
AMR dependency parsing with a typed
semantic algebra

Jonas Groschwitz, Matthias Lindemann,
Meaghan Fowlie, Mark Johnson, Alexander Koller

March 2018

Introduction

The actress likes to read

Introduction

A common approach to AMR parsing:
1. Predict graph fragments for words

The actress likes to read

������� �������

������

������

����

Introduction

A common approach to AMR parsing:
1. Predict graph fragments for words
2. Predict relations (edges) between the graph fragments

The actress likes to read

������� �������

������

������

����

Introduction

A common approach to AMR parsing:
1. Predict graph fragments for words
2. Predict relations (edges) between the graph fragments

The actress likes to read

������� �������

������

������

����

ARG0

Introduction

A common approach to AMR parsing:
1. Predict graph fragments for words
2. Predict relations (edges) between the graph fragments

The actress likes to read

������� �������

������

������

����

ARG0

ARG1

Introduction

A common approach to AMR parsing:
1. Predict graph fragments for words
2. Predict relations (edges) between the graph fragments

The actress likes to read

������� �������

������

������

����

ARG0

ARG1

ARG0

�������

�

����

����

����

�������

�

����

Introduction

Our Approach: AM dependency tree.
1. Predict as-graphs for words

The actress likes to read

������

������

����

�������

�

����

����

����

�������

�

����

Introduction

Our Approach: AM dependency tree.
1. Predict as-graphs for words
2. Predict operations between them

The actress likes to read

������

������

����

�������

�

����

����

����

�������

�

����

Introduction

Our Approach: AM dependency tree.
1. Predict as-graphs for words
2. Predict operations between them

The actress likes to read

������

������

����

APPO

�������

�

����

����

����

�������

�

����

Introduction

Our Approach: AM dependency tree.
1. Predict as-graphs for words
2. Predict operations between them

The actress likes to read

������

������

����

APPOAPPS

Introduction
Advantages:
1. We predict a tree, not a graph, i.e. we an use dependency parsing methods.
2. Can put our linguistic knowledge into graph types, to guide our parser.
3. AM dependency tree is a compositional structure. Can examine it from

both engineering + linguistics perspective.

�������

�

����

����

����

�������

�

����

The actress likes to read

������

������

����

APPOAPPS

1. AM dependency trees (and why they make sense)

2. The parser in practice

3. Examples

1a. Towards AM Dependency Trees:

Indexed AM Terms

Indexed AM terms

Connect a given AM term with a sentence.

she0 reads1 a2 book3

read-01

she

ARG0

book

ARG1

Apps

Appo

read-01

S

ARG0

O

ARG1

book

she

Indexed AM terms

Connect a given AM term with a sentence.

she0 reads1 a2 book3

read-01

she

ARG0

book

ARG1

Apps

Appo

read book

she

Indexed AM terms

Connect a given AM term with a sentence.
1. add indices to elementary graphs (essentially: alignments)
2. percolate indices upwards, mirroring the behaviour of the graph root

(i.e. percolate the index of the left argument)

she0 reads1 a2 book3

read-01

she

ARG0

book

ARG1

Apps[1,0]

Appo [1,3]

read[1] book[3]

she[0]

Indexed AM terms

Connect a given AM term with a sentence.
1. add indices to elementary graphs (essentially: alignments)
2. percolate indices upwards, mirroring the behaviour of the graph root

(i.e. percolate the index of the left argument)

o[1,0]

o[1,3]

G[1] G[3]

G[0]

Indexed AM terms

• An index persists on the left, until the corresponding root is
consumed (index on the right). Sort of maximal projection.

Apps[2,1]

Appo [2,5]

see[2] Apps[5,4]

Appo [5,7]

read[5] book[7]

she[4]

cat[1]

the0 cat1 sees2 that3 she4 reads5 a6 book7

Indexed AM terms

• changing operation order within a maximal projection does not
change the outcome

Apps[1,0]

Appo [1,3]

read[1] book[3]

she[0]

Appo [1,3]

Apps[1,0]

read[1] she[0]

book[3]

read-01

she

ARG0

book

ARG1

Indexed AM terms

We can see the operations as edges between words, by interpreting o[i,j]
as an edge from i to j with label o.

