Glue semantics for Universal Dependencies

Matthew Gotham and Dag Haug

Centre for Advanced Study
at the Norwegian Academy of Science and Letters

Oslo, 20 March 2018

Introduction

- Universal Dependencies (UD) is a de facto annotation standard for cross-linguistic annotation of syntactic structure

Introduction

- Universal Dependencies (UD) is a de facto annotation standard for cross-linguistic annotation of syntactic structure
- \rightarrow interest in deriving semantic representations from UD structures, ideally in a language-independent way

Introduction

- Universal Dependencies (UD) is a de facto annotation standard for cross-linguistic annotation of syntactic structure
- \rightarrow interest in deriving semantic representations from UD structures, ideally in a language-independent way
- Our approach: adapt and exploit techniques from LFG + Glue semantics
- dependency structures $\approx f$-structures
- LFG inheritance in UD (via Stanford dependencies)
- Glue offers a syntax-semantics interace where syntax can underspecify semantics

Introduction

- Universal Dependencies (UD) is a de facto annotation standard for cross-linguistic annotation of syntactic structure
- \rightarrow interest in deriving semantic representations from UD structures, ideally in a language-independent way
- Our approach: adapt and exploit techniques from LFG + Glue semantics
- dependency structures $\approx f$-structures
- LFG inheritance in UD (via Stanford dependencies)
- Glue offers a syntax-semantics interace where syntax can underspecify semantics
- Postpone the need for language-specific, lexical resources

Outline

(1) Target representations
(2) Introduction to Glue semantics
(3) Universal Dependencies

4 Our pipeline
(5) Evaluation and discussion

Plan

(1) Target representations

(2) Introduction to Glue semantics

(3) Universal Dependencies

4 Our pipeline

5 Evaluation and discussion

Target representations

- Our target representations for sentence meanings are DRSs.
- The format of these DRSs is inspired by Boxer (Bos, 2008).

Target representations

- Our target representations for sentence meanings are DRSs.
- The format of these DRSs is inspired by Boxer (Bos, 2008).
- We assume discourse referents (drefs) of three sorts: entities $\left(x_{n}\right)$, eventualities $\left(e_{n}\right)$ and propositions $\left(p_{n}\right)$.

Target representations

- Our target representations for sentence meanings are DRSs.
- The format of these DRSs is inspired by Boxer (Bos, 2008).
- We assume discourse referents (drefs) of three sorts: entities $\left(x_{n}\right)$, eventualities (e_{n}) and propositions $\left(p_{n}\right)$.
- The predicate ant means that its argument has an antecedent (it's a presupposed dref).
\rightarrow Also applies to the predicates beginning pron.-
- The connective ∂ marks presupposed conditions-it maps TRUE to TRUE and is otherwise undefined.
\rightarrow Unlike Boxer, which has separate DRSs for presupposed and asserted material.

An example

Us:
(1) Abrams persuaded the dog to bark.

Boxer:
$\left(\begin{array}{l|}\hline x_{2} \\ \hline \operatorname{dog}\left(x_{2}\right) \\ \left.\hline \begin{array}{l}x_{1} e_{1} p_{1} \\ \begin{array}{l}\text { named }\left(x_{1}, \text { abrams }\right) \\ \operatorname{persuade}\left(e_{1}\right) \\ \operatorname{agent}\left(e_{1}, x_{1}\right) \\ \text { theme }\left(e_{1}, x_{2}\right) \\ \operatorname{content}\left(e_{1}, p_{1}\right)\end{array} \\ p_{1}: \begin{array}{|l|}\hline \begin{array}{l}e_{2} \\ \operatorname{bark}\left(e_{2}\right) \\ \operatorname{agent}\left(e_{2}, x_{2}\right)\end{array} \\ \hline\end{array}\end{array}\right)\end{array}\right.$
$x_{1} x_{2} e_{1} p_{1}$
$\operatorname{named}\left(x_{1}\right.$, abrams $)$
$\operatorname{ant}\left(x_{2}\right)$
$\partial\left(\operatorname{dog}\left(x_{2}\right)\right)$
persuade $\left(e_{1}\right)$
$\operatorname{agent}\left(e_{1}, x_{1}\right)$
theme $\left(e_{1}, x_{2}\right)$
$\operatorname{content}\left(e_{1}, p_{1}\right)$

