```
\langle \, h_1, \ | \, h_2:\_\mathsf{but\_c}(\_,\_,h_5), \, h_8:\_\mathsf{this\_q\_dem}(x_{10},\,h_{11},\_), \, h_{12}:\_\mathsf{theory\_n\_of}(x_{10},\_), \ | \, h_{14}:\_\mathsf{would\_v\_modal}(e_4,\,h_{15}), \, h_{16}:\mathsf{neg}(\_,\,h_{17}), \, h_{19}:\_\mathsf{work\_v\_1}(e_{20},\,x_{10},\_) \ | \, \{ \, h_{17} =_q \, h_{14}, \, h_{15} =_q \, h_{19}, \, h_{11} =_q \, h_{12}, \, h_5 =_q \, h_{16}, \, h_1 =_q \, h_2 \, \} \, \rangle
```

Holes in Meaning Construction with Minimal Recursion Semantics

Stephan Oepen & Dan Flickinger

Universitetet i Oslo, Stanford University, and Center for Advanced Study at the Norwegian Academy of Science and Letters

oe@ifi.uio.no,danf@stanford.edu

```
\langle \, h_1, \, | \, h_2:_but_c(__, __, h_5), h_8:_this_q_dem(x_{10}, h_{11}, __), h_{12}:_theory_n_of(x_{10}, __), | \, h_{14}:_would_v_modal(e_4, h_{15}), h_{16}:neg(__, h_{17}), h_{19}:_work_v_1(e_{20}, x_{10}, __) | \, \{ \, h_{17} =_q \, h_{14}, h_{15} =_q \, h_{19}, h_{11} =_q \, h_{12}, h_5 =_q \, h_{16}, h_1 =_q \, h_2 \, \} \, \rangle
```

Holes in Meaning Construction with Minimal Recursion Semantics 'Empirical ERG Research'

Stephan Oepen & Dan Flickinger

Universitetet i Oslo, Stanford University, and Center for Advanced Study at the Norwegian Academy of Science and Letters

oe@ifi.uio.no,danf@stanford.edu

```
\langle h_1, h_2:\_but\_c(\_,\_,h_5), h_8:\_this\_q\_dem(x_{10},h_{11},\_), h_{12}:\_theory\_n\_of(x_{10},\_), h_{14}:\_would\_v\_modal(e_4,h_{15}), h_{16}:neg(\_,h_{17}), h_{19}:\_work\_v\_1(e_{20},x_{10},\_)  \{ h_{17} =_q h_{14}, h_{15} =_q h_{19}, h_{11} =_q h_{12}, h_5 =_q h_{16}, h_1 =_q h_2 \} \rangle
```

Holes in Meaning Construction with Minimal Recursion Semantics Lollies & Lambdas → Hooks & Holes

Stephan Oepen & Dan Flickinger

Universitetet i Oslo, Stanford University, and Center for Advanced Study at the Norwegian Academy of Science and Letters

oe@ifi.uio.no,danf@stanford.edu

Background: Wide-Coverage Grammar Engineering

Deep Linguistic Processing with HPSG (www.delph-in.net)

- Practical and re-usable HPSG implementations; ongoing since 1990s;
- Typed feature structure formalism: [Carpenter, 92], [Copestake, 92];
- phrase structure rules with complex categories (feature structures);
- de-facto standardization enables sustained, incremental development.

Background: Wide-Coverage Grammar Engineering

Deep Linguistic Processing with HPSG (www.delph-in.net)

- Practical and re-usable HPSG implementations; ongoing since 1990s;
- Typed feature structure formalism: [Carpenter, 92], [Copestake, 92];
- phrase structure rules with complex categories (feature structures);
- de-facto standardization enables sustained, incremental development.

LinGO English Resource Grammar (ERG; lingo.stanford.edu)

- Comprehensive: ~9000 types; 84 lexical and 222 grammar rules (1214);
- hand-built lexicon of 39,000 lemmas; 1,100 types; some 10,000 verbs;
- coverage ~80 − 95% across domains: Wikipedia, GENIA, WSJ, et al.

Background: Wide-Coverage Grammar Engineering

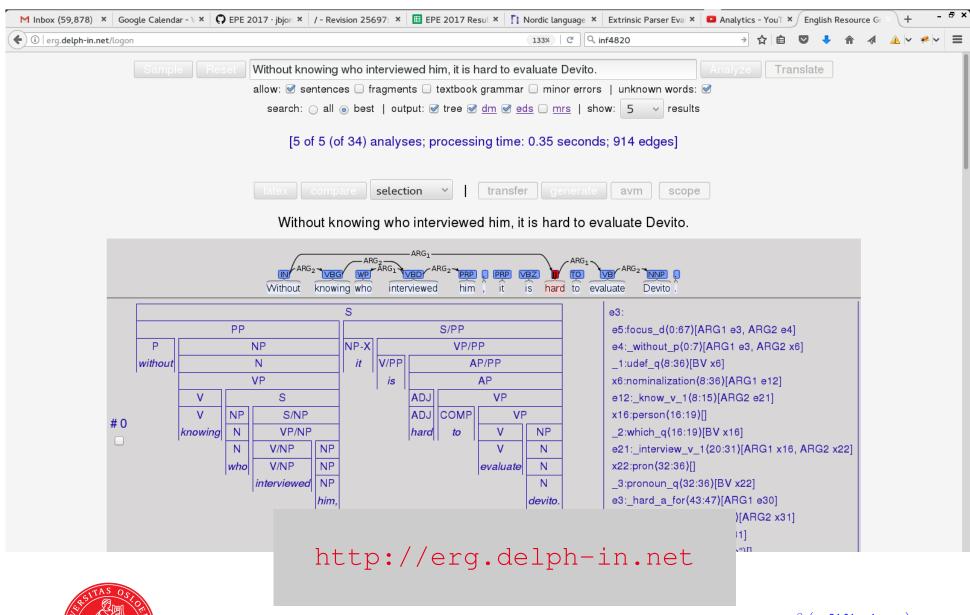
Deep Linguistic Processing with HPSG (www.delph-in.net)

- Practical and re-usable HPSG implementations; ongoing since 1990s;
- Typed feature structure formalism: [Carpenter, 92], [Copestake, 92];
- phrase structure rules with complex categories (feature structures);
- de-facto standardization enables sustained, incremental development.

LinGO English Resource Grammar (ERG; lingo.stanford.edu)

- Comprehensive: ~9000 types; 84 lexical and 222 grammar rules (1214);
- hand-built le
- coverage ~{

Long-term joint effort with (among others):


Emily M. Bender, Ann Copestake, John Carroll, Woodley Packard, Ivan A. Sag, Hans Uszkoreit, and more. ,000 verbs;

/SJ, et al.

AR-18 (oe@ifi.uio.no)

Go Play Yourselves (Tonight): The ERG On-Line

Minimal Recursion Semantics (Copestake, et al. 2005)

- Abstract representation of grammatically determined sentence meaning;
- underspecification of quantifier scope (and finer-grained word senses);
- mono-stratal, sign-based design: syntax and semantics via *unification*;
- \rightarrow syntactic derivation and meaning representation correspond *one-to-one*.

Minimal Recursion Semantics (Copestake, et al. 2005)

- Abstract representation of grammatically determined sentence meaning;
- underspecification of quantifier scope (and finer-grained word senses);
- mono-stratal, sign-based design: syntax and semantics via unification;
- \rightarrow syntactic derivation and meaning representation correspond *one-to-one*.

```
 \left\langle \begin{array}{l} \textit{h}_{1}, \\ \textit{h}_{2}\text{:\_but\_c}(\mathsf{ARG0} \ \_, \ \mathsf{ARG1} \ \_, \ \mathsf{ARG2} \ \textit{h}_{5}), \\ \textit{h}_{8}\text{:\_this\_q}(\mathsf{BV} \ \textit{x}_{10}, \ \mathsf{RSTR} \ \textit{h}_{11}, \ \mathsf{BODY} \ \_), \ \textit{h}_{12}\text{:\_theory\_n\_of}(\mathsf{ARG0} \ \textit{x}_{10}, \ \mathsf{ARG1} \ \_), \\ \textit{h}_{14}\text{:\_would\_v\_modal}(\mathsf{ARG0} \ \textit{e}_{4}, \ \mathsf{ARG1} \ \textit{h}_{15}), \ \textit{h}_{16}\text{:neg}(\mathsf{ARG0} \ \_, \ \mathsf{ARG1} \ \textit{h}_{17}), \\ \textit{h}_{19}\text{:\_work\_v\_1}(\mathsf{ARG0} \ \textit{e}_{20}, \ \mathsf{ARG1} \ \textit{x}_{10}, \ \mathsf{ARG2} \ \_) \\ \textit{h}_{1} =_{q} \ \textit{h}_{2}, \ \textit{h}_{5} =_{q} \ \textit{h}_{16}, \ \textit{h}_{11} =_{q} \ \textit{h}_{12}, \ \textit{h}_{15} =_{q} \ \textit{h}_{19}, \ \textit{h}_{17} =_{q} \ \textit{h}_{14} \right\} \right\rangle
```


