
Prague Dependency Treebank(s): Tectogrammatical annotation

Jan Hajič (et al.)
Institute of Formal and Applied Linguistics
LINDAT/CLARIN Research Infrastructure
School of Computer Science
Faculty of Mathematics and Physics
Charles University, Prague
Czech Republic

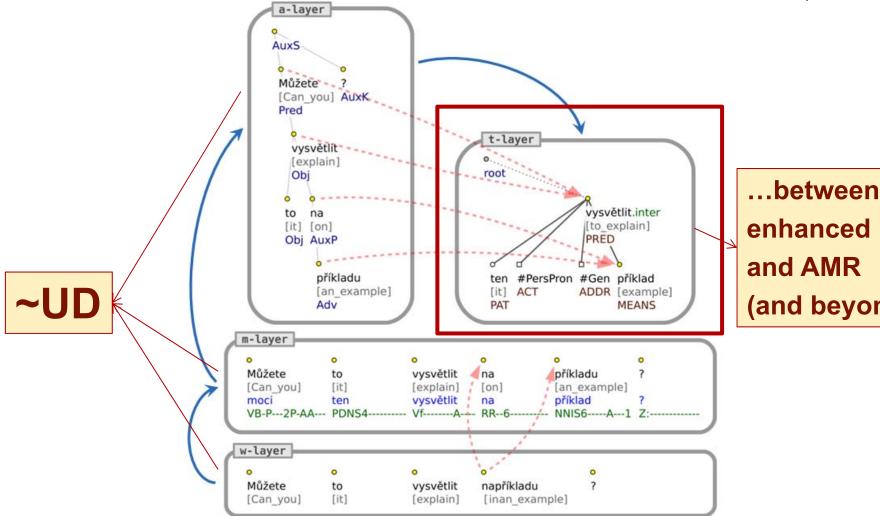
Tectogrammatical annotation layer in PDT

- Tectogrammatical representation
 - Place in the PDT scheme
- Sublayers
 - Structure, deep dependency relations
 - Valency lexicon
 - Topic / focus (information structure)
 - Coreference
 - Semantic features
- Discourse annotation
- Summary & references/pointers

PDT Annotation Layers

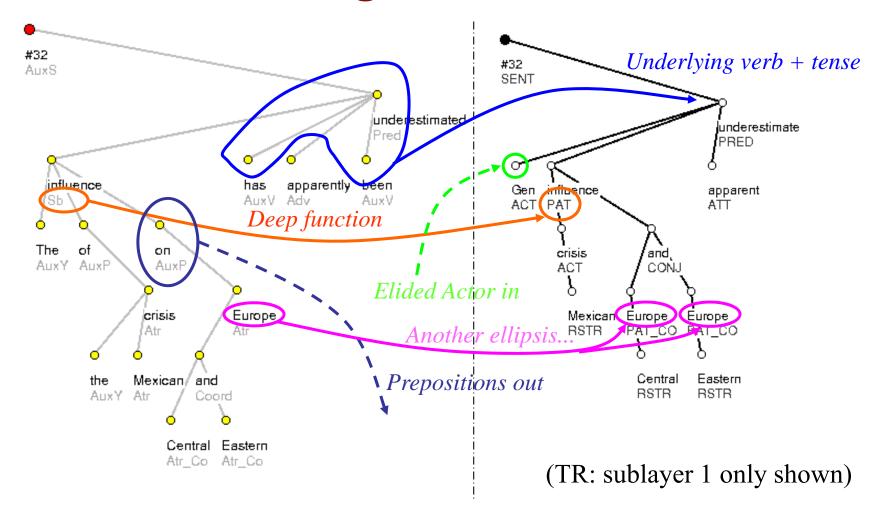
- L0 (w) Words (tokens)
 - automatic segmentation and markup only
- L1 (m) Morphology
 - Tag (full morphology, 13 categories), lemma
- L2 (a) Analytical layer (surface syntax)
 - Dependency, dependency relation
- L3 (t) Tectogrammatical layer ("deep" syntax)
 - Dependency, functor (detailed), grammatemes, ellipsis solution, coreference, topic/focus (deep word order), valency lexicon