$p_{1}:$| e_{2} |
| :--- |
| $\operatorname{bark}\left(e_{2}\right)$ |
| $\operatorname{agent}\left(e_{2}, x_{2}\right)$ |

Other running examples

(taken from the CCS development suite)
(2) He hemmed and hawed.

```
x ( }\mp@subsup{e}{1}{}\mp@subsup{e}{2}{
pron.he(x ( 
hem(eq)
agent(e}\mp@subsup{e}{1}{},\mp@subsup{x}{1}{}
haw(e2)
agent(e}\mp@subsup{e}{2}{},\mp@subsup{x}{1}{}
```

(3) The dog they thought we admired barks.

$x_{1} x_{2} x_{3} e_{1} e_{2} p_{1}$
$\operatorname{ant}\left(x_{1}\right), \partial\left(\operatorname{dog}\left(x_{1}\right)\right)$
pron.they $\left(x_{2}\right)$, pron.we $\left(x_{3}\right)$
$\operatorname{bark}\left(e_{1}\right), \operatorname{agent}\left(e_{1}, x_{1}\right)$
$\partial\left(\right.$ think $\left.\left(e_{2}\right)\right), \partial\left(\operatorname{agent}\left(e_{2}, x_{2}\right)\right)$
$\partial\left(\right.$ content $\left.\left(e_{2}, p_{1}\right)\right)$
$p_{1}:$admire $\left(e_{3}\right)$ $\operatorname{agent}\left(e_{3}, x_{3}\right)$ theme $\left(e_{3}, x_{1}\right)$

Underlying logic

- The Glue approach relies on meanings being put together by application and abstraction, so we need some form of compositional or λ-DRT for meaning construction.

$$
\text { someone } \rightsquigarrow \lambda P . \begin{array}{|l|}
\hline x_{1} \\
\hline \operatorname{person}\left(x_{1}\right)
\end{array} ; P\left(x_{1}\right)
$$

Underlying logic

- The Glue approach relies on meanings being put together by application and abstraction, so we need some form of compositional or λ-DRT for meaning construction.

$$
\text { someone } \rightsquigarrow \lambda P . \begin{array}{|l|}
\hline x_{1} \\
\hline \operatorname{person}\left(x_{1}\right)
\end{array} ; P\left(x_{1}\right)
$$

- Conceptually, we are assuming PCDRT (Haug, 2014), which has a definition of the ant predicate and (relatedly) a treatment of so-far-unresolved anaphora that doesn't require indexing.
- This specific assumption is not crucial, though.

Plan

(1) Target representations
(2) Introduction to Glue semantics
(3) Universal Dependencies

4 Our pipeline
(5) Evaluation and discussion

What is Glue?

- A theory of the syntax/semantics interface, originally developed for LFG, and now the mainstream in LFG (Dalrymple et al., 1993, 1999).

What is Glue?

- A theory of the syntax/semantics interface, originally developed for LFG, and now the mainstream in LFG (Dalrymple et al., 1993, 1999).
- Has been applied to other frameworks: HPSG (Asudeh \& Crouch, 2002), LTAG (Frank \& van Genabith, 2001) and Minimalism (Gotham, 2018).

What is Glue?

- A theory of the syntax/semantics interface, originally developed for LFG, and now the mainstream in LFG (Dalrymple et al., 1993, 1999).
- Has been applied to other frameworks: HPSG (Asudeh \& Crouch, 2002), LTAG (Frank \& van Genabith, 2001) and Minimalism (Gotham, 2018).
- Interpretations of constituents are paired with formulae of a fragment of linear logic (Girard, 1987), and semantic composition is deduction in that logic mediated by the Curry-Howard correspondence (Howard, 1980).

What is Glue?

- A theory of the syntax/semantics interface, originally developed for LFG, and now the mainstream in LFG (Dalrymple et al., 1993, 1999).
- Has been applied to other frameworks: HPSG (Asudeh \& Crouch, 2002), LTAG (Frank \& van Genabith, 2001) and Minimalism (Gotham, 2018).
- Interpretations of constituents are paired with formulae of a fragment of linear logic (Girard, 1987), and semantic composition is deduction in that logic mediated by the Curry-Howard correspondence (Howard, 1980).

