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Introduction
Advantages: 
1. We predict a tree, not a graph, i.e. we an use dependency parsing methods. 
2. Can put our linguistic knowledge into graph types, to guide our parser. 
3. AM dependency tree is a compositional structure. Can examine it from 

both engineering + linguistics perspective.
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1. AM dependency trees (and why they make sense) 

2. The parser in practice 

3. Examples



1a. Towards AM Dependency Trees: 

Indexed AM Terms
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Indexed AM terms

Connect a given AM term with a sentence.
1. add indices to elementary graphs (essentially: alignments)
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Indexed AM terms

Connect a given AM term with a sentence.
1. add indices to elementary graphs (essentially: alignments)
2. percolate indices upwards, mirroring the behaviour of the graph root 

(i.e. percolate the index of the left argument)

o[1,0]

o[1,3]

G[1] G[3]

G[0]



Indexed AM terms

• An index persists on the left, until the corresponding root is 
consumed (index on the right). Sort of maximal projection.

Apps[2,1]

Appo [2,5]

see[2] Apps[5,4]

Appo [5,7]

read[5] book[7]

she[4]

cat[1]

the0 cat1 sees2 that3 she4 reads5 a6 book7



Indexed AM terms

• changing operation order within a maximal projection does not 
change the outcome

Apps[1,0]

Appo [1,3]

read[1] book[3]
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read[1] she[0]
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Indexed AM terms

We can see the operations as edges between words, by interpreting o[i,j] 
as an edge from i to j with label o. 

Example:

she0 reads1 a2 book3

APPS APPO

Apps[1,0]

Appo [1,3]

read[1] book[3]

she[0]



1b. AM dependency trees



AM dependency trees

• Write an indexed AM term as a dependency tree. Operations are 
edges, nodes are elementary graphs per word.
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AM dependency trees

• Write an indexed AM term as a dependency tree. Operations are 
edges, nodes are elementary graphs per word.

• add 'IGNORE' edges for words that are not represented in 
semantics. (won't use these in this talk)
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AM dependency trees

• Write an indexed AM term as a dependency tree. Operations are 
edges, nodes are elementary graphs per word.

• add 'IGNORE' edges for words that are not represented in 
semantics. (won't use these in this talk)
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AM dependency trees

Crucial: an AM dependency tree defines an AM term only up to reordering 
within maximal projections, but all those terms evaluate to the same AMR! 
In other words: An AM dependency tree underspecifies the AM term, but 
not the AMR. 

Apps[1,0]

Appo [1,3]

read[1] book[3]

she[0]

Appo [1,3]

Apps[1,0]

read[1] she[0]
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she
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AM dependency trees

• We call an AM dependency tree well-typed if there is at least one 
corresponding well-typed AM term 

• Then: every well-typed AM dependency tree produces a unique AMR.



2. In Practice



In Practice

• Task: generate AMRs from sentences 

• Idea: train model to predict AM dependency trees 

• Can use methods from plain dependency parsing



The task in detail

• Decoding: find well-typed AM dependency tree t that maximizes 

• Training: train a scoring model      , using the AMR Bank

!(t) =
P

1in
!(G[i]) +

P
o[i,k]2E(t)

!(o[i, k])

!



Training data

• AMR Bank contains only sentence-AMR pairs, but we need AM 
dependency trees to train our model.



Graph decomposition
Get training data for dependency parser:

Step 1: Extract constants, with sources and annotations. Uses graph 
structure and heuristic alignments.

We do not look at the string at this time, and choose source names 
heuristically.

Step 2: Build AM dependency tree from these constants + alignments.

19



Training

• We follow the general idea of Kiperwasser & Goldberg (2016) 
• encode sentence with BiLSTM -> vector vi for each index i 
• predict elementary graph G[i] (or its absence) from vi 
• predict edge o[i,j] from concatenation vi ○ vj

x1

v1

x2

v2

xn

vn
...
...

ω(G[1]) ω(G[2]) ω(G[n])

ω(o[2 → n])



Training

• predict delexicalized templates for elementary graphs G[i] 
separately from their labels. 

• Template vocabulary size ~2000 (most very rare) 

• Tagger accuracy: 73% (correct template in top 5: ~90%)
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Decoding

• Decoding: find well-typed AM dependency tree t that maximizes

!(t) =
P

1in
!(G[i]) +

P
o[i,k]2E(t)

!(o[i, k])



Decoding
Option 1: Fixed tree decoder 
• First, predict an unlabeled dependency tree using standard methods. 
• Second, find the best well-typed combination of elementary graphs G[i] 

and operations o[i,j] using a viterbi-style algorithm. 
• Can produce non-projective dependency trees. 
• Without type-checking, over 70% of analyses are not well-typed and fail.
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Decoding
Option 2: projective decoder 
• combine adjacent spans and their partial results     -> CKY-like parser. 
• Consequence: Decoder builds its own tree to fit type constraints, but 

has strong projectivity constraints.
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Decoding
Option 2: projective decoder 
• combine adjacent spans and their partial results     -> CKY-like parser. 
• Consequence: Decoder builds its own tree to fit type constraints, but 

has strong projectivity constraints.
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read-01
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ARG0
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ARG1she
book
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Results

JAMR (Flanigan et al. 2016) 67

Damonte et al. (2017) 64

Foland and Martin (2017) 70.7

Our JAMR-style baseline 65.2

CAMR (Wang et al. 2015) 66.5

van Noord and Bos (2017) 68.5

Our projective decoder 70.1

Our fixed tree decoder 69.1

Results on LDC2015E86 dataset



3. Examples
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reminiscent of enhanced UD?
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But this yields the 
wrong graph:

X
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Conclusion / Future directions

• Semantic parsing with this method works very well in practice. 
Type information helps! 

• Some open problems remain: 
• ellipsis 
• nested relative clauses have weird derivations 
• projectivity 
• AMR-specific issues such as coreference and unaligned nodes 

• AMRs as a playground for semantic parsing



Conclusion / Future directions

• We approach dependency trees from the other side: AM 
dependency trees are defined to generate the semantics. 

• Potential analogy: if AM dependency trees correspond to basic 
dependency trees, then AMRs correspond to enhanced 
dependency trees.
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We can do this (and our system does):

But: 
• Linguistically 

unsatisfying 
• Does not work 

for longer range 
coreference


