two-way dependency: 

• argument needs to be selected
• Function needs an argument

• Unfilled argument slots marked with sources like S for subject
• Syntax: like theta grids in lexical entries
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• Add a modifier to a head
• One-way dependency:

• Modifier needs to modify
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• Add a modifier to a head
• One-way dependency:

• Modifier needs to modify
• Head doesn’t need to be modified



k

ren{M 7!rt}

frt

little
rt M

mod

cat
rt

Linguistic Intuitions: MOD

25

• Add a modifier to a head
• One-way dependency:

• Modifier needs to modify
• Head doesn’t need to be modified

• Always modify at the root: 



k

ren{M 7!rt}

frt

little
rt M

mod

cat
rt

Linguistic Intuitions: MOD

25

• Add a modifier to a head
• One-way dependency:

• Modifier needs to modify
• Head doesn’t need to be modified

• Always modify at the root: 
• Modifier isn’t filling a need in the 

head, just adding itself in
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• Add a modifier to a head
• One-way dependency:

• Modifier needs to modify
• Head doesn’t need to be modified

• Always modify at the root: 
• Modifier isn’t filling a need in the 

head, just adding itself in
• Syntax: modification is adjunction of 

two complete phrases, yielding a 
phrase of the same kind we started 
with, eg:



k

ren{M 7!rt}

frt

little
rt M

mod

cat
rt

Linguistic Intuitions: MOD

25

• Add a modifier to a head
• One-way dependency:

• Modifier needs to modify
• Head doesn’t need to be modified

• Always modify at the root: 
• Modifier isn’t filling a need in the 

head, just adding itself in
• Syntax: modification is adjunction of 

two complete phrases, yielding a 
phrase of the same kind we started 
with, eg:
• NP -> AP NP
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• Add a modifier to a head
• One-way dependency:

• Modifier needs to modify
• Head doesn’t need to be modified

• Always modify at the root: 
• Modifier isn’t filling a need in the 

head, just adding itself in
• Syntax: modification is adjunction of 

two complete phrases, yielding a 
phrase of the same kind we started 
with, eg:
• NP -> AP NP

• Optional: type is unchanged



Graph types

Type of an s- graph (take one): the set of its non-rt source names.

has type [S,O]

has empty type

little
rtM

mod has type [M]
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Source name annotations
• O[S] is an O source annotated with type [S].
• It means that we require the O-complement to have type [S].

• At other sources, we require the complement to have the empty 
type (only rt-source).

27



MOD type requirement

• MODmod allowed iff type of modifier, minus mod, is a subset of the 
head’s type
• —>  Type of result is the same as the type of the head

28

���
��

���������
��

�

����

���������
��

�������

������

���

����

����
�������
��

�

����

�

������

MODmod

APPS



    “The little cat wants to sleep.”
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    ”The little cat wants to sleep.”
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Order of operations

• Restriction: if an annotation introduces a source that is present in 
the graph, the annotated source must be filled first

• e.g.: APPo before APPs in subject control

• We’re not totally sure what the status of this restriction should be
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Coordination

“The cat eats and drinks.”
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Coordination

“The cat eats and drinks.”
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Coordination
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Coordination

“The cat eats and drinks.”
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Coordination

“The cat eats and drinks.”
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Object control

• [S->O] adds another rename to APPO2

“The lion persuaded the cat to run.”
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Object control

• corresponding HR term:

38



Graph types (update)

Type of a graph:  the set of its non-rt source names, and their 
annotations.

has type [S,O[S]]

has type [S,O,O2[S][S->O]]
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Coordination of control verbs

“The rose begged and persuaded the 
prince to stay.”
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Well-typed term

An AM-term is well-typed iff it evaluates to an AS-graph 
with the empty type.
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Well-typed term

An AM-term is well-typed iff it evaluates to an AS-graph 
with the empty type.
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Dependency Parsing into AMRs
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Conclusion

• Graphs have a hidden compositional structure brought 
out by the AM algebra

• Lexicalised semantic dependencies
• Syntactic alternations lexicalised in source choices
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