A crude characterisation would be that glue semantics is like categorial grammar and its semantics, but without the categorial grammar.
(Crouch \& van Genabith, 2000, 91)

Scope ambiguity as an example

(4) Someone sees everything.

Two interpretations:
(1) There is someone who sees everything.
(2) Everything is seen.
(surface scope, $\exists>\forall$)
(inverse scope, $\forall>\exists$)

Q: Where is the ambiguity?

Montague Grammar

(Montague, 1973; Dowty et al., 1981)

Ambiguity of syntactic derivation:

Montague Grammar

(Montague, 1973; Dowty et al., 1981)

Ambiguity of syntactic derivation:

Surface scope

someone sees everything, 4

Montague Grammar

(Montague, 1973; Dowty et al., 1981)

Ambiguity of syntactic derivation:

Surface scope

someone sees everything, 4

Inverse scope

someone sees everything, 10,0

everything someone sees heo, 4

Mainstream Minimalism

(May, 1977, 1985; Heim \& Kratzer, 1998)

Ambiguity of syntactic structure:

Mainstream Minimalism

(May, 1977, 1985; Heim \& Kratzer, 1998)

Ambiguity of syntactic structure:

Surface scope

Mainstream Minimalism

(May, 1977, 1985; Heim \& Kratzer, 1998)

Ambiguity of syntactic structure:

Surface scope

Inverse scope

Another way

- The approaches just mentioned have in common is the view that syntactic structure plus lexical semantics determines interpretation.

Another way

- The approaches just mentioned have in common is the view that syntactic structure plus lexical semantics determines interpretation.
- From this it follows that if a sentence is ambiguous, such as (4), then that ambiguity must be either lexical or syntactic.

Another way

- The approaches just mentioned have in common is the view that syntactic structure plus lexical semantics determines interpretation.
- From this it follows that if a sentence is ambiguous, such as (4), then that ambiguity must be either lexical or syntactic.
- The Glue approach is that syntax constrains what can combine with what, and how.
(to this extent there is a similarity with Cooper storage (Cooper, 1983))
- Totally informal statement of what the constraints look like in (4):
－Totally informal statement of what the constraints look like in（4）：
- 【sees】 applies to A ，then B ，to form C ．
- \llbracket someone】 applies to（something that applies to B to form C ）to form C．
－【everything』 applies to（something that applies to A to form C ）to form C ．
－Totally informal statement of what the constraints look like in（4）：
- 【sees】 applies to A ，then B ，to form C ．
- \llbracket someone】 applies to（something that applies to B to form C ）to form C．
－【everything』 applies to（something that applies to A to form C ）to form C ．
－There＇s more than one way to put \llbracket someone】，【sees】 and \llbracket everything \rrbracket together，while obeying these constraints，to form C．
－Totally informal statement of what the constraints look like in（4）：
- 【sees】 applies to A ，then B ，to form C ．
- \llbracket someone】 applies to（something that applies to B to form C ）to form C．
－【everything』 applies to（something that applies to A to form C ）to form C ．
－There＇s more than one way to put \llbracket someone】，【sees】 and \llbracket everything \rrbracket together，while obeying these constraints，to form C．
－The different ways：
－Give the different interpretations of（4）．
－Correspond to different proofs from the same premises in Linear Logic．

The syntax-semantics interface according to Glue

(1) Function, given by Glue implementation
(2) Relation, given by linear logic proof theory
(3) Function, given by Curry-Howard correspondence

Linear logic

Linear logic is often called a 'logic of resources'(Crouch \& van Genabith, 2000, 5).

Linear logic

Linear logic is often called a 'logic of resources'(Crouch \& van Genabith, $2000,5)$. The reason for this is that, in linear logic, for a sequent

$$
\text { premise(s) } \vdash \text { conclusion }
$$

to be valid, every premise in premise(s) must be 'used' exactly once.

Linear logic

Linear logic is often called a 'logic of resources'(Crouch \& van Genabith, $2000,5)$. The reason for this is that, in linear logic, for a sequent

$$
\text { premise(s) } \vdash \text { conclusion }
$$

to be valid, every premise in premise(s) must be 'used' exactly once. So for example,

$$
\begin{array}{lll}
A \vdash A & \text { and } & A, A \multimap B \vdash B, \text { but } \\
A, A \nvdash A & \text { and } & A, A \multimap(A \multimap B) \nvdash B
\end{array}
$$

(- is linear implication)

Interpretation as deduction

In Glue,

Interpretation as deduction

In Glue,

- expressions of a meaning language (in this case, λ-DRT) are paired with formulae in a fragment of linear logic (the glue language)

Interpretation as deduction

In Glue,

- expressions of a meaning language (in this case, λ-DRT) are paired with formulae in a fragment of linear logic (the glue language), and
- steps of deduction carried out using those formulae correspond to operations performed on the meaning terms, according to the Curry-Howard correspondence.