PDT Annotation Layers



- L0 (w) Words (tokens)
 - automatic segmentation and markup only
- L1 (m) Morphology
 - Tag (full morphology, 13 categories), lemma
- L2 (a) Analytical layer (surface syntax)
 - Dependency, dependency relation
- L3 (t) Tectogrammatical layer ("deep" syntax)
 - Dependency, functor (detailed), grammatemes, ellipsis solution, coreference, topic/focus (deep word order), valency lexicon

PDT Annotation Layers



enhanced UD and AMR (and beyond)

Analytical vs. Tectogrammatical

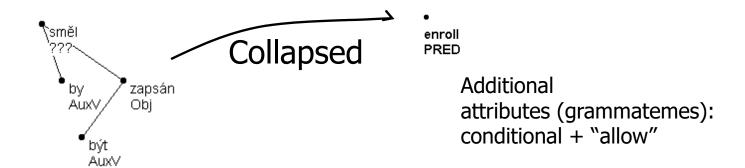
Tectogrammatical layer (t-layer)

- 4 sublayers (integrated):
 - dependency structure, (detailed) functors
 - valency annotation
 - topic/focus and deep word order
 - coreference
 - all the rest (grammatemes):
 - detailed functors
 - underlying gender, number, ...
 - + discourse, MWE
- Total
 - 39 attributes (vs. 5 at m-layer, 2 at a-layer)

Tectogrammatical layer (t-layer)

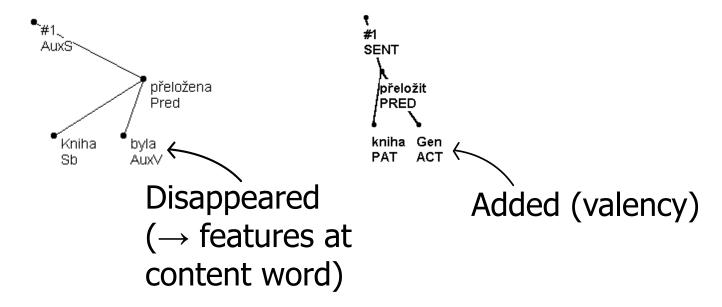
- Underlying (deep) syntax
- 4 sublayers:
 - dependency structure, (detailed) functors
 - topic/focus and deep word order
 - coreference
 - all the rest (grammatemes):
 - detailed functors
 - underlying gender, number, ...

Tectogrammatical Functors (deep syntactic/semantic relations)


- "syntactic" "semi-"semantic

 "Actants": ACT, PAT, EFF, ADDR, ORIG
 - modify: verbs, nouns, adjectives
 - cannot repeat in a clause, usually obligatory
- Free modifications (~ 50), semantically defined
 - can repeat; optional, sometimes obligatory
 - Ex.: LOC, DIR1, ...; TWHEN, TTILL,...; RSTR; BEN, ATT, ACMP, INTT, MANN; MAT, APP; ID, DPHR, ...
- Special
 - Coordination, Rhematizers, Foreign phrases,...

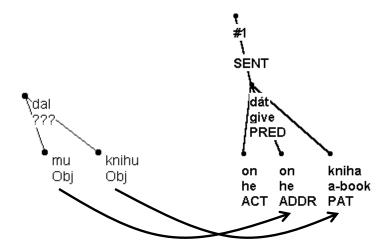
- Analytical verb form:
 - (he) allowed would-be to-be enrolled
 - směl by být zapsán



- Passive (participle)
 - (The) book has-been translated [by Mr. X]
 - Kniha

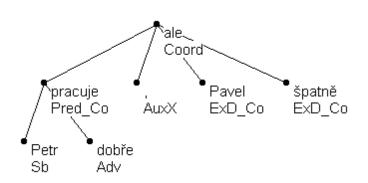
byla

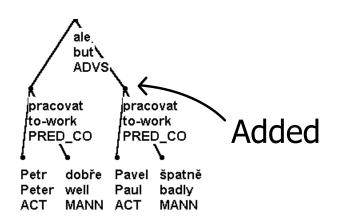
přeložena



Object

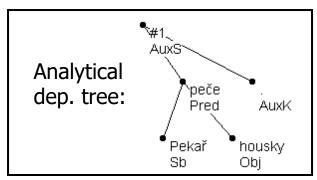
- (he) gave him a-book
- dal mu knihu

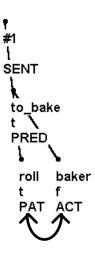



Obj goes into ACT, PAT, ADDR, EFF or ORIG based on governor's valency frame

- Ellipsis (gap) (& coordination example)
 - Peter works well , but Paul badly
 - Petr pracuje dobře, ale Pavel špatně