Some Basic MRS Terminology

- Elementary predications (EPs);

mantics (Copestake, et al. 2005)

mmatically determined *sentence meaning*; r scope (and finer-grained word senses); gn: syntax and semantics via *unification*; ing representation correspond *one-to-one*.

```
 \left\langle \begin{array}{l} \textit{h}_{1}, \\ \textit{h}_{2}\text{:\_but\_c}(\mathsf{ARG0} \_, \mathsf{ARG1} \_, \mathsf{ARG2} \ \textit{h}_{5}), \\ \textit{h}_{8}\text{:\_this\_q}(\mathsf{BV} \ \textit{x}_{10}, \mathsf{RSTR} \ \textit{h}_{11}, \mathsf{BODY} \_), \textit{h}_{12}\text{:\_theory\_n\_of}(\mathsf{ARG0} \ \textit{x}_{10}, \mathsf{ARG1} \_), \\ \textit{h}_{14}\text{:\_would\_v\_modal}(\mathsf{ARG0} \ \textit{e}_{4}, \mathsf{ARG1} \ \textit{h}_{15}), \textit{h}_{16}\text{:neg}(\mathsf{ARG0} \_, \mathsf{ARG1} \ \textit{h}_{17}), \\ \textit{h}_{19}\text{:\_work\_v\_1}(\mathsf{ARG0} \ \textit{e}_{20}, \mathsf{ARG1} \ \textit{x}_{10}, \mathsf{ARG2} \_) \\ \left\{ \begin{array}{l} \textit{h}_{1} =_{q} \ \textit{h}_{2}, \textit{h}_{5} =_{q} \ \textit{h}_{16}, \textit{h}_{11} =_{q} \ \textit{h}_{12}, \textit{h}_{15} =_{q} \ \textit{h}_{19}, \textit{h}_{17} =_{q} \ \textit{h}_{14} \right\} \right\}
```


Some Basic MRS Terminology

- Elementary predications (EPs);
- variables: events

mantics (Copestake, et al. 2005)

mmatically determined *sentence meaning*; r scope (and finer-grained word senses); gn: syntax and semantics via *unification*; ing representation correspond *one-to-one*.

```
 \left\langle \begin{array}{l} \textit{h}_{1}, \\ \textit{h}_{2}\text{:\_but\_c}(\mathsf{ARG0} \ \_, \ \mathsf{ARG1} \ \_, \ \mathsf{ARG2} \ \textit{h}_{5}), \\ \textit{h}_{8}\text{:\_this\_q}(\mathsf{BV} \ \textit{x}_{10}, \ \mathsf{RSTR} \ \textit{h}_{11}, \ \mathsf{BODY} \ \_), \ \textit{h}_{12}\text{:\_theory\_n\_of}(\mathsf{ARG0} \ \textit{x}_{10}, \ \mathsf{ARG1} \ \_), \\ \textit{h}_{14}\text{:\_would\_v\_modal}(\mathsf{ARG0} \ \textit{e}_{4}, \ \mathsf{ARG1} \ \textit{h}_{15}), \ \textit{h}_{16}\text{:neg}(\mathsf{ARG0} \ \_, \ \mathsf{ARG1} \ \textit{h}_{17}), \\ \textit{h}_{19}\text{:\_work\_v\_1}(\mathsf{ARG0} \ \textit{e}_{20}, \ \mathsf{ARG1} \ \textit{x}_{10}, \ \mathsf{ARG2} \ \_) \\ \textit{h}_{1} =_{q} \ \textit{h}_{2}, \ \textit{h}_{5} =_{q} \ \textit{h}_{16}, \ \textit{h}_{11} =_{q} \ \textit{h}_{12}, \ \textit{h}_{15} =_{q} \ \textit{h}_{19}, \ \textit{h}_{17} =_{q} \ \textit{h}_{14} \right\} \right\rangle
```


Some Basic MRS Terminology

- Elementary predications (EPs);
- variables: events and instances;

mantics (Copestake, et al. 2005)

mmatically determined *sentence meaning*; r scope (and finer-grained word senses); gn: syntax and semantics via *unification*; ing representation correspond *one-to-one*.

Some Basic MRS Terminology

- Elementary predications (EPs);
- variables: events and instances;
- one 'intrinsic' variable: (ARG0);

mantics (Copestake, et al. 2005)

mmatically determined *sentence meaning*; r scope (and finer-grained word senses); gn: syntax and semantics via *unification*; ing representation correspond *one-to-one*.

```
 \left\langle \begin{array}{l} \textit{h}_{1}, \\ \textit{h}_{2}\text{:\_but\_c}(\mathsf{ARG0} \_, \mathsf{ARG1} \_, \mathsf{ARG2} \ \textit{h}_{5}), \\ \textit{h}_{8}\text{:\_this\_q}(\mathsf{BV} \ \textit{x}_{10}, \mathsf{RSTR} \ \textit{h}_{11}, \mathsf{BODY} \_), \textit{h}_{12}\text{:\_theory\_n\_of}(\mathsf{ARG0} \ \textit{x}_{10}, \mathsf{ARG1} \_), \\ \textit{h}_{14}\text{:\_would\_v\_modal}(\mathsf{ARG0} \ \textit{e}_{4}, \mathsf{ARG1} \ \textit{h}_{15}), \textit{h}_{16}\text{:neg}(\mathsf{ARG0} \_, \mathsf{ARG1} \ \textit{h}_{17}), \\ \textit{h}_{19}\text{:\_work\_v\_1}(\mathsf{ARG0} \ \textit{e}_{20}, \mathsf{ARG1} \ \textit{x}_{10}, \mathsf{ARG2} \_) \\ \left\{ \begin{array}{l} \textit{h}_{1} =_{q} \ \textit{h}_{2}, \textit{h}_{5} =_{q} \ \textit{h}_{16}, \textit{h}_{11} =_{q} \ \textit{h}_{12}, \textit{h}_{15} =_{q} \ \textit{h}_{19}, \textit{h}_{17} =_{q} \ \textit{h}_{14} \, \right\} \right\} \end{aligned}
```


Some Basic MRS Terminology

- Elementary predications (EPs);
- variables: events and instances;
- one 'intrinsic' variable: (ARG0);
- handles

mantics (Copestake, et al. 2005)

mmatically determined *sentence meaning*; r scope (and finer-grained word senses); gn: syntax and semantics via *unification*; ing representation correspond *one-to-one*.

```
\langle h_1, h_2:_but_c(ARG0 __, ARG1 __, ARG2 h_5), h_8:_this_q(BV x_{10}, RSTR h_{11}, BODY __), h_{12}:_theory_n_of(ARG0 x_{10}, ARG1 __), h_{14}:_would_v_modal(ARG0 e_4, ARG1 h_{15}), h_{16}:neg(ARG0 __, ARG1 h_{17}), h_{19}:_work_v_1(ARG0 e_{20}, ARG1 x_{10}, ARG2 __) \{ h_1 =_q h_2, h_5 =_q h_{16}, h_{11} =_q h_{12}, h_{15} =_q h_{19}, h_{17} =_q h_{14} \} \rangle
```


Some Basic MRS Terminology

- Elementary predications (EPs);
- variables: events and instances;
- one 'intrinsic' variable: (ARG0);
- handles and handle constraints.

mantics (Copestake, et al. 2005)

mmatically determined *sentence meaning*; r scope (and finer-grained word senses); gn: syntax and semantics via *unification*; ing representation correspond *one-to-one*.

```
 \left\langle \begin{array}{l} \textit{h}_{1}, \\ \textit{h}_{2}\text{:\_but\_c}(\mathsf{ARG0} \_, \mathsf{ARG1} \_, \mathsf{ARG2} \ \textit{h}_{5}), \\ \textit{h}_{8}\text{:\_this\_q}(\mathsf{BV} \ \textit{x}_{10}, \mathsf{RSTR} \ \textit{h}_{11}, \mathsf{BODY} \_), \textit{h}_{12}\text{:\_theory\_n\_of}(\mathsf{ARG0} \ \textit{x}_{10}, \mathsf{ARG1} \_), \\ \textit{h}_{14}\text{:\_would\_v\_modal}(\mathsf{ARG0} \ \textit{e}_{4}, \mathsf{ARG1} \ \textit{h}_{15}), \textit{h}_{16}\text{:neg}(\mathsf{ARG0} \_, \mathsf{ARG1} \ \textit{h}_{17}), \\ \textit{h}_{19}\text{:\_work\_v\_1}(\mathsf{ARG0} \ \textit{e}_{20}, \mathsf{ARG1} \ \textit{x}_{10}, \mathsf{ARG2} \_) \\ \left\{ \begin{array}{l} \textit{h}_{1} =_{q} \ \textit{h}_{2}, \textit{h}_{5} =_{q} \ \textit{h}_{16}, \textit{h}_{11} =_{q} \ \textit{h}_{12}, \textit{h}_{15} =_{q} \ \textit{h}_{19}, \textit{h}_{17} =_{q} \ \textit{h}_{14} \, \right\} \right\} \end{aligned}
```


All angry dogs didn't bark.

```
\langle h_1, h_4:\_all\_q(ARG0 \ x_5, RSTR \ h_6, BODY \_), \ h_8:\_angry\_a\_at(ARG0 \ e_9, ARG1 \ x_5, ARG2 \_), h_8:\_dog\_n\_1(ARG0 \ x_5), \ h_2:neg(ARG0 \ e_{12}, ARG1 \ h_{11}), h_{13}:\_bark\_v\_1(ARG0 \ e_3, ARG1 \ x_5) \ \{ h_1 =_q h_2, h_6 =_q h_8, h_{11} =_q h_{13} \} \rangle
```


All angry dogs didn't bark.

```
\langle h_1, h_4:\_all\_q(ARG0 \ x_5, RSTR \ h_6, BODY \_), h_8:\_angry\_a\_at(ARG0 \ e_9, ARG1 \ x_5, ARG2 \_), h_8:\_dog\_n\_1(ARG0 \ x_5), h_2:neg(ARG0 \ e_{12}, ARG1 \ h_{11}), h_{13}:\_bark\_v\_1(ARG0 \ e_3, ARG1 \ x_5)  \{ h_1 =_q h_2, h_6 =_q h_8, h_{11} =_q h_{13} \} \rangle \forall x_5: angry'(x_5) \land dog'(x_5) \rightarrow \neg bark'(e_3, x_5)
```