Linear implication

Rules for -0	
Elimination. .	Introduction...
$\frac{X \multimap Y \quad X}{Y} \multimap_{E}$	$[X]^{n}$ \vdots $\frac{Y}{X \multimap Y}-\circ, n$ Exactly one hypothesis must be discharged in the introduction step.

Linear implication and functional types

Linear implication and functional types

Rules for \multimap and their images under the Curry-Howard correspondence		
Elimination. .	Introduction...	
$\frac{f: X \multimap Y ~ a: X}{f(a): Y} \multimap^{\circ}$	$\begin{gathered} {[v: X]^{n}} \\ \vdots \\ \frac{f: Y}{\lambda v . f: X \multimap Y}-\varrho, n \end{gathered}$	Exactly one hypothesis must be discharged in the introduction step.
... corresponds to ...		
... application.	... abstraction.	

Propositions as types:

$$
\operatorname{type}(X \multimap Y):=\operatorname{type}(X) \rightarrow \operatorname{type}(Y)
$$

What you need from syntax

label	A	B	C
assigned to	the object argu- ment of sees	the subject argu- ment of sees	the sentence as a whole
everything	someone	(where someone takes scope)	
(where everything			
takes scope)			

What you need from syntax

$\left.\begin{array}{l|lll}\text { label } & A & B & C \\ \hline \text { assigned to } & \begin{array}{ll}\text { the object argu- } \\ \text { ment of sees }\end{array} & \begin{array}{l}\text { the subject argu- } \\ \text { ment of sees }\end{array} & \begin{array}{l}\text { the sentence as a } \\ \text { whole }\end{array} \\ \text { everything } & \text { someone } & \begin{array}{l}\text { (where someone } \\ \text { takes scope) }\end{array} \\ \text { (where everything } \\ \text { takes scope) }\end{array}\right\}$

$$
\begin{array}{lc}
\lambda Q \cdot\left[x_{1} \mid \operatorname{person}\left(x_{1}\right)\right] ; Q\left(x_{1}\right):(B \multimap C) \multimap C & \text { type }(e \rightarrow t) \rightarrow t \\
\lambda v \cdot \lambda u \cdot[\mid \operatorname{see}(u, v)]: A \multimap(B \multimap C) & \text { type } e \rightarrow(e \rightarrow t) \\
\lambda P \cdot\left[\mid\left[x_{1} \mid\right] \Rightarrow P\left(x_{1}\right)\right]:(A \multimap C) \multimap C & \text { type }(e \rightarrow t) \rightarrow t
\end{array}
$$

Surface scope interpretation

Inverse scope interpretation

Plan

(1) Target representations
(2) Introduction to Glue semantics
(3) Universal Dependencies
(4) Our pipeline
(5) Evaluation and discussion

Theoretical considerations

- Dependency grammars have severe expressivity constraints
- Unique head constraint
- Overt token constraint

Theoretical considerations

- Dependency grammars have severe expressivity constraints
- Unique head constraint
- Overt token constraint
- There are also some UD-specific choices
- No argument/adjunct distinction

Theoretical considerations

- Dependency grammars have severe expressivity constraints
- Unique head constraint
- Overt token constraint
- There are also some UD-specific choices
- No argument/adjunct distinction
- Some of this will be alleviated through enhanced dependencies but those are not yet widely available

Coordination structure

Control structure

Relative clause structure

No argument/adjunct distinction

Plan

(1) Target representations

(2) Introduction to Glue semantics

(3) Universal Dependencies
(4) Our pipeline

5 Evaluation and discussion

Overview

Overview

- Traversal of the UD tree, matching each node against a rule file
- For each matched rule, a meaning constructor is produced...
- ... and then instantiated non-deterministically, possibly rewriting the UD tree in the process
- The result is a set of pairs $\langle M, T\rangle$ where M is a multiset of meaning constructors and T is a rewritten UD tree
- Each multiset is fed into a linear logic prover (by Miltiadis Kokkonidis) and beta reduction software (from Johan Bos' Boxer)