Example:

she0 reads1 a2 book3

APPS APPO

Apps[1,0]

Appo [1,3]

read[1] book[3]

she[0]

1b. AM dependency trees

AM dependency trees

• Write an indexed AM term as a dependency tree. Operations are
edges, nodes are elementary graphs per word.

Apps[1,0]

Appo [1,3]

read[1] book[3]

she[0]

she0 reads1 a2 book3

read-01

S

ARG0

O

ARG1

she book

APPS

APPO

AM dependency trees

• Write an indexed AM term as a dependency tree. Operations are
edges, nodes are elementary graphs per word.

• add 'IGNORE' edges for words that are not represented in
semantics. (won't use these in this talk)

Apps[1,0]

Appo [1,3]

read[1] book[3]

she[0]

she0 reads1 a2 book3

read-01

S

ARG0

O

ARG1

she book

IGNORE
APPS

APPO

—

AM dependency trees

• Write an indexed AM term as a dependency tree. Operations are
edges, nodes are elementary graphs per word.

• add 'IGNORE' edges for words that are not represented in
semantics. (won't use these in this talk)

Apps[1,0]

Appo [1,3]

read[1] book[3]

she[0]

she0 reads1 a2 book3

read-01

S

ARG0

O

ARG1

she book

APPS

APPO

AM dependency trees

Crucial: an AM dependency tree defines an AM term only up to reordering
within maximal projections, but all those terms evaluate to the same AMR!
In other words: An AM dependency tree underspecifies the AM term, but
not the AMR.

Apps[1,0]

Appo [1,3]

read[1] book[3]

she[0]

Appo [1,3]

Apps[1,0]

read[1] she[0]

book[3]

read-01

she

ARG0

book

ARG1she0 reads1 a2 book3

APPS

APPO

read-01

S

ARG0

O

ARG1

she book

AM dependency trees

• We call an AM dependency tree well-typed if there is at least one
corresponding well-typed AM term

• Then: every well-typed AM dependency tree produces a unique AMR.

2. In Practice

In Practice

• Task: generate AMRs from sentences

• Idea: train model to predict AM dependency trees

• Can use methods from plain dependency parsing

The task in detail

• Decoding: find well-typed AM dependency tree t that maximizes

• Training: train a scoring model , using the AMR Bank

!(t) =
P

1in
!(G[i]) +

P
o[i,k]2E(t)

!(o[i, k])

!

Training data

• AMR Bank contains only sentence-AMR pairs, but we need AM
dependency trees to train our model.

Graph decomposition
Get training data for dependency parser:

Step 1: Extract constants, with sources and annotations. Uses graph
structure and heuristic alignments.

We do not look at the string at this time, and choose source names
heuristically.

Step 2: Build AM dependency tree from these constants + alignments.

19

Training

• We follow the general idea of Kiperwasser & Goldberg (2016)
• encode sentence with BiLSTM -> vector vi for each index i
• predict elementary graph G[i] (or its absence) from vi
• predict edge o[i,j] from concatenation vi ○ vj

x1

v1

x2

v2

xn

vn
...
...

ω(G[1]) ω(G[2]) ω(G[n])

ω(o[2 → n])

Training

• predict delexicalized templates for elementary graphs G[i]
separately from their labels.

• Template vocabulary size ~2000 (most very rare)

• Tagger accuracy: 73% (correct template in top 5: ~90%)

��

�

����

�

����

Decoding

• Decoding: find well-typed AM dependency tree t that maximizes

!(t) =
P

1in
!(G[i]) +

P
o[i,k]2E(t)

!(o[i, k])

Decoding
Option 1: Fixed tree decoder
• First, predict an unlabeled dependency tree using standard methods.
• Second, find the best well-typed combination of elementary graphs G[i]

and operations o[i,j] using a viterbi-style algorithm.
• Can produce non-projective dependency trees.
• Without type-checking, over 70% of analyses are not well-typed and fail.