All angry dogs didn't bark.

```
\langle h_1, h_4:\_all\_q(ARG0 \ x_5, RSTR \ h_6, BODY \_), h_8:\_angry\_a\_at(ARG0 \ e_9, ARG1 \ x_5, ARG2 \_), h_8:\_dog\_n\_1(ARG0 \ x_5), h_2:neg(ARG0 \ e_{12}, ARG1 \ h_{11}), h_{13}:\_bark\_v\_1(ARG0 \ e_3, ARG1 \ x_5)  \{ h_1 =_q h_2, h_6 =_q h_8, h_{11} =_q h_{13} \} \rangle \forall x_5: angry'(x_5) \land dog'(x_5) \rightarrow \neg bark'(e_3, x_5) \neg \ \forall x_5: angry'(x_5) \land dog'(x_5) \rightarrow bark'(e_3, x_5)
```


All angry dogs didn't bark.

```
\langle h_1, h_4:\_all\_q(ARG0 \ x_5, RSTR \ h_6, BODY \_), h_8:\_angry\_a\_at(ARG0 \ e_9, ARG1 \ x_5, ARG2 \_), h_8:\_dog\_n\_1(ARG0 \ x_5), h_2:neg(ARG0 \ e_{12}, ARG1 \ h_{11}), h_{13}:\_bark\_v\_1(ARG0 \ e_3, ARG1 \ x_5)  \{ h_1 =_q h_2, h_6 =_q h_8, h_{11} =_q h_{13} \} \rangle \forall x_5: angry'(x_5) \land dog'(x_5) \rightarrow \neg bark'(e_3, x_5) \neg \ \forall x_5: angry'(x_5) \land dog'(x_5) \rightarrow bark'(e_3, x_5)
```

Scope Underspecification 101

- MRS as collection of tree fragments, with partial constraints on dominance;
- scopal $=_q$ handle constraints provide candidate 'room' for quantifier insertion.

Abrams told Browne that it rained.

```
\langle h_1, h_2: \mathsf{named}(x_6, Abrams), h_2: \mathsf{named}(x_{10}, Browne), h_2: \mathsf{tell\_v\_1}(e_3, x_6, x_{10}, h_9), h_{15}: \mathsf{\_rain\_v\_1}(e_{16})  \{ h_1 =_q h_2, h_9 =_q h_{15} \} \rangle
```


Abrams told Browne that it rained.

```
\langle h_1, h_2: \mathsf{named}(x_6, Abrams), h_2: \mathsf{named}(x_{10}, Browne), h_2: \mathsf{tell\_v\_1}(e_3, x_6, x_{10}, h_9), h_{15}: \mathsf{\_rain\_v\_1}(e_{16})  \{ h_1 =_q h_2, h_9 =_q h_{15} \} \rangle
```

Two Basic Types of Semantic Arguments

- Individuals, e.g. nominal complements: logical conjunction, equate handles;
- propositions, e.g. clausal complements: scopally subordinate, introduce $=_q$.
- when (and if) mapped to logical form, the handle meta-variables disappear.

It rained heavily.

It probably rained.

$$egin{aligned} ig\langle extcolor{h}_1, \ ightarrow{h}_2: extcolor{rain}_- extcolor{v}_- extcolor{1}(extcolor{e}_3), \ ightarrow{h}_2: extcolor{h}_2 extcolor{e}_4, extcolor{e}_3) \ igl\{ extcolor{h}_1 =_q extcolor{h}_2 \, igr\} igr
angle \end{aligned}$$

$$egin{array}{ll} h_1, & & \langle \, h_1, \ h_2 : _ {\sf rain_v_1}(e_3), & & | h_2 : _ {\sf probable_a_1}(e_4, \, h_5), \ | h_2 : _ {\sf heavy_a_1}(e_4, \, e_3) | & | h_6 : _ {\sf rain_v_1}(e_3) \ | \{ \, h_1 =_q \, h_2 \, \} \,
angle & \{ \, h_1 =_q \, h_2, \, h_5 =_q \, h_6 \, \} \,
angle & \ \end{array}$$

It rained heavily.

It probably rained.

$$\langle extit{ } h_1, \ | extit{ } h_2:_{
m rain_v_1}(extit{e}_3), \ | extit{ } h_2:_{
m heavy_a_1}(extit{e}_4, extit{e}_3) \ | \{ extit{ } h_1 =_q extit{h}_2 \, \} \,
angle$$

$$egin{array}{lll} egin{array}{lll} h_1, & & & \langle \, h_1, \ h_2 : \ | h_2 : \ | h_2 : \ | h_2 : \ | h_3 : \ | h_6 :$$

Most angry dogs are fierce.

```
\langle h_1, e_3,
 h_4:_most_q(x_5, h_6, _),
 h_8:_angry_a_at(e_9, x_5, __), h_8:_dog_n_1(x_5),
 h_2:_fierce_a_1(e_3, x_5)
 \{ h_1 =_a h_2, h_6 =_a h_8 \} \rangle
```

most' x_5 : angry'(x_5) \wedge dog'(x_5); fierce'(e_3, x_5)

Validate (and Refine) MRS Algebra (Copestake, et al. 2001)

- Earlier proposal for (ERG-style) constrained composition of MRS fragments;
- only spelled out for small selection of simple examples; no implementation.

Validate (and Refine) MRS Algebra (Copestake, et al. 2001)

- Earlier proposal for (ERG-style) constrained composition of MRS fragments;
- only spelled out for small selection of simple examples; no implementation.

Enforce Separation of State and Church (at Scale)

- Syntax—semantics interface is mostly implicit in unification of HPSG signs;
- determine 'linguistic coverage' of MRS algebra relative to ERG constructions.

Validate (and Refine) MRS Algebra (Copestake, et al. 2001)

- Earlier proposal for (ERG-style) constrained composition of MRS fragments;
- only spelled out for small selection of simple examples; no implementation.

Enforce Separation of State and Church (at Scale)

- Syntax—semantics interface is mostly implicit in unification of HPSG signs;
- determine 'linguistic coverage' of MRS algebra relative to ERG constructions.

Validate (and Refine) MRS Algebra (Copestake, et al. 2001)

- Earlier proposal for (ERG-style) constrained composition of MRS fragments;
- only spelled out for small selection of simple examples; no implementation.

Enforce Separation of State and Church (at Scale)

- Syntax—semantics interface is mostly implicit in unification of HPSG signs;
- determine 'linguistic coverage' of MRS algebra relative to ERG constructions.

Transfer Semantic Lexicon to Dependency-Based Syntax

- Explicit, formal, and 'lean' syntax—semantics interface should be portable;
- ? leverage wealth of fine-grained lexical information in ERG with UD syntax.

- Formally, an MRS is a triple $\langle T, P, C \rangle$: top handle, predications, constraints;
- composition through *MRS algebra terms* (MATs): five-tuple $\langle H, L, P, C, E \rangle$;

```
HOOK
{HOLES}
| ELEMENTARY PREDICATIONS
{ HANDLE CONSTRAINTS }
{ EQUALITIES }
```


Operationalizing MRS Composition

- Formally, an MRS is a triple $\langle T, P, C \rangle$: top handle, predications, constraints;
- composition through *MRS algebra terms* (MATs): five-tuple $\langle H, L, P, C, E \rangle$;

```
HOOK
{HOLES}
| ELEMENTARY PREDICATIONS
{ HANDLE CONSTRAINTS }
{ EQUALITIES }
```

• hook is a triple $\langle h, i, x \rangle$, comprising a handle, index, and external argument;

- Formally, an MRS is a triple $\langle T, P, C \rangle$: top handle, predications, constraints;
- composition through *MRS algebra terms* (MATs): five-tuple $\langle H, L, P, C, E \rangle$;

```
HOOK
{HOLES}
| ELEMENTARY PREDICATIONS
{ HANDLE CONSTRAINTS }
{ EQUALITIES }
```

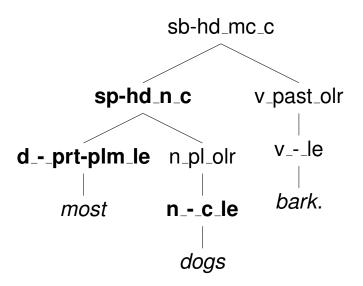
- hook is a triple $\langle h, i, x \rangle$, comprising a handle, index, and external argument;
- set of *holes* provides parallel triples with label, e.g. $_{SUBJ}\langle h, i, x \rangle$ on 'barked';

- Formally, an MRS is a triple $\langle T, P, C \rangle$: top handle, predications, constraints;
- composition through *MRS algebra terms* (MATs): five-tuple $\langle H, L, P, C, E \rangle$;

```
HOOK
{HOLES}
| ELEMENTARY PREDICATIONS
{ HANDLE CONSTRAINTS }
{ EQUALITIES }
```

- hook is a triple $\langle h, i, x \rangle$, comprising a handle, index, and external argument;
- set of *holes* provides parallel triples with label, e.g. $_{SUBJ}\langle h, i, x \rangle$ on 'barked';
- correspondence to lambda calculus: an argument hook 'plugs' a functor hole;

- Formally, an MRS is a triple $\langle T, P, C \rangle$: top handle, predications, constraints;
- composition through *MRS algebra terms* (MATs): five-tuple $\langle H, L, P, C, E \rangle$;


```
HOOK
{HOLES}
| ELEMENTARY PREDICATIONS
{ HANDLE CONSTRAINTS }
{ EQUALITIES }
```

- hook is a triple $\langle h, i, x \rangle$, comprising a handle, index, and external argument;
- set of *holes* provides parallel triples with label, e.g. $_{SUBJ}\langle h, i, x \rangle$ on 'barked';
- correspondence to lambda calculus: an argument hook 'plugs' a functor hole;
- ullet set of *equalities* records variable 'unifications' from composition: eta reduction.