Layer 3: Tectogrammatical


- Underlying (deep) syntax
- 4 sublayers:
 - dependency structure, (detailed) functors
 - topic/focus and deep word order
 - coreference
 - all the rest (grammatemes):
 - detailed functors
 - underlying gender, number, ...


Deep Word Order Topic/Focus

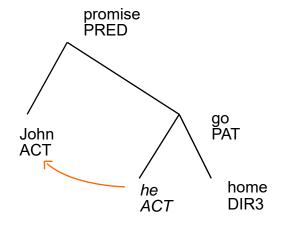
• Example:

Baker bakes rolls.
 vs. Baker^{IC} bakes rolls.

Deep Word Order Topic/Focus

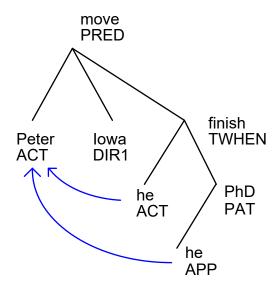
- Deep word order:
 - from "old" information to the "new" one (left-toright) at every level (head included)
 - projectivity (almost) by definition
- Topic/focus/contrastive topic
 - attribute of every node (t, f, c)
 - restricted by d.w.o. and other constraints
- Every sentence: topic part (T) / focus part (F)
 - ~ scope

Layer 3: Tectogrammatical


- Underlying (deep) syntax
- 4 sublayers:
 - dependency structure, (detailed) functors
 - topic/focus and deep word order
 - coreference
 - all the rest (grammatemes):
 - detailed functors
 - underlying gender, number, ...

Coreference

- Grammatical
 - relative clauses
 - which, who
 - Peter and Paul, who ...
 - control
 - infinitival constructions
 - John promised to go ...
 - reflexive pronouns
 - {him,her,thme}self(-ves)
 - Mary saw herself in ...



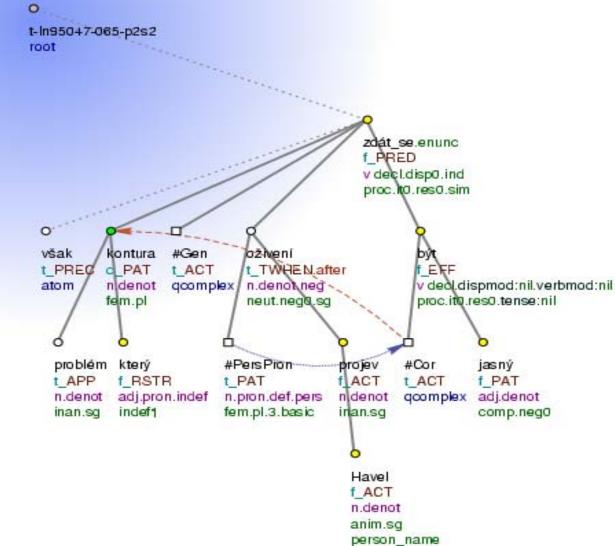
Textual

• Ex.: Peter moved to Iowa after he finished his PhD.