Example

Example

Example

Example

Example

Example

ROOT \mid
arrived
pos $=$ VERB
index $=2$

$$
\begin{aligned}
& \text { relation }=\mathrm{ROOT} \rightarrow \\
& \lambda_{-} .[\mid]: v(\downarrow) \multimap t(\downarrow)
\end{aligned}
$$

Example

Example

Interpretation in Glue

$$
\left(\lambda P . \begin{array}{|c|}
\hline x_{1} \\
\text { named }\left(x_{1}, \text { Peter }\right)
\end{array} ; P\left(x_{1}\right)\right)\left(\lambda y .\left(\lambda x . \lambda F . \begin{array}{|c}
\begin{array}{l}
e_{1} \\
\operatorname{arrive}\left(e_{1}\right) \\
\text { nsubj }\left(e_{1}, x\right)
\end{array}
\end{array} ; F\left(e_{1}\right)\right)(y)\left(\lambda V_{-} \square\right)\right)
$$

\rightsquigarrow_{β}| $x_{1} e_{1}$ |
| :--- |
| named $\left(x_{1}\right.$, Peter $)$
 $\operatorname{arrive}\left(e_{1}\right)$
 $\operatorname{nsubj}\left(e_{1}, x_{1}\right)$ |

$$
\begin{aligned}
& \text { 【arrived】: } \\
& \frac{e_{1} \multimap\left(v_{2} \multimap t_{2}\right) \multimap t_{2} \quad\left[y: e_{1}\right]^{1}}{\llbracket \operatorname{arrived} \rrbracket(y):\left(v_{2} \multimap t_{2}\right) \multimap t_{2}} \multimap_{E} \quad \begin{array}{l}
\llbracket r o o t \rrbracket: \\
v_{2} \multimap t_{2}
\end{array} \\
& \text { 【Peter】: } \\
& \left(e_{1} \multimap t_{2}\right) \multimap t_{2} \quad \overline{\lambda y \cdot \llbracket \text { arrived } \rrbracket(y)(\llbracket \operatorname{root} \rrbracket): e_{1} \multimap t_{2}} \multimap^{\circ} \mathrm{E}, 1 \\
& \llbracket \text { Peter } \rrbracket(\lambda y \cdot \llbracket \text { arrived } \rrbracket(y)(\llbracket \text { root } \rrbracket)): t_{2}
\end{aligned}
$$

Control

$$
\begin{gathered}
\left(e_{\downarrow \text { XCoMP NSUBJ }} \multimap\left(v_{\downarrow \text { XCoMP }} \multimap t_{\downarrow \text { XCoMP }}\right) \multimap t_{\downarrow \text { XCOMP }}\right) \\
\\
\multimap\left(e_{\downarrow \text { NSUBJ }}\right) \multimap\left(e_{\downarrow \text { OBJ }}\right) \multimap\left(v_{\downarrow} \multimap t_{\downarrow}\right) \multimap t_{\downarrow}
\end{gathered}
$$

Control

$$
\begin{aligned}
& \left(e_{8} \multimap\left(v_{6} \multimap t_{6}\right) \multimap t_{6}\right) \\
& \\
& \multimap e_{4} \multimap e_{1} \multimap\left(v_{2} \multimap t_{2}\right) \multimap t_{2}
\end{aligned}
$$

$$
\begin{array}{llll}
x_{1} & x_{2} & x_{3} & e_{1}
\end{array} p_{1}
$$

named (x_{1}, abrams), ant (x_{2})
$\partial\left(\operatorname{dog}\left(x_{2}\right)\right)$, persuade $\left(e_{1}\right)$
$\operatorname{nsubj}\left(e_{1}, x_{1}\right)$, obj $\left(e_{1}, x_{2}\right)$
controldep $\left(e_{1}, x_{3}\right), \operatorname{xcomp}\left(e_{1}, p_{1}\right)$

$p_{1}:$| e_{2} |
| :--- |
| $\operatorname{bark}\left(e_{2}\right)$
 $\operatorname{nsubj}\left(e_{2}, x_{3}\right)$ |