A First Example of MATs Composition

Most dogs barked.

$$\langle h_1, h_4: _{ ext{most_q}(x_5, h_6, _)}, h_4: _{ ext{most_q}(x_5, h_6, _)}, h_8: _{ ext{dog_n_1}(x_5)}, h_2: _{ ext{bark_v_1}(e_3, x_5)} \{ h_6 =_q h_8, h_1 =_q h_2 \} \rangle$$

```
\begin{array}{lll} & \textit{most} & \textit{dogs} & \textit{most dogs} \\ & \langle\_, x_1, \_\rangle & \langle h_4, x_5, \_\rangle & \langle\_, x_1, \_\rangle \\ & \{_{\mathsf{SPEC}}\langle h_3, x_1, \_\rangle \} & \{ \} & \{ \} \\ & |h_0:\_\mathsf{most}\_\mathsf{q}(x_1, h_2, \_)| & |h_4:\_\mathsf{dog}\_\mathsf{n}\_\mathsf{1}(x_5)| & |h_0:\_\mathsf{most}\_\mathsf{q}(x_1, h_2, \_), h_4:\_\mathsf{dog}\_\mathsf{n}\_\mathsf{1}(x_5)| \\ & \{ h_2 =_q h_3 \} & \{ \} & \{ h_2 =_q h_3 \} \\ & \{ \} & \{ \} & \{ h_3 \equiv h_4, x_1 \equiv x_5 \} \end{array}
```


A First Example of MATs Composition

Composition Operations of Copestake, et al. (2001):

$$\langle H_f, L_f, P_f, C_f, E_f \rangle \quad \bullet_{\mathsf{SPEC}} \quad \langle H_a, L_a, P_a, C_a, E_a \rangle \quad \rightarrow \quad \langle H, L, P, C, E \rangle$$
 Let $H_a = \langle h_a, i_a, x_a \rangle$ and $L' = \mathsf{_{SPEC}} \langle h_f, i_f, x_f \rangle \in L_F$:
$$H = H_f; L = L_f \setminus \ \{L'\} \ \cup \ L_a;$$

$$P = P_f \cup \ P_a; C = C_f \cup \ C_a;$$

$$E = E_f \cup \ E_a \cup \{h_f = h_a, i_f = i_a, x_f = x_a\}$$

$$\begin{array}{lll} & \textit{most} & \textit{dogs} & \textit{most dogs} \\ \langle _, x_1, _ \rangle & \langle h_4, x_5, _ \rangle & \langle _, x_1, _ \rangle \\ \{_{\mathsf{SPEC}} \langle h_3, x_1, _ \rangle \} & \{ \} & \{ \} \\ |h_0 :_\mathsf{most_q}(x_1, h_2, _) | & |h_4 :_\mathsf{dog_n_1}(x_5) | & |h_0 :_\mathsf{most_q}(x_1, h_2, _), h_4 :_\mathsf{dog_n_1}(x_5) | \\ \{ h_2 =_q h_3 \} & \{ \} & \{ h_2 =_q h_3 \} \\ \{ \} & \{ h_3 \equiv h_4, x_1 \equiv x_5 \} \end{array}$$

Preliminary Reflections on MRS Algebra

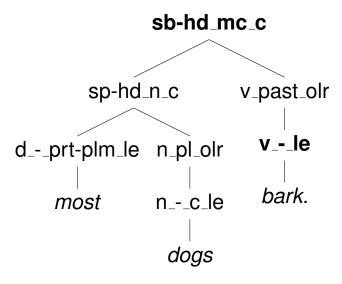
A 'Straitjacket' for Sign-Based Composition

- Relatively simplistic basic framework with tightly constraining assumptions:
- accessibility: at most three 'pointers' into meaning fragments are available;
- finiteness: fixed inventory of hole types, e.g. SPEC, SUBJ, COMPS, MOD, ...;
- uniformity: templatic form of all composition operations, functor-argument;
- monotonicity: set union of holes, predications, constraints, and equalities.

Preliminary Reflections on MRS Algebra

A 'Straitjacket' for Sign-Based Composition

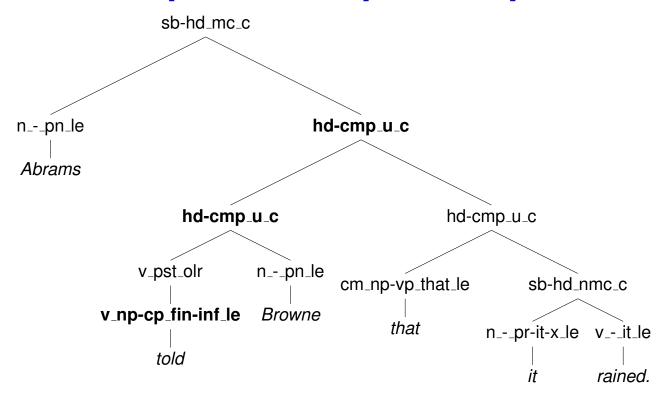
- Relatively simplistic basic framework with tightly constraining assumptions:
- accessibility: at most three 'pointers' into meaning fragments are available;
- finiteness: fixed inventory of hole types, e.g. SPEC, SUBJ, COMPS, MOD, ...;
- uniformity: templatic form of all composition operations, functor-argument;
- monotonicity: set union of holes, predications, constraints, and equalities.


Assumptions about Syntax–Semantics Interface

- Lexical entries contribute initial MATs; will need to deal with lexical ambiguity;
- each syntactic construction (or dependency type) determines its operation;
- n-ary constructions (for n > 2) conceptualized as sequence of operations;
- unary constructions conceptualized through empty functor or argument MAT.

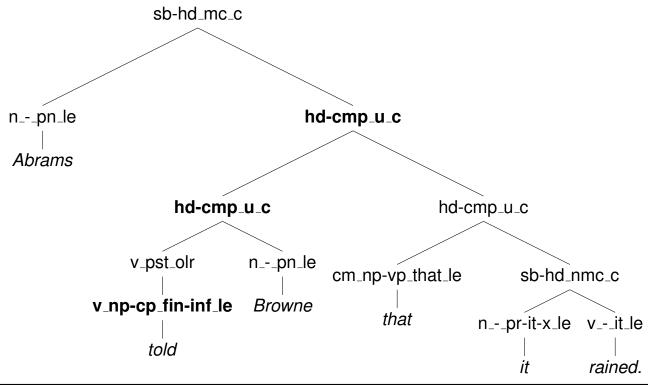
Rounding up Our First Example

Most dogs barked.



$$\langle h_1, \\ h_4: most_q(x_5, h_6, _), \\ h_8: dog_n_1(x_5), \\ h_2: bark_v_1(e_3, x_5) \\ \{ h_6 =_q h_8, h_1 =_q h_2 \} \rangle$$

```
 \begin{array}{c} \text{most dogs} & \text{barked} \\ \langle \_, x_1, \_ \rangle & \langle h_6, e_7, x_8 \rangle \\ \{\} & \{_{\text{SUBJ}} \langle h_6, x_8, \_ \rangle \} \\ |h_0:\_\text{most\_q}(x_1, h_2, \_), h_4:\_\text{dog\_n\_1}(x_5)| & |h_6:\_\text{bark\_v\_1}(e_7, x_8)| \\ \{h_2 =_q h_3 \} & \{ \} \\ \{h_3 \equiv h_4, x_1 \equiv x_5 \} & \{ \} \end{array}
```



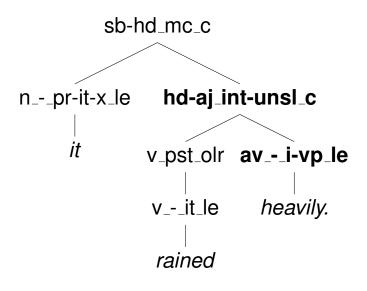
Non-Scopal vs. Scopal Complements

Non-Scopal vs. Scopal Complements

Non-Scopal vs. Scopal Complements

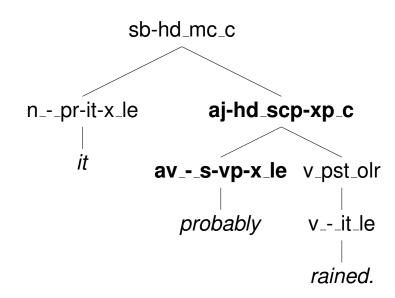
sb-hd_mc_c

One Uniform • COMPS Operation

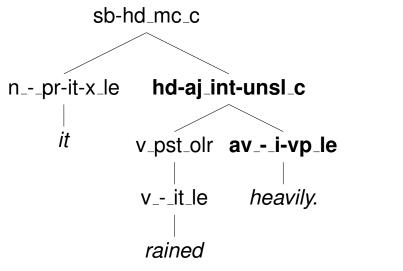

$$\mathsf{Let}\ L' = [\ \langle \mathit{h}_l, \mathit{i}_l, \mathit{x}_l \ \rangle\] \oplus L_g :$$