she0 reads1 a2 book3

Decoding
Option 1: Fixed tree decoder
• First, predict an unlabeled dependency tree using standard methods.
• Second, find the best well-typed combination of elementary graphs G[i]

and operations o[i,j] using a viterbi-style algorithm.
• Can produce non-projective dependency trees.
• Without type-checking, over 70% of analyses are not well-typed and fail.

she0 reads1 a2 book3

read-01

S

ARG0

O

ARG1

Decoding
Option 1: Fixed tree decoder
• First, predict an unlabeled dependency tree using standard methods.
• Second, find the best well-typed combination of elementary graphs G[i]

and operations o[i,j] using a viterbi-style algorithm.
• Can produce non-projective dependency trees.
• Without type-checking, over 70% of analyses are not well-typed and fail.

she0 reads1 a2 book3

read-01

S

ARG0

O

ARG1

book

Decoding
Option 1: Fixed tree decoder
• First, predict an unlabeled dependency tree using standard methods.
• Second, find the best well-typed combination of elementary graphs G[i]

and operations o[i,j] using a viterbi-style algorithm.
• Can produce non-projective dependency trees.
• Without type-checking, over 70% of analyses are not well-typed and fail.

she0 reads1 a2 book3

read-01

S

ARG0

O

ARG1

book

APPO

Decoding
Option 1: Fixed tree decoder
• First, predict an unlabeled dependency tree using standard methods.
• Second, find the best well-typed combination of elementary graphs G[i]

and operations o[i,j] using a viterbi-style algorithm.
• Can produce non-projective dependency trees.
• Without type-checking, over 70% of analyses are not well-typed and fail.

she0 reads1 a2 book3

read-01

S

ARG0

O

ARG1

she book

APPO

Decoding
Option 1: Fixed tree decoder
• First, predict an unlabeled dependency tree using standard methods.
• Second, find the best well-typed combination of elementary graphs G[i]

and operations o[i,j] using a viterbi-style algorithm.
• Can produce non-projective dependency trees.
• Without type-checking, over 70% of analyses are not well-typed and fail.

she0 reads1 a2 book3

read-01

S

ARG0

O

ARG1

she book

APPS

APPO

Decoding
Option 2: projective decoder
• combine adjacent spans and their partial results -> CKY-like parser.
• Consequence: Decoder builds its own tree to fit type constraints, but

has strong projectivity constraints.

she0 reads1 a2 book3

read-01

S

ARG0

O

ARG1she
book

[] [S,O] []

Decoding
Option 2: projective decoder
• combine adjacent spans and their partial results -> CKY-like parser.
• Consequence: Decoder builds its own tree to fit type constraints, but

has strong projectivity constraints.

she0 reads1 a2 book3

read-01

S

ARG0

O

ARG1she
book

APPO

[] [S,O] []

[S], head = 1

Decoding
Option 2: projective decoder
• combine adjacent spans and their partial results -> CKY-like parser.
• Consequence: Decoder builds its own tree to fit type constraints, but

has strong projectivity constraints.

she0 reads1 a2 book3

read-01

S

ARG0

O

ARG1she
book

APPS

APPO

[] [S,O] []