Relative clauses

Relative clauses

Relative clauses

Relative clauses

Other rules

```
relation = case; }\uparrow\uparrow{\mathrm{ coarsePos = VERB }}
    lam(Y,(lam(X,drs([ ],[rel(:LEMMA:,Y,X) ])))):e(\uparrow)\longrightarrowv(\uparrow\uparrow)\multimapt(\downarrow)
relation = case; }\uparrow\uparrow{\mathrm{ coarsePos = VERB }}
relation = case }
    lam(Y,(\operatorname{lam}(X,drs([ ],[rel(:LEMMA:,Y,X) ])))) : e(\uparrow)\longrightarrowe(\uparrow\uparrow)\longrightarrowt(\downarrow)
coarsePos = DET, lemma =a; }\uparrow\operatorname{cop}{}
relation = conj; det { } }
lam(X,\operatorname{lam}(Q,\operatorname{lam}(C,\operatorname{lam}(Y,app(app(C,drs([],[leq(X,Y)])),app(app(Q,C),Y))))
    e}(\downarrow)\multimap0((t(\uparrow)\multimapt(\uparrow)\multimapt(\uparrow))\multimapn(\uparrow))\multimap(t(\uparrow)\multimapt(\uparrow)\multimapt(\uparrow))\multimapn(\uparrow
```


Plan

(1) Target representations
(2) Introduction to Glue semantics
(3) Universal Dependencies
(4) Our pipeline
(5) Evaluation and discussion

Discussion of output

```
x1 e1
named(\mp@subsup{x}{1}{}, Peter)
arrive(e. }\mp@subsup{e}{1}{}
nsubj( }\mp@subsup{e}{1}{},\mp@subsup{x}{1}{}
```

- What kind of θ-role is 'nsubj'?
- A syntactic name, lifted from the arc label.
- In and of itself, uninformative.

Discussion of output

```
x1 el
named(x},\mp@subsup{x}{1}{},\mathrm{ Peter)
arrive(e. ( )
nsubj( }\mp@subsup{e}{1}{},\mp@subsup{x}{1}{}
```

- What kind of θ-role is 'nsubj'?
- A syntactic name, lifted from the arc label.
- In and of itself, uninformative.
- What we have in the DRS above is as much information as can be extracted from the UD tree alone, without lexical knowledge.
- Lexical knowledge in the form of meaning postulates such as (5) can be harnessed to further specify the meaning representation.
(5) $\quad \forall e \forall x((\operatorname{arrive}(e) \wedge \operatorname{nsubj}(e, x)) \rightarrow$ theme $(e, x))$

Discussion of output

```
x1 e1
named(x},\mp@subsup{x}{1}{},\mathrm{ Peter)
arrive(e. ( 
theme( }\mp@subsup{e}{1}{},\mp@subsup{x}{1}{}
```

- What kind of θ-role is 'nsubj'?
- A syntactic name, lifted from the arc label.
- In and of itself, uninformative.
- What we have in the DRS above is as much information as can be extracted from the UD tree alone, without lexical knowledge.
- Lexical knowledge in the form of meaning postulates such as (5) can be harnessed to further specify the meaning representation.
(5) $\quad \forall e \forall x((\operatorname{arrive}(e) \wedge \operatorname{nsubj}(e, x)) \rightarrow$ theme $(e, x))$

persuade $\left(e_{1}\right), \operatorname{obj}\left(e_{1}, x_{2}\right)$, controldep $\left(e_{1}, x_{3}\right), x \operatorname{comp}\left(e_{1}, p_{1}\right)$

$p_{1}:$| e_{2} |
| :--- |
| $\ldots, \operatorname{nsubj}\left(e_{2}, x_{3}\right)$ |

- The persuade + xcomp meaning constructor has
- introduced an xcomp relation between the persuading event e_{1} and the proposition p_{1} that there is a barking event e_{2}, and
- introduced an individual x_{3} as the nsubj of e_{2} and the controldep of e_{1}.

persuade $\left(e_{1}\right), \operatorname{obj}\left(e_{1}, x_{2}\right)$, controldep $\left(e_{1}, x_{3}\right), x \operatorname{comp}\left(e_{1}, p_{1}\right)$

$p_{1}:$| e_{2} |
| :--- |
| $\ldots, \operatorname{nsubj}\left(e_{2}, x_{3}\right)$ |