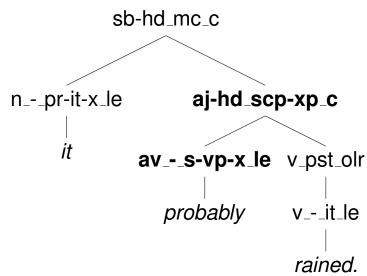
$$\langle H_f, \{_{\mathsf{COMPS}}\, L'\} \cup\ L_f, P_f, C_f, E_f \rangle \quad \bullet_{\mathsf{COMPS}} \quad \langle H_a, L_a, P_a, C_a, E_a \rangle$$

$$\rightarrow \quad \langle H_f, \{_{\mathsf{COMPS}}\, L_g\} \cup\ L_f \cup\ L_a, \ldots, \ldots \rangle$$

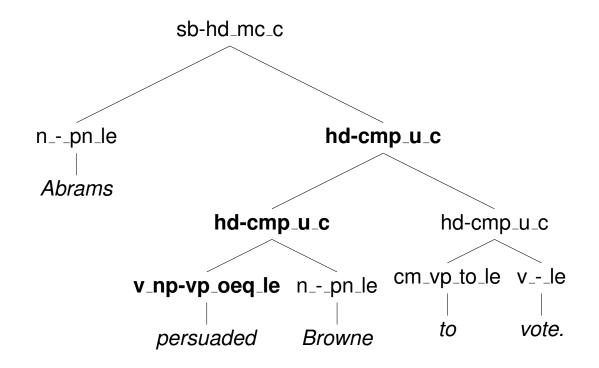

that n_-_pr-it-x_le v_-_it_le told it rained.

$$\begin{cases} h_0, e_1, _ \rangle \\ \begin{cases} \mathsf{SUBJ} \langle h_0, x_2, _ \rangle, \\ \mathsf{COMPS} [\langle h_0, x_3, _ \rangle, \langle h_5, _, _ \rangle] \end{cases} \\ \begin{cases} h_0:_\mathsf{tell}_\mathsf{v}_\mathsf{1}(e_1, x_2, x_3, h_4) | \\ \{ \} \end{cases} \\ \begin{cases} h_1 = \mathsf{v}_1 \\ \{ \} \end{cases} \end{cases}$$

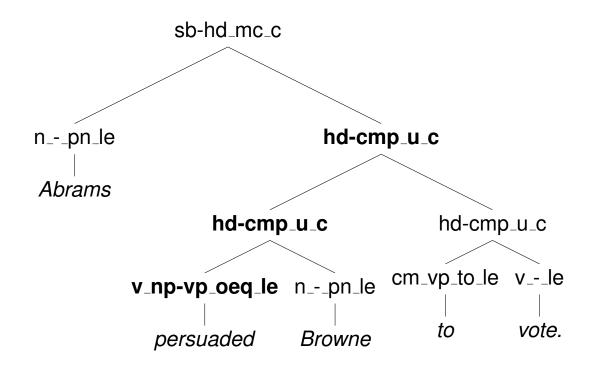

Restrictive vs. Scopal Modification



Restrictive vs. Scopal Modification



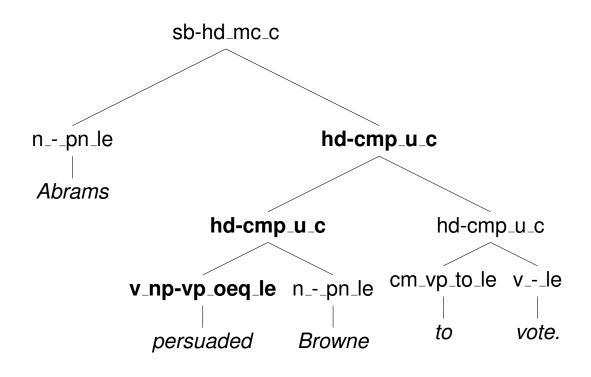
Restrictive vs. Scopal Modification


One Uniform • MOD Operation

$$\operatorname{Let} L' = {}_{\operatorname{\mathsf{MOD}}} \langle \, \mathit{h}_{l}, \, \mathit{i}_{l}, \, _ \, \rangle \in L_{f} :$$

$$\langle \langle \, \mathit{h}_{f}, \, \mathit{i}_{f}, \, _ \, \rangle, L_{f}, P_{f}, C_{f}, E_{f} \rangle \quad \bullet_{\operatorname{\mathsf{MOD}}} \quad \langle \langle \, \mathit{h}_{a}, \, \mathit{i}_{a}, \, _ \, \rangle, L_{a}, P_{a}, C_{a}, E_{a} \rangle \quad \rightarrow$$

$$\langle \langle \, \mathit{h}_{f}, \, \mathit{i}_{a}, \, _ \, \rangle, L_{f} \setminus \{ L' \} \ \cup \ L_{a}, P_{f} \cup \ P_{a}, C_{f} \cup \ C_{a}, E_{f} \cup \ E_{a} \cup \ \{ \, \mathit{h}_{l} \equiv \mathit{h}_{a}, \, \mathit{i}_{l} \equiv \mathit{i}_{a} \} \rangle$$



$$\begin{array}{c} \textit{persuaded} & \textit{to vote} \\ \langle \textit{h}_0, \textit{e}_1, _ \rangle & \langle \textit{h}_6, \textit{e}_7, \textit{x}_8 \rangle \\ \{_{\mathsf{SUBJ}} \langle \textit{h}_0, \textit{x}_2, _ \rangle, _{\mathsf{COMPS}} [\langle \textit{h}_0, \textit{x}_3, _ \rangle, \langle \textit{h}_5, _, _ \rangle] \} & \{_{\mathsf{SUBJ}} \langle \textit{h}_6, \textit{x}_8, _ \rangle \} \\ |\textit{h}_0\text{:_persuade_v_of}(\textit{e}_1, \textit{x}_2, \textit{x}_3, \textit{h}_4)| & |\textit{h}_6\text{:_vote_v_1}(\textit{e}_7, \textit{x}_8)| \\ \{\textit{h}_4 =_q \textit{h}_5 \} & \{ \} \\ \{ \} & \{ \} \end{array}$$


```
 \begin{array}{c} \textit{persuaded} & \textit{to vote} \\ \langle \textit{h}_0, \textit{e}_1, \_ \rangle & \langle \textit{h}_6, \textit{e}_7, \textit{\textbf{x}}_8 \rangle \\ \{_{\mathsf{SUBJ}} \langle \textit{h}_0, \textit{\textbf{x}}_2, \_ \rangle, _{\mathsf{COMPS}} [\langle \textit{h}_0, \textit{\textbf{x}}_3, \_ \rangle, \langle \textit{\textbf{h}}_5, \_, \textit{\textbf{x}}_3 \rangle] \} & \{_{\mathsf{SUBJ}} \langle \textit{\textbf{h}}_6, \textit{\textbf{x}}_8, \_ \rangle \} \\ | \textit{\textbf{h}}_0 \text{:\_persuade\_v\_of} (\textit{\textbf{e}}_1, \textit{\textbf{x}}_2, \textit{\textbf{x}}_3, \textit{\textbf{h}}_4) | & | \textit{\textbf{h}}_6 \text{:\_vote\_v\_1} (\textit{\textbf{e}}_7, \textit{\textbf{x}}_8) | \\ \{ \textit{\textbf{h}}_4 =_q \textit{\textbf{h}}_5 \} & \{ \} \\ \{ \} & \{ \} \end{array}
```


External Arguments

- Third hook component enables control of various 'open' complements;
- subject vs. object control vs. raising is a lexical property of functors;
- extends to different kinds of predicative constructions, e.g.

The books are in the box.

She considers him childish.

She placed the books in the box.

```
\begin{array}{c} \textit{persuaded} \\ \langle \textit{h}_0, \textit{e}_1, \_ \rangle \\ \{_{\mathsf{SUBJ}} \langle \textit{h}_0, \textit{x}_2, \_ \rangle, _{\mathsf{COMPS}} [\langle \textit{h}_0, \textit{x}_3, \_ \rangle, \langle \textit{h}_5, \_, \textcolor{red}{\textbf{x}_3} \rangle] \} \\ |\textit{h}_0\text{:\_persuade\_v\_of}(\textit{e}_1, \textit{x}_2, \textcolor{red}{\textbf{x}_3}, \textit{h}_4)| \\ \{\textit{h}_4 =_q \textit{h}_5\} \\ \{\textit{\}} \end{array}
```


External Arguments

- Third hook component enables control of various 'open' complements;
- subject vs. object control vs. raising is a lexical property of functors;
- extends to different kinds of predicative constructions, e.g.

The books are in the box.

She considers him childish.