Layer 3: Tectogrammatical

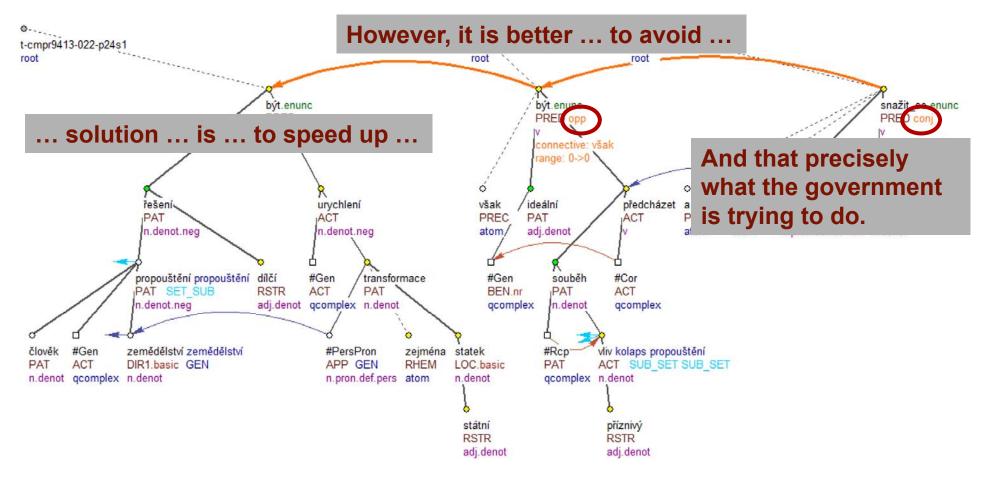
- Underlying (deep) syntax
- 4 sublayers:
 - dependency structure, (detailed) functors
 - topic/focus and deep word order
 - coreference
 - all the rest (grammatemes):
 - detailed functors
 - underlying gender, number, ...

Grammatemes (semantic features)



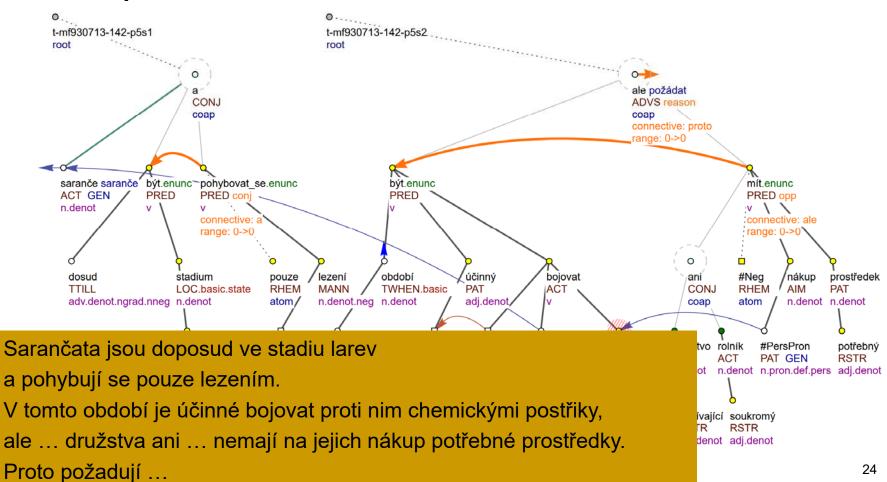
- Detailed functors (subfunctors)
 - only for some functors:
 - TWHEN: before/after
 - LOC: next-to, behind, in-front-of, ...
 - also: ACMP, BEN, CPR, DIR1, DIR2, DIR3, EXT
- Lexical (underlying)
 - number (SG/PL), tense, modality, degree of comparison, ...
 - only where necessary (agreement!)

Fully Annotated Sentence



The boundaries of some problems seem to be clearer after they were revived by Havel's speech.

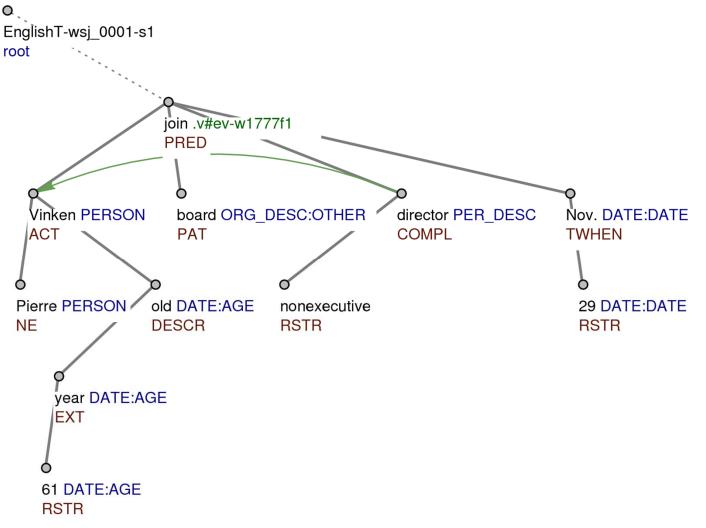
Discourse annotation (~ Penn Discourse Treebank)