- The persuade + xcomp meaning constructor has
- introduced an xcomp relation between the persuading event e_{1} and the proposition p_{1} that there is a barking event e_{2}, and
- introduced an individual x_{3} as the nsubj of e_{2} and the controldep of e_{1}.
- But the information that persuade is an object control verb can again be encoded in a meaning postulate:
$\forall e \forall x(($ persuade $(e) \wedge \operatorname{controldep}(e, x)) \rightarrow \operatorname{obj}(e, x))$

persuade $\left(e_{1}\right), \operatorname{obj}\left(e_{1}, x_{2}\right), \operatorname{obj}\left(e_{1}, x_{3}\right), x \operatorname{comp}\left(e_{1}, p_{1}\right)$

$p_{1}:$| e_{2} |
| :--- |
| $\ldots, \operatorname{nsubj}\left(e_{2}, x_{3}\right)$ |

- The persuade + xcomp meaning constructor has
- introduced an xcomp relation between the persuading event e_{1} and the proposition p_{1} that there is a barking event e_{2}, and
- introduced an individual x_{3} as the nsubj of e_{2} and the controldep of e_{1}.
- But the information that persuade is an object control verb can again be encoded in a meaning postulate:
$\forall e \forall x(($ persuade $(e) \wedge \operatorname{controldep}(e, x)) \rightarrow \operatorname{obj}(e, x))$

persuade $\left(e_{1}\right), \operatorname{obj}\left(e_{1}, x_{2}\right), \operatorname{obj}\left(e_{1}, x_{3}\right), x \operatorname{comp}\left(e_{1}, p_{1}\right)$

$p_{1}:$| e_{2} |
| :--- |
| $\ldots, n \operatorname{subj}\left(e_{2}, x_{3}\right)$ |

- The persuade + xcomp meaning constructor has
- introduced an xcomp relation between the persuading event e_{1} and the proposition p_{1} that there is a barking event e_{2}, and
- introduced an individual x_{3} as the nsubj of e_{2} and the controldep of e_{1}.
- But the information that persuade is an object control verb can again be encoded in a meaning postulate:
$\forall e \forall x(($ persuade $(e) \wedge \operatorname{controldep}(e, x)) \rightarrow o b j(e, x))$
- With thematic uniqueness, we get $x_{2}=x_{3}$ in this case.
- Blurs the distinction between lexical syntax and semantics.

VP/Sentence coordination: He hemmed and hawed

$x_{1} e_{2} e_{3}$
$\operatorname{pron.he}\left(x_{1}\right)$
$\operatorname{hem}\left(e_{2}\right)$
$\operatorname{nsubj}\left(e_{2}, x_{1}\right)$
$\operatorname{haw}\left(e_{3}\right)$

- No way to distinguish V/VP/S coordination in DG because of the overt token constraint
- No argument sharing because of the unique head constraint

NP Coordination: Abrams and/or Browne danced

$e_{1} x_{2} x_{3} x_{4}$
$\operatorname{dance}\left(e_{1}\right)$
$\operatorname{nsubj}\left(e, x_{2}\right)$
named $\left(x_{3}\right.$, browne $)$
named $\left(x_{4}\right.$, abrams $)$
$x_{3} \sqsubseteq x_{2}$
$x_{4} \sqsubseteq x_{2}$

Argument/adjunct distinction

$e_{1} x_{2} x_{3}$
$\operatorname{rely}\left(e_{1}\right)$
named $\left(x_{2}\right.$, kim $)$
named $\left(x_{3}\right.$, sandy $)$
on $\left(x_{3}, e_{1}\right)$

$e_{1} x_{2} x_{3}$
leave $\left(e_{1}\right)$
named $\left(x_{2}\right.$, kim $)$
named $\left(x_{3}\right.$, tuesday $)$
on $\left(x_{3}, e_{1}\right)$

- Again, we will have to rely on meaning postulates to resolve the on relation to a thematic role in one case and a temporal relation in the other

Evaluation

- What we have so far is a proof of concept tested on carefully crafted examples
- application of LFG techniques (functional uncertainties) to enrich underspecified UD syntax
- application of glue semantics to dependency structures

Evaluation

- What we have so far is a proof of concept tested on carefully crafted examples
- application of LFG techniques (functional uncertainties) to enrich underspecified UD syntax
- application of glue semantics to dependency structures
- Very far from something practically useful
- Basic coverage of UD relations except vocative, dislocated, clf, list, parataxis, orphan
- Little or no work on interactions, special constructions, real data noise

Pros and cons of glue semantics

- No need for binarization
- Flexible approach to scoping yield different readings
- Hard to restrict unwanted/non-existing scopings
- Computing lots of uninteresting scope differences

Unwanted scopings

It is clear which DRS sentence-level operators (negation, auxiliaries etc.) should target!