She placed the books in the box.

```
\begin{array}{c} \textit{persuaded} & \textit{to vote} \\ \langle \textit{h}_0, \textit{e}_1, \_ \rangle & \langle \textit{h}_6, \textit{e}_7, \textit{x}_8 \rangle \\ \{_{\texttt{SUBJ}} \langle \textit{h}_0, \textit{x}_2, \_ \rangle, _{\texttt{COMPS}} [\langle \textit{h}_0, \textit{x}_3, \_ \rangle, \langle \textit{h}_5, \_, \textit{x}_3 \rangle] \} & \{_{\texttt{SUBJ}} \langle \textit{h}_6, \textit{x}_8, \_ \rangle \} \\ |\textit{h}_0 :\_ \texttt{persuade\_v\_of} (\textit{e}_1, \textit{x}_2, \textit{x}_3, \textit{h}_4)| & |\textit{h}_6 :\_ \texttt{vote\_v\_1} (\textit{e}_7, \textit{x}_8)| \\ \{\textit{h}_4 =_q \textit{h}_5 \} & \{ \} \\ \{ \} & \{ \} \\ \end{array}
```


sb-hd_mc_c

Refinement of •COMPS Operation:

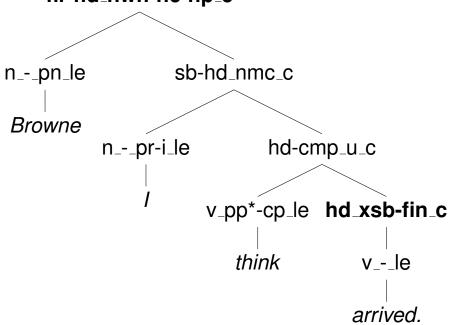
Let
$$L' = _\langle h_l, i_l, x_l \rangle \in L_f, x_l \equiv i_a \in E$$
:
$$L = L_f \setminus \{L'\} \cup L_a \setminus \{l \mid l = \langle _, i_a, _ \rangle\}$$

```
\begin{array}{c} \textit{persuaded} \\ \langle \textit{h}_0, \textit{e}_1, \_ \rangle \\ \{_{\texttt{SUBJ}}\langle \textit{h}_0, \textit{x}_2, \_ \rangle, _{\texttt{COMPS}}[\langle \textit{h}_0, \textit{x}_3, \_ \rangle, \langle \textit{h}_5, \_, \textit{x}_3 \rangle] \} \\ |\textit{h}_0\text{:\_persuade\_v\_of}(\textit{e}_1, \textit{x}_2, \textit{x}_3, \textit{h}_4)| \\ \{\textit{h}_4 =_q \textit{h}_5 \} \\ \{\} \end{array}
```


sb-hd_mc_c

Refinement of •_{COMPS} Operation:

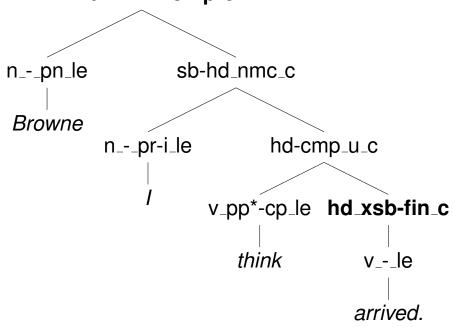
Let
$$L' = _\langle h_l, i_l, x_l \rangle \in L_f, \ x_l \equiv i_a \in E$$
: $L = L_f \setminus \{L'\} \cup L_a \setminus \{l \mid l = \langle _, i_a, _ \rangle \}$


→ Controlling external argument (kind of) 'plugs' a hole; need to refine other composition operations accordingly.

$$\begin{array}{c} \textit{persuaded} \\ \langle \textit{h}_0, \textit{e}_1, _ \rangle \\ \{_{\text{SUBJ}} \langle \textit{h}_0, \textit{x}_2, _ \rangle, _{\text{COMPS}} [\langle \textit{h}_0, \textit{x}_3, _ \rangle, \langle \textit{h}_5, _, \textit{x}_3 \rangle] \} \\ |\textit{h}_0\text{:_persuade_v_of}(\textit{e}_1, \textit{x}_2, \textit{x}_3, \textit{h}_4)| \\ \{\textit{h}_4 =_q \textit{h}_5 \} \\ \{\} \end{array}$$

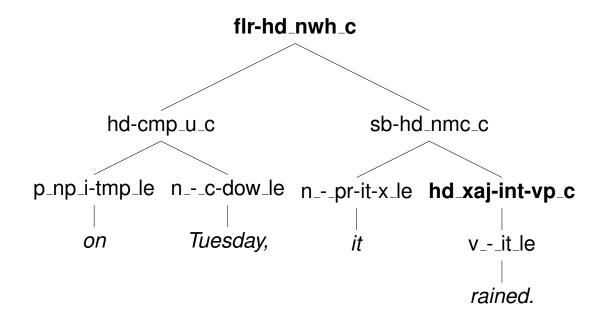
Relative Clauses Feed on Extraction

flr-hd_nwh-nc-np_c

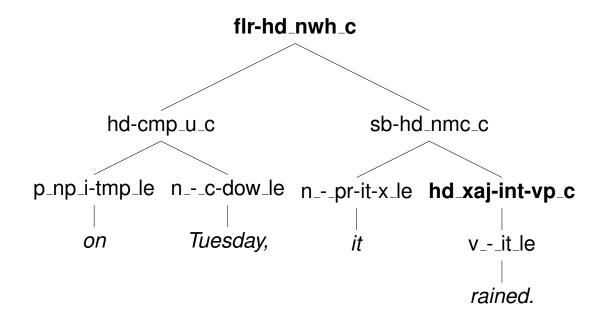


$$\left\langle egin{aligned} h_1, \ h_2 : \mathsf{pron}(x_{11}), \ h_2 : \mathsf{_think_v_1}(e_3, x_{11}, h_{16}), \ h_{17} : \mathsf{named}(x_4, \textit{Browne}), \ h_{17} : \mathsf{_arrive_v_1}(e_{18}, x_4) \ \left\{ egin{aligned} h_1 =_q h_2, h_{16} =_q h_{17} \end{array}
ight\}
ight
angle \end{aligned}$$

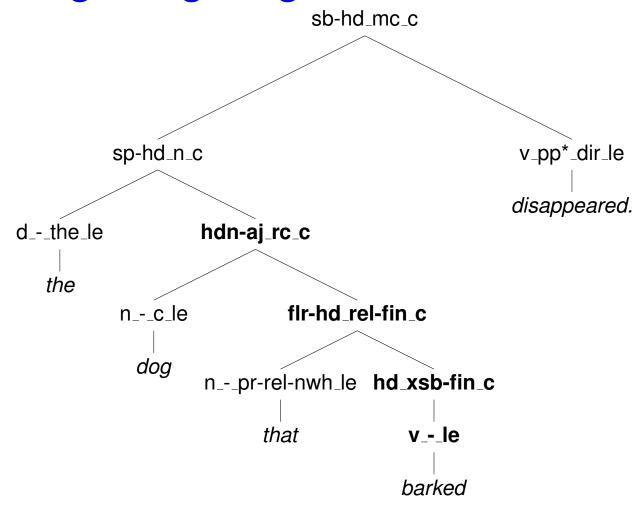
Relative Clauses Feed on Extraction


flr-hd_nwh-nc-np_c

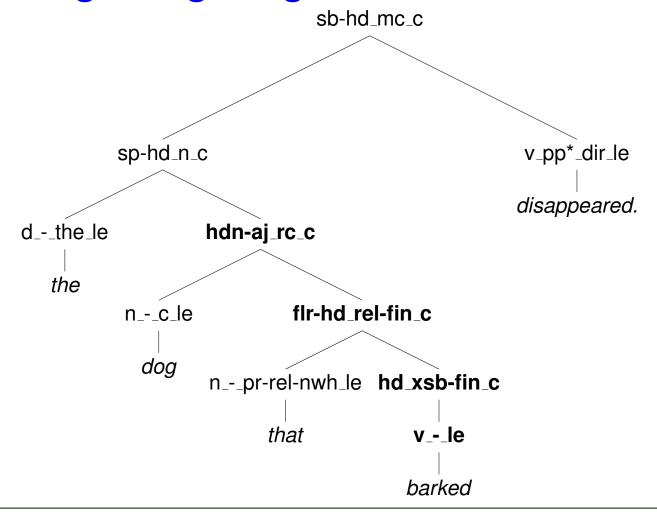
$$\langle h_1, \ | h_2 : \mathsf{pron}(x_{11}), \ | h_2 : \mathsf{_think_v_1}(e_3, x_{11}, h_{16}), \ | h_{17} : \mathsf{_named}(x_4, \textit{Browne}), \ | h_{17} : \mathsf{_arrive_v_1}(e_{18}, x_4) \ | \{ h_1 =_q h_2, h_{16} =_q h_{17} \} \rangle$$



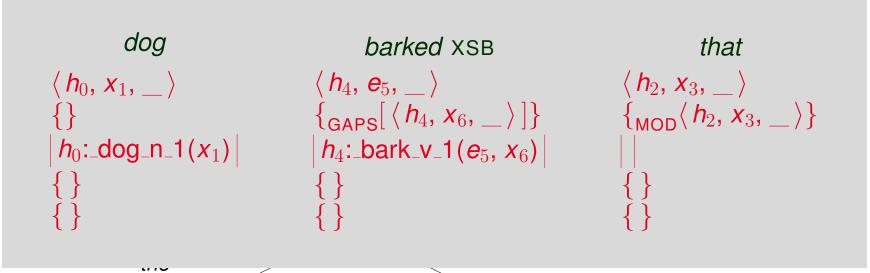
Modifiers Can be Extracted Too (Of Course)

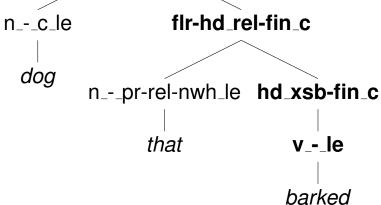


Modifiers Can be Extracted Too (Of Course)

