
A constrained graph algebra for
semantic parsing with AMRs

IWCS 2017

Jonas Groschwitz#+, Meaghan Fowlie#,
Alexander Koller#, Mark Johnson+

#: Saarland University, +: Macquarie University

Abstract Meaning Representation (AMR)
• Semantic representations of sentences.
• Rooted graphs.
• Graph nodes represent concepts of the sentence.
• Edges relate these concepts.

“The little cat wants to sleep.”

2

Why AMRs

3

• AMRs are available, have big corpora, and make a good
place to start looking at semantic parsing

• However, we will define operations for composing graphs
that are general enough that we think the basic principle
could be applied to other domains

Dependency Parsing into AMRs

4

The little cat sleeps

sleep-01
rt

cat

ARG0

little
mod

Dependency Parsing into AMRs

4

The little cat sleeps

sleep-01
rt

cat

ARG0

little
mod

Dependency Parsing into AMRs

4

The little cat sleeps

sleep-01
rt

cat

ARG0

little
mod

Dependency Parsing into AMRs

4

The little cat sleeps

sleep-01
rt

cat

ARG0

little
mod

Dependency Parsing into AMRs

4

The little cat sleeps

sleep-01
rt

cat

ARG0

little
mod

little
mod

Dependency Parsing into AMRs

4

The little cat sleeps

sleep-01
rt

cat

ARG0

little
mod

catlittle
mod

Dependency Parsing into AMRs

4

The little cat sleeps

sleep-01
rt

cat

ARG0

little
mod

cat sleep-01

ARG0

little
mod

Dependency Parsing into AMRs

4

The little cat sleeps

sleep-01
rt

cat

ARG0

little
mod

cat sleep-01

ARG0

little
mod

Dependency Parsing into AMRs

4

The little cat sleeps

sleep-01
rt

cat

ARG0

little
mod

cat sleep-01

ARG0

little
mod

Dependency Parsing into AMRs

4

The little cat sleeps

sleep-01
rt

cat

ARG0

little
mod

cat sleep-01

ARG0

little
mod

Dependency Parsing into AMRs

4

The little cat sleeps

sleep-01
rt

cat

ARG0

little
mod

cat sleep-01

ARG0

little
mod

Building Graphs

5

Building Graphs
• Formally: algebra
• terms contain symbols representing operations

Training a system to find dependencies:
generate a lot of terms and try to find patterns.

6

Building Graphs
• Formally: algebra
• terms contain symbols representing operations

Training a system to find dependencies:
generate a lot of terms and try to find patterns.

7

Compositional complexity
There is more than one way to build a graph!
hidden compositional structure

8

Our Goal

An algebra that
1. has low compositional complexity,
2. produces consistent, meaningful terms

9

Our Goal

An algebra that
1. has low compositional complexity,
2. produces consistent, meaningful terms

9

➣ Use linguistics!

HR algebra (Courcelle, 1993)

• Mark some graph nodes with source names.
• S-graphs: graphs with source names
• S-graphs can be merged along common source names.

10

HR algebra (Courcelle, 1993)
• Source names are introduced in lexical constants:

• Can rename source names:

“The cat sleeps.”

11

HR algebra (Courcelle, 1993)
• Can forget source names when we no longer need them:

12

HR algebra (Courcelle, 1993)

Example:

13

HR algebra (Courcelle, 1993)

Example:

14

HR algebra (Courcelle, 1993)

Example:

15

HR algebra (Courcelle, 1993)

Example:

16

Apply operation

head complement

• Combines a head with a complement.

• Rename, merge and forget in one step!

17

Modify operation

• Combines a modifier with a head.

MODM

0

BBBB@
| {z }

,

| {z }

1

CCCCA
=

modifierhead

18

Modify operation

• Combines a modifier with a head.

MODM

0

BBBB@
| {z }

,

| {z }

1

CCCCA
=

modifierhead

19

Example
APPS

MODM

20

Example
APPS

MODM

21

Example
APPS

MODM

22

Example

The complement must be “done” before we combine it.
➢ This is the only term!

APPS

MODM

23

Linguistic Intuitions: APP

24

Linguistic Intuitions: APP

• Apply a function/head to its argument/complement

24

fS

k

sleep-01
rt S

ARG0 ren{rt 7!S}

cat
rt

Linguistic Intuitions: APP

• Apply a function/head to its argument/complement
• Two-way dependency:

24

fS

k

sleep-01
rt S

ARG0 ren{rt 7!S}

cat
rt

Linguistic Intuitions: APP

• Apply a function/head to its argument/complement
• Two-way dependency:

• argument needs to be selected

24

fS

k

sleep-01
rt S

ARG0 ren{rt 7!S}

cat
rt

Linguistic Intuitions: APP

• Apply a function/head to its argument/complement
• Two-way dependency:

• argument needs to be selected
• Function needs an argument

24

fS

k

sleep-01
rt S

ARG0 ren{rt 7!S}

cat
rt

Linguistic Intuitions: APP

• Apply a function/head to its argument/complement
• Two-way dependency:

• argument needs to be selected
• Function needs an argument

• Unfilled argument slots marked with sources like S for subject

24

fS

k

sleep-01
rt S

ARG0 ren{rt 7!S}

cat
rt

Linguistic Intuitions: APP

• Apply a function/head to its argument/complement
• Two-way dependency:

• argument needs to be selected
• Function needs an argument

• Unfilled argument slots marked with sources like S for subject
• Syntax: like theta grids in lexical entries