Discourse annotation

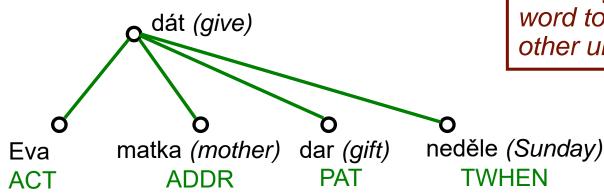
Inspiration: the Penn Discourse Treebank

English PDT-style Annotation

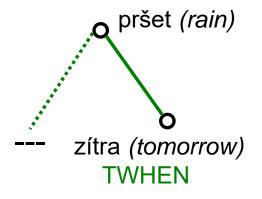


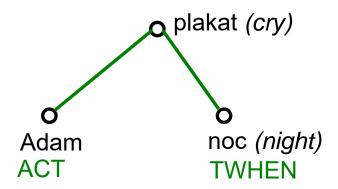
- Morphology and Syntax
 - By conversion
- Tectogrammatical annotation
 - Guidelines (English TR: by S. Cinková)
 - Pre-annotation
 - Transformation from Penn Treebank & Propbank (Palmer, Kingsbury) by Z. Žabokrtský et al.
 - Valency
 - From Propbank Frame Files (Cinková, Šindlerová, Nedolužko, Semecký)

Example - English TR



- Words
- Dependencies
- Sem. function
- Valency (predicates)
- Coref (BBN)
- Named Entities (BBN)


Valency in the PDT



Valency: <u>specific</u> ability of a word to combine itself with other units of meaning

Mpekiftes belyaving

Valency - Basic Principles

inner participants vs. free modifications (arguments vs. adjuncts)

obligatory vs. optional modifications (the dialogue test)

Inner Participant ... Free Modification

ACT(or), PAT(ient) ADDR(essee), EFF(ect), ORIG(in) (5)

- each occurs just with particular verbs
- each modifies the verb only once (in a clause)

Location (LOC, DIR1,...) Time (TWHEN, TTILL, ...), Manner, Intention,... (70)

- can modify in principle any verb
- can be repeated (within the same clause)

Inner Participants

syntactic criteria - Actor and Patient semantic criteria for other inner participants (if a verb has more than two arguments)

Semantic Effect (as a cognitive role) shifted to the position of Patient.

The teacher asked a pupil.

→ Semantic Addresse shifted to the position of Patient.

Obligatory ... Optional

The Dialogue Test

Answering a question about a semantically obligatory modification, the speaker cannot say: I don't know.

A: John left.
B: From where?
A: *I don't know.

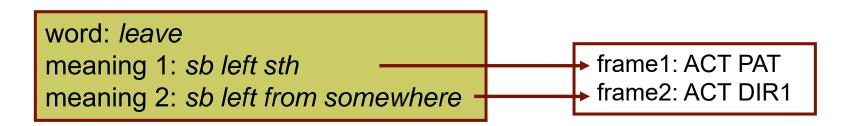
"from where"

→ obligatory modification

"to where"

optional modification

Valency frame

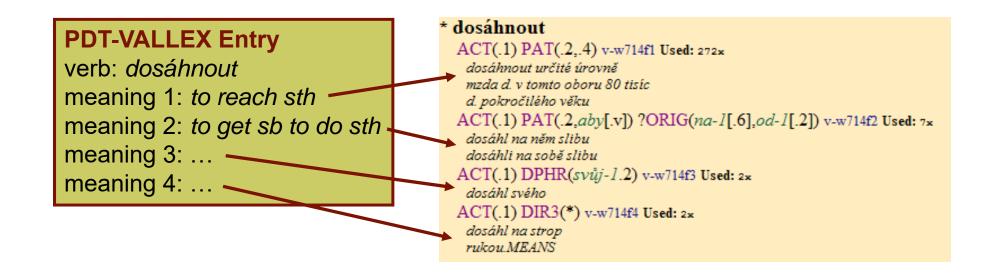

Structure:

	obligatory	optional
argument		
adjunct		

Contents:

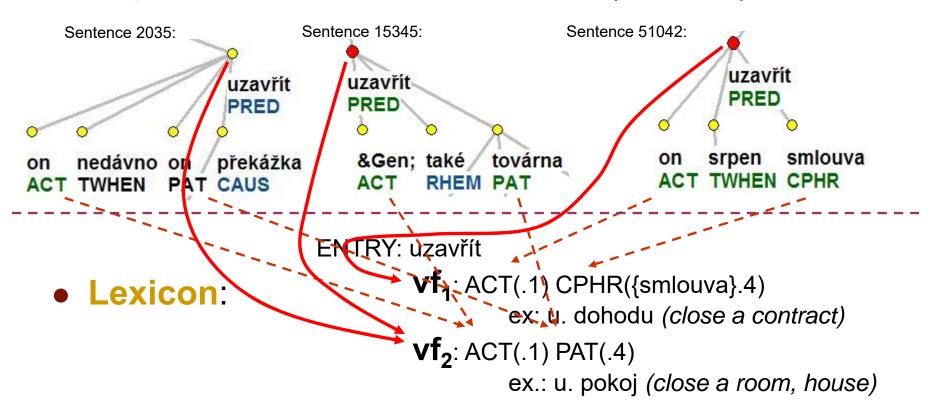
- functor
- obligatoriness
- surface form

one meaning of the word → one valency frame



Valency lexicon: PDT-VALLEX

- 11500 verb senses / valency frames
- 9000 noun sense / valency frames
- some adjectives and adverbs



Corpus ↔ **Valency Lexicon**

Corpus – occurrences of "uzavřít" (to close):

Tectogrammatical Parsing

CoNLL 2009 ST: Czech 83.27

- 4 phases
- Transformation-based learning
- FnTBL
- Largely language independent
- Coreference: >90%(V. Klimes' thesis)

	m- and a-layer:	
Attribute	manual	auto
structure	89,3 %	76,4 %
functor	85,5 %	77,4 %
<pre>val_frame.rf</pre>	92,3 %	90,9 %
t_lemma	93,5 %	90,9 %
nodetype	94,5 %	92,6 %
gram/sempos	93,8 %	91,5 %
a/lex.rf	96,5 %	95,1 %
a/aux.rf	94,3 %	90,3 %
is_member	94,3 %	89,5 %
is_generated	96,6 %	95,2 %
deepord	68,0 %	66,7 %

To summarize...

- PDT is/has (a)...
 - Dependency-based treebanking project
 - Czech (other languages: Eng, Ar)
 - Ongoing projects (other inst.): Italian, Old Greek, Latin, ...
 - ~ 1mil. words
 - sufficient size for ML experiments
 - 4 layers of annotation
 - token, morphology, syntax, <u>deep syntax/semantics</u>)
 - interlinked (for the development of parsers/generators)
 - Valency dictionary integrated (links from data)
 - Multiword expressions, discourse

Some pointers

- Current version of PDT: v3.5
 - all three levels, 1.9/1.5/0.8 Mwords
 - http://ufal.mff.cuni.cz/pdt3.5
 - LINDAT/CLARIN search for "prague dependency"
- http://ufal.mff.cuni.cz
 - Research -> Corpora (Treebank(s))
- http://www.ldc.upenn.edu
 - LDC2004T23 (PADT 1.0), LDC2012T08 (PCEDT 2.0), LDC2006T01 (PDT 2.0)
- http://ufal.mff.cuni.cz/pcedt2.0
 - Parallel Czech-English Dependency Treebank
- Valency lexicons
 - https://lindat.mff.cuni.cz/services/CzEngVallex/
 - https://lindat.mff.cuni.cz/services/EngVallex