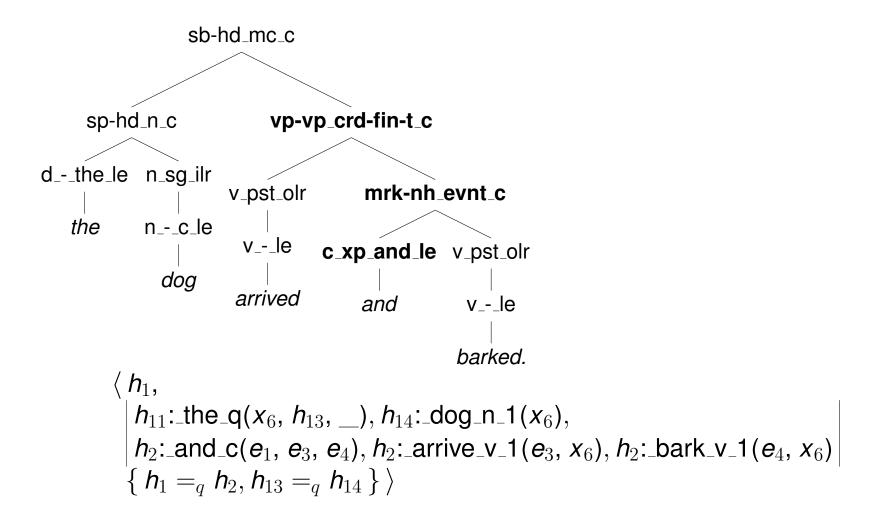


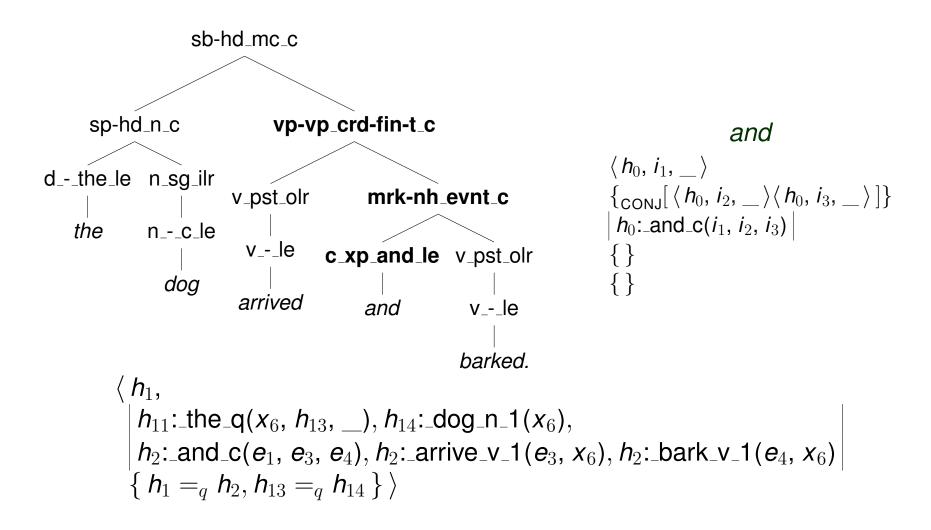
$$\begin{array}{c} \langle \textit{h}_0, \textit{e}_1, \textit{x}_2 \rangle \\ \{_{\mathsf{GAPS}}[\langle \textit{h}_0, \textit{e}_1, \textit{x}_2 \rangle], {}_{\mathsf{MOD}}\langle \textit{h}_0, \textit{e}_1, \textit{x}_2 \rangle \} \\ \{ \} \\ \{ \} \\ \{ \} \end{array} \qquad \begin{array}{c} \langle \textit{h}_2, \\ | \textit{h}_3 : _\mathsf{rain}_\mathsf{v}_\mathsf{1}(\textit{e}_3), \\ | \textit{h}_3 : _\mathsf{on}_\mathsf{p}_\mathsf{temp}(\textit{e}_4, \textit{e}_3, \textit{x}_6), \textit{h}_3 : \mathsf{dofw}(\textit{x}_6, \textit{Tue}) \\ \{ \textit{h}_2 =_q \textit{h}_3 \} \rangle \end{array}$$



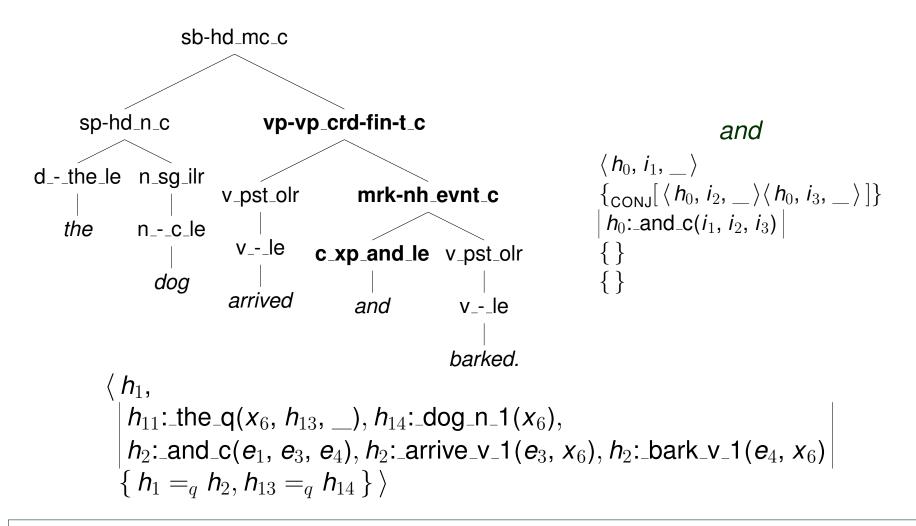


 $\langle h_1, h_4:_{the_q(x_6, h_7, \underline{\ }), h_8:_dog_n_1(x_6), h_8:_bark_v_1(e_9, x_6), h_2:_disappear_v_1(e_3, x_6)}$ $\{ h_1 =_q h_2, h_7 =_q h_8 \} \rangle$


$$\langle h_1, h_4:_{the_q(x_6, h_7, \underline{\ }), h_8:_dog_n_1(x_6), h_8:_bark_v_1(e_9, x_6), h_2:_disappear_v_1(e_3, x_6) | \{ h_1 =_q h_2, h_7 =_q h_8 \} \rangle$$


- → Generalizes without revisions to empty relativizer and modifier gaps;
- → plays nicely with unbounded depedencies, i.e. intervening clauses:
 The dog on which I think you depend barked.
 - well-chartered territory: clear benefits of close alignment with syntax.

$$ig| h_4:_{ ext{the_q}(x_6, h_7, \underline{\hspace{0.5cm}}), h_8:_{ ext{dog_n_1}(x_6), h_8:_{ ext{bark_v_1}(e_9, x_6), h_2:_disappear_v_1(e_3, x_6)} \ ig| \{ h_1 =_q h_2, h_7 =_q h_8 \} \
angle$$



 \rightarrow Set union $P_f \cup P_a$ needs to 'unify' SUBJ holes from both verb phrases.

ch hd ma a

Interaction with Different Scopal Contexts

The dog arrived and didn't bark.

→ equate index and external argument variables from both holes, attach to 'current' scope context: conjoin with conjunction.

$$\begin{array}{c} \text{barked.} \\ \langle \ h_1, \\ | \ h_{11}:_\mathsf{the_q}(x_6, \ h_{13}, \ _), \ h_{14}:_\mathsf{dog_n_1}(x_6), \\ | \ h_2:_\mathsf{and_c}(e_1, \ e_3, \ e_4), \ h_2:_\mathsf{arrive_v_1}(e_3, \ x_6), \ h_2:_\mathsf{bark_v_1}(e_4, \ x_6) \\ | \ \{ \ h_1 =_q \ h_2, \ h_{13} =_q \ h_{14} \ \} \ \rangle \end{array}$$

 \rightarrow Set union $P_f \cup P_a$ needs to 'unify' SUBJ holes from both verb phrases.

ch hd ma a

Interaction with Different Scopal Contexts

The dog arrived and didn't bark.

→ equate index and external argument variables from both holes, attach to 'current' scope context: conjoin with conjunction.

anu v_-_le

Appears to generalize well to argument and modifier coordination.

$$\{\ h_1=_q h_2, h_{13}=_q h_{14}\ \}\
angle$$

 \rightarrow Set union $P_f \cup P_a$ needs to 'unify' SUBJ holes from both verb phrases.

Ongoing Work & Open Questions

Rationalizing Broad-Coverage Meaning Construction in ERG

- Evaluate proposal by Copestake, et al. (2001) on broad range of analyses;
- determine degree of 'algebra compliance' in ERG: is it 45 %, 85 %, or 98 %?
- \rightarrow non-trivial revisions and extensions to algebra required; core ideas intact;
- \rightarrow could offer some guidance on design choices in ERG (syntactic) analyses;
 - ? What principles govern percolation of holes? Compare to lambda calculus?

Ongoing Work & Open Questions

Rationalizing Broad-Coverage Meaning Construction in ERG

- Evaluate proposal by Copestake, et al. (2001) on broad range of analyses;
- determine degree of 'algebra compliance' in ERG: is it 45 %, 85 %, or 98 %?
- \rightarrow non-trivial revisions and extensions to algebra required; core ideas intact;
- \rightarrow could offer some guidance on design choices in ERG (syntactic) analyses;
 - ? What principles govern percolation of holes? Compare to lambda calculus?

Adaptation to Other Frameworks, e.g. Universal Dependencies

- ? How much and what kinds of syntactic 'signals' required for composition?
- automatically extract semantic lexicon of initial MATs from ERG (underway);
- (maybe non-deterministic) graph rewriting and/or enhanced dependencies.