- Modalities in the linear logic
- Different types for the two DRSs

Efficient scoping

- Two parameters:
- level of scope
- order of combination of quantifiers at each level
- We currently naively compute everything with a light-weight prover \rightarrow obvious performance problems
- Disallow intermediate scopings?
- Structure sharing across derivations (building on work in an LFG context)

Conclusions

- Theoretical achievement: application of glue to dependency grammar

Conclusions

- Theoretical achievement: application of glue to dependency grammar
- Practical achievement: an interesting proof of concept

Conclusions

- Theoretical achievement: application of glue to dependency grammar
- Practical achievement: an interesting proof of concept
- But lots of work remains
- Support for partial proofs
- Axiomatization of lexical knowledge
- Ambiguity management

References I

Asudeh, Ash \& Richard Crouch. 2002. Glue Semantics for HPSG. In Frank van Eynde, Lars Hellan \& Dorothee Beermann (eds.), Proceedings of the 8th international HPSG conference, Stanford, CA: CSLI Publications.
Bos, Johan. 2008. Wide-coverage semantic analysis with Boxer. In Proceedings of the 2008 conference on semantics in text processing STEP '08, 277-286. Stroudsburg, PA, USA: Association for Computational Linguistics. http://dl.acm.org/citation.cfm?id=1626481.1626503.
Cooper, Robin. 1983. Quantification and syntactic theory (Studies in Linguistics and Philosophy 21). Dordrecht: D. Reidel.
Crouch, Richard \& Josef van Genabith. 2000. Linear logic for linguists. ESSLLI 2000 course notes.

References II

Dalrymple, Mary, Vineet Gupta, John Lamping \& Vijay Saraswat. 1999. Relating resource-based semantics to categorial semantics. In Mary Dalrymple (ed.), Semantics and syntax in Lexical Functional Grammar, 261-280. Cambridge, MA: MIT Press.
Dalrymple, Mary, John Lamping \& Vijay Saraswat. 1993. LFG semantics via constraints. In Steven Krauwer, Michael Moortgat \& Louis des Tombe (eds.), EACL 1993, 97-105.
Dowty, David R., Robert E. Wall \& Stanley Peters. 1981. Introduction to Montague semantics. Dordrecht: D. Reidel.
Frank, Anette \& Josef van Genabith. 2001. GlueTag: Linear logic-based semantics for LTAG—and what it teaches us about LFG and LTAG. In Miriam Butt \& Tracy Holloway King (eds.), Proceedings of the LFG01 conference, Stanford, CA: CSLI Publications.

References III

Girard, Jean-Yves. 1987. Linear logic. Theoretical Computer Science 50(1). 1-101. doi:10.1016/0304-3975(87)90045-4.
Gotham, Matthew. 2018. Making Logical Form type-logical. Linguistics and Philosophy doi:10.1007/s10988-018-9229-z. In press.
Haug, Dag Trygve Truslew. 2014. Partial dynamic semantics for anaphora. Journal of Semantics 31. 457-511.
Heim, Irene \& Angelika Kratzer. 1998. Semantics in generative grammar (Blackwell Textbooks in Linguistics 13). Oxford: Wiley-Blackwell. Howard, W.A. 1980. The formulae-as-types notion of construction. In J.P. Seldin \& J.R. Hindley (eds.), To H.B. Curry, 479-490. New York: Academic Press.
May, Robert. 1977. The grammar of quantification: Massachusetts Institute of Technology dissertation.

References IV

May, Robert. 1985. Logical form (Linguistic Inquiry Monographs 12).
Cambridge, MA: MIT Press.
Montague, Richard. 1973. The proper treatment of quantification in ordinary English. In Patrick Suppes, Julius Moravcsik \& Jaakko Hintikka (eds.), Approaches to natural language, 221-242. Dordrecht: D. Reidel.