24

fS

k

sleep-01
rt S

ARG0 ren{rt 7!S}

cat
rt

k

ren{M 7!rt}

frt

little
rt M

mod

cat
rt

Linguistic Intuitions: MOD

25

k

ren{M 7!rt}

frt

little
rt M

mod

cat
rt

Linguistic Intuitions: MOD

25

• Add a modifier to a head

k

ren{M 7!rt}

frt

little
rt M

mod

cat
rt

Linguistic Intuitions: MOD

25

• Add a modifier to a head
• One-way dependency:

k

ren{M 7!rt}

frt

little
rt M

mod

cat
rt

Linguistic Intuitions: MOD

25

• Add a modifier to a head
• One-way dependency:

• Modifier needs to modify

k

ren{M 7!rt}

frt

little
rt M

mod

cat
rt

Linguistic Intuitions: MOD

25

• Add a modifier to a head
• One-way dependency:

• Modifier needs to modify
• Head doesn’t need to be modified

k

ren{M 7!rt}

frt

little
rt M

mod

cat
rt

Linguistic Intuitions: MOD

25

• Add a modifier to a head
• One-way dependency:

• Modifier needs to modify
• Head doesn’t need to be modified

• Always modify at the root:

k

ren{M 7!rt}

frt

little
rt M

mod

cat
rt

Linguistic Intuitions: MOD

25

• Add a modifier to a head
• One-way dependency:

• Modifier needs to modify
• Head doesn’t need to be modified

• Always modify at the root:
• Modifier isn’t filling a need in the

head, just adding itself in

k

ren{M 7!rt}

frt

little
rt M

mod

cat
rt

Linguistic Intuitions: MOD

25

• Add a modifier to a head
• One-way dependency:

• Modifier needs to modify
• Head doesn’t need to be modified

• Always modify at the root:
• Modifier isn’t filling a need in the

head, just adding itself in
• Syntax: modification is adjunction of

two complete phrases, yielding a
phrase of the same kind we started
with, eg:

k

ren{M 7!rt}

frt

little
rt M

mod

cat
rt

Linguistic Intuitions: MOD

25

• Add a modifier to a head
• One-way dependency:

• Modifier needs to modify
• Head doesn’t need to be modified

• Always modify at the root:
• Modifier isn’t filling a need in the

head, just adding itself in
• Syntax: modification is adjunction of

two complete phrases, yielding a
phrase of the same kind we started
with, eg:
• NP -> AP NP

k

ren{M 7!rt}

frt

little
rt M

mod

cat
rt

Linguistic Intuitions: MOD

25

• Add a modifier to a head
• One-way dependency:

• Modifier needs to modify
• Head doesn’t need to be modified

• Always modify at the root:
• Modifier isn’t filling a need in the

head, just adding itself in
• Syntax: modification is adjunction of

two complete phrases, yielding a
phrase of the same kind we started
with, eg:
• NP -> AP NP

• Optional: type is unchanged

Graph types

Type of an s- graph (take one): the set of its non-rt source names.

has type [S,O]

has empty type

little
rtM

mod has type [M]

26

Source name annotations
• O[S] is an O source annotated with type [S].
• It means that we require the O-complement to have type [S].

• At other sources, we require the complement to have the empty
type (only rt-source).

27

MOD type requirement

• MODmod allowed iff type of modifier, minus mod, is a subset of the
head’s type
• —> Type of result is the same as the type of the head

28

���
��

���������
��

�

����

���������
��

�������

������

���

����

����
�������
��

�

����

�

������

MODmod

APPS

 “The little cat wants to sleep.”

29

 ”The little cat wants to sleep.”

30

cat
rt

sleep-01
rt S

ARG0

want-01
rt

S

ARG0

O[S]

ARG1

APPo

APPs

Order of operations

• Restriction: if an annotation introduces a source that is present in
the graph, the annotated source must be filled first

• e.g.: APPo before APPs in subject control

• We’re not totally sure what the status of this restriction should be

31

want-01
rt

S

ARG0

O[S]

ARG1

Coordination

“The cat eats and drinks.”

32

Coordination

“The cat eats and drinks.”

33

Coordination

“The cat eats and drinks.”

34

Coordination

“The cat eats and drinks.”

35

Coordination

“The cat eats and drinks.”

36

Object control

• [S->O] adds another rename to APPO2

“The lion persuaded the cat to run.”

37

Object control

• corresponding HR term:

38

Graph types (update)

Type of a graph: the set of its non-rt source names, and their
annotations.

has type [S,O[S]]

has type [S,O,O2[S][S->O]]

39

Coordination of control verbs

“The rose begged and persuaded the
prince to stay.”

40

Well-typed term

An AM-term is well-typed iff it evaluates to an AS-graph
with the empty type.

41

APPo

Well-typed term

An AM-term is well-typed iff it evaluates to an AS-graph
with the empty type.

41

APPo
APPS

MODM

Dependency Parsing into AMRs

42

The little cat sleeps

sleep-01
rt

cat

ARG0

little
mod

cat sleep-01

ARG0

little
mod

Dependency Parsing into AMRs

42

The little cat sleeps

sleep-01
rt

cat

ARG0

little
mod

cat sleep-01

ARG0

little
mod

APPs

Dependency Parsing into AMRs

42

The little cat sleeps

sleep-01
rt

cat

ARG0

little
mod

cat sleep-01

ARG0

little
mod

MODmod APPs

Conclusion

• Graphs have a hidden compositional structure brought
out by the AM algebra

• Lexicalised semantic dependencies
• Syntactic alternations lexicalised in source choices

43