Transfer to Universal Dependencies Syntactic Relations

	Nominal	Clause	Modifier Word	Function Word
Core Predicate Dep	nsubj obj iobj	csubj ccomp xcomp		
Non-Core Predicate Dep	obl vocative expl dislocated	advcl	advmod* discourse	aux cop mark
Nominal Dep	nmod appos nummod	acl	amod	det clf case
Coordination	MWE	Loose	Special	Other
conj cc	fixed flat compound	parataxis list	orphan goeswith reparandum	punct root dep

(Courtesy of the Chief Cat Herder)

Candidate Mappings

$$\begin{array}{c|c} \operatorname{NSUBJ} \mid \operatorname{CSUBJ} \to \bullet_{\operatorname{SUBJ}} \\ \operatorname{ADVMOD}^{-1} \mid \operatorname{AMOD}^{-1} \mid \operatorname{NMOD}^{-1} \to \bullet_{\operatorname{MOD}} \end{array}$$

Core Predicate Dep	obj iobj	csubj ccomp xcomp		
Non-Core Predicate Dep	obl vocative expl dislocated	advcl	advmod* discourse	aux cop mark
Nominal Dep	nmod appos nummod	acl	amod	det clf case
Coordination	MWE	Loose	Special	Other
conj cc	fixed flat compound	parataxis list	orphan goeswith reparandum	punct root dep

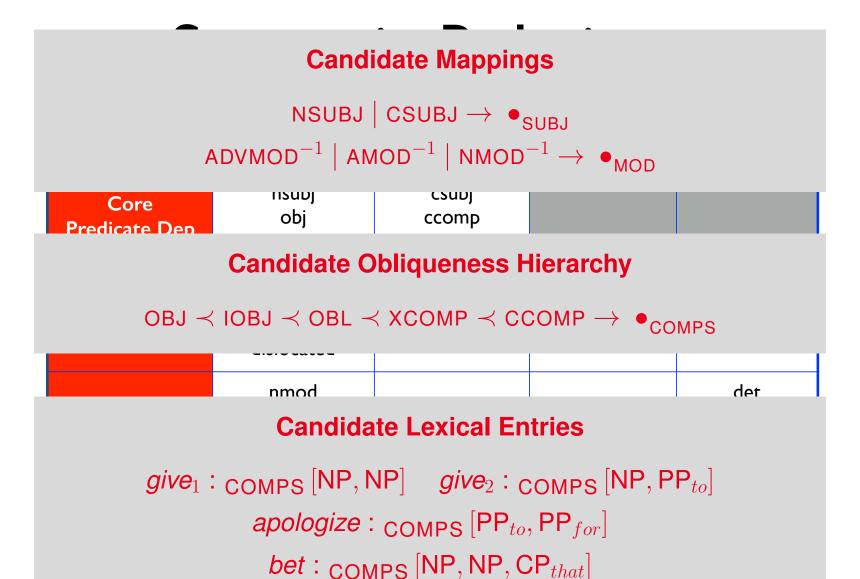
(Courtesy of the Chief Cat Herder)

 $\begin{array}{c|c} \operatorname{NSUBJ} \mid \operatorname{CSUBJ} \to \bullet_{\operatorname{SUBJ}} \\ \operatorname{ADVMOD}^{-1} \mid \operatorname{AMOD}^{-1} \mid \operatorname{NMOD}^{-1} \to \bullet_{\operatorname{MOD}} \end{array}$

Core
Predicate Dep

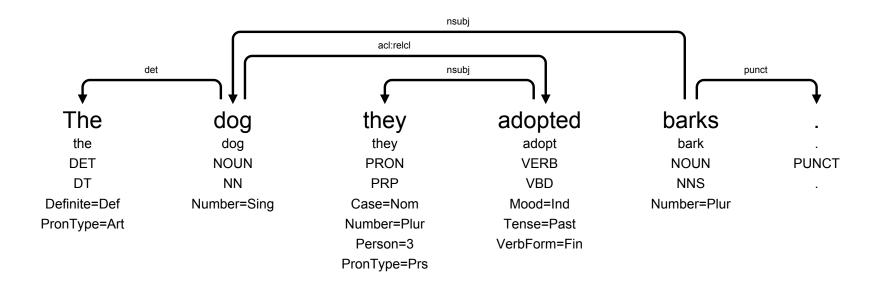
obj

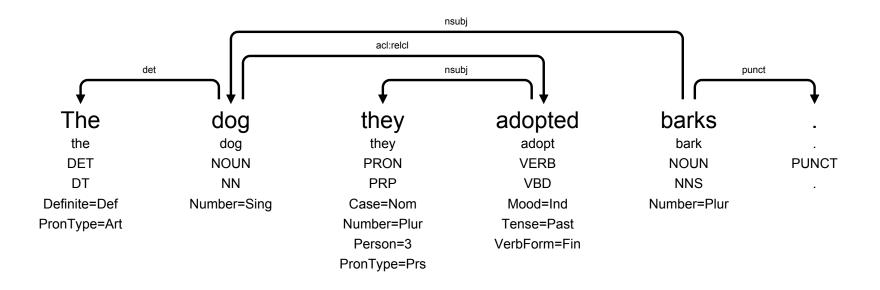
csubj ccomp

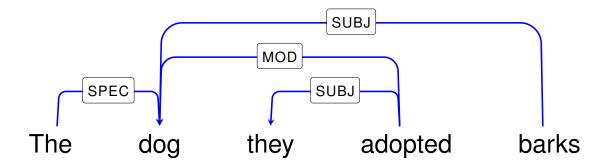

Candidate Obliqueness Hierarchy

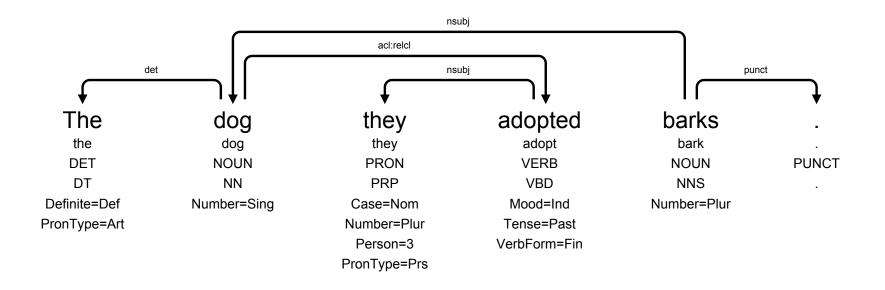
 $\mathsf{OBJ} \prec \mathsf{IOBJ} \prec \mathsf{OBL} \prec \mathsf{XCOMP} \prec \mathsf{CCOMP} \rightarrow \bullet_{\mathsf{COMPS}}$

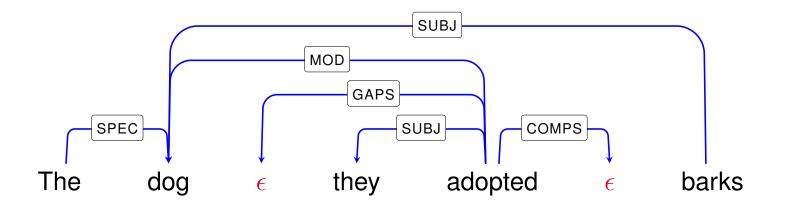
Nominal Dep	nmod appos nummod	acl	amod	det clf case
Coordination	MWE	Loose	Special	Other
conj cc	fixed flat compound	parataxis list	orphan goeswith reparandum	punct root dep

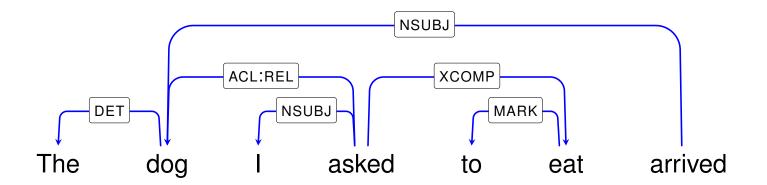

(Courtesy of the Chief Cat Herder)




(Outresy of the Other Oat Herder)

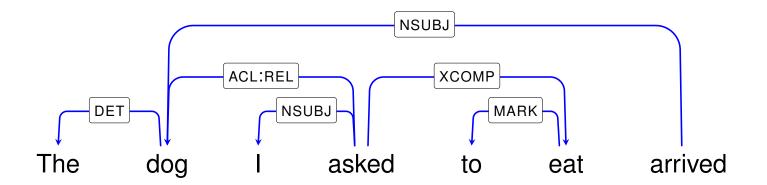






Missing Syntactic Information?

Missing Syntactic Information?



Abrams ate. Abrams ate cake.

Abrams asked to resign. Abrams asked Browne to resign.

Missing Syntactic Information?

Abrams ate. Abrams ate cake.

Abrams asked to resign. Abrams asked Browne to resign.

$$\begin{aligned} \textit{eat}_1: _{\mathsf{SUBJ}} \langle _, _, _ \rangle; _{\mathsf{COMPS}}[] \\ \textit{eat}_2: _{\mathsf{SUBJ}} \langle _, _, _ \rangle; _{\mathsf{COMPS}}[\left\langle _, _, _ \right\rangle^{\mathsf{NP}}] \\ \textit{ask}_1: _{\mathsf{SUBJ}} \langle _, x_0, _ \rangle; _{\mathsf{COMPS}}[\left\langle _, _, x_0 \right\rangle^{\mathsf{VP}_{to}}] \\ \textit{ask}_2: _{\mathsf{SUBJ}} \langle _, x_0, _ \rangle; _{\mathsf{COMPS}}[\left\langle _, x_1, _ \right\rangle^{\mathsf{NP}}, \left\langle _, _, x_1 \right\rangle^{\mathsf{VP}_{to}}] \end{aligned}$$