[S], head = 1

[], head = 1

Results

JAMR (Flanigan et al. 2016) 67

Damonte et al. (2017) 64

Foland and Martin (2017) 70.7

Our JAMR-style baseline 65.2

CAMR (Wang et al. 2015) 66.5

van Noord and Bos (2017) 68.5

Our projective decoder 70.1

Our fixed tree decoder 69.1

Results on LDC2015E86 dataset

3. Examples

We thought that they barked

�������

�

����������

��������

�

����

�

����

��������

��

����

�������

����

����

����

APPS

APPO

APPS

Ex 1: Basic

The actress likes to read

�������

�

����

�������

�

����

����

����

������

������

����

�������

������

���� �������

����

������

����

����

APPO

Ex 2: Control

APPS

Abrams and Brown danced

��������

�

����

���

���

���

���

���

������

����

����

������

���

���

������

���

������

���

��������

����

����

����

������

���

����

����

������

���

APPop2

Ex 3: Coordination

APPS

������

����

����

������

���

APPop1

Abrams danced and sang

��������

�

����

���

������

���

������

���

������

����

����

������

���

���

�������

���

��������

���

������

���� ����

����

����

������

���

APPop2

Ex 3b: Some Observations
APPS

�������

�

����

APPop1

Abrams danced and sang

��������

�

����

���

������

���

������

���

������

����

����

������

���

���

�������

���

��������

���

������

���� ����

����

����

������

���

APPop2

Ex 3b: Some Observations
APPS

�������

�

����

APPop1

ARG0

ARG0

op1 op2
projected AMR edges

reminiscent of enhanced UD?

���

�������

���

���������

���

���������

����

������

����

����

����

����

����

����

������

���

Abrams wanted and expected to arrive

���������

�

����

������

����

����

������

���

APPop2

Ex 4: Coordination of control verbs

APPS

���������

�

����

����

����

APPop1

�������

�

����

����

����

���

�����������

���

�����������

���

APPO

������

����������������

����

����������������

����

�

����

������

���� ����

���������

����

���������

����

My friends and colleagues arrived

���������

�

�����

Ex 5: More Coordination!

APPO

�

����������������

����

�

����

���������

����

MODS

������

����������������

����

�

����

������

����

APPS

������

����������������

����

������

����������������

����

���

��� ���

�

����

������

���� ����

���������

����

���������

����

My friends and colleagues arrived

���������

�

�����

APPop2

Ex 5: More Coordination!

APPO

������

����������������

����

�

����

���������

����

APPop1

������

����������������

����

�

����

������

����

���

������

���

������

���

APPS

������

����������������

����

������

����������������

����

���

��� ���

�

����

������

����

���������

����

���������

����

My friends and colleagues arrived

���������

�

�����

APPop2

Ex 5: More Coordination!

APPO

������

����������������

����

���������

����

APPop1

������

����������������

����

�

����

������

����

���

���

���

���

���

APPS

���������

�������

����

����

����

����

They forgot that they had voted

Problem 1: Coreference

���������

�������

����

����

����

����

They forgot that they had voted

Problem 1: Coreference

���������

�

����

�

����

�������

�

��������

APPO

APPS APPS

����

One would think something like this:

���������

�������

����

����

����

����

They forgot that they had voted

Problem 1: Coreference

���������

�

����

�

����

�������

�

��������

APPO

APPS APPS

����
���������

����

����

�������

����

����

����

One would think something like this:

But this yields the
wrong graph:

X

Problem 1: Coreference

���������

����

����

�������

����

����

����

Unifying these is formally and practically challenging

���

����������

���

����������

���

����

����

������

����

past and future generations

����������

����

�

����

MODM

Problem 2: Multiplicity

APPop1

����������

MODM

���

���

���

���

���

������

�

����

APPop2

???

���

����������

���

����������

���

����

����

������

����

past e and future generations

����������

����

�

����

MODM

Problem 2: Multiplicity

APPop1

����������

MODM

���

���

���

���

���

������

�

����

APPop2

???

Conclusion / Future directions

Conclusion / Future directions

• Semantic parsing with this method works very well in practice.
Type information helps!

• Some open problems remain:
• ellipsis
• nested relative clauses have weird derivations
• projectivity
• AMR-specific issues such as coreference and unaligned nodes

• AMRs as a playground for semantic parsing

Conclusion / Future directions

• We approach dependency trees from the other side: AM
dependency trees are defined to generate the semantics.

• Potential analogy: if AM dependency trees correspond to basic
dependency trees, then AMRs correspond to enhanced
dependency trees.

���������

�������

����

����

����

����

They forgot that they had voted

Problem 1: Coreference

���������

�

����

����

����

�������

�

��������

APPO

APPS

We can do this (and our system does):

���������

�������

����

����

����

����

They forgot that they had voted

Problem 1: Coreference

���������

�

����

����

����

�������

�

��������

APPO

APPS

We can do this (and our system does):

But:
• Linguistically

unsatisfying
• Does not work

for longer range
coreference

