
R
ob

er
t G

ai
za

us
ka

s 
(e

di
to

r)
 1

99
8:

 J
ou

rn
al

 o
f C

om
pu

te
r 

S
pe

ec
h 

an
d 

La
ng

ua
ge

 #
 1

2 
(4

).
 S

pe
ci

al
 Is

su
e 

on
 E

va
lu

at
io

n

Towards Systematic Grammar Pro�ling

Test Suite Technology Ten Years After

�

Stephan Oepen Daniel P. Flickinger

Saarbr�ucken University CSLI Stanford

Postfach 151140 Ventura Hall

66041 Saarbr�ucken (Germany) Stanford, CA 94305 (USA)

oe@coli.uni-sb.de dan@csli.stanford.edu

Abstract

An experiment with recent test suite and gram-

mar (engineering) resources is outlined: a crit-

ical assessment of the EU-funded tsnlp (Test

Suites for Natural Language Processing) package

as a diagnostic and benchmarking facility for a

distributed (multi-site) large-scale hpsg grammar

engineering e�ort. This paper argues for a gen-

eralized, systematic, and fully automated testing

and diagnosis facility as an integral part of the

linguistic engineering cycle and gives a practical

assessment of existing resources; both a exible

methodology and tools for competence and per-

formance pro�ling are presented. By compari-

son to earlier evaluation work as reected in the

Hewlett-Packard test suite data, released exactly

ten years before tsnlp, it is judged where test-

suite-based evaluation has improved (and where

not) over time.

1 Motivation

[...] the study and optimisation of

uni�cation-based parsing must rely on empir-

ical data until complexity theory can more

accurately predict the practical behaviour of

such parsers. [...] It seems likely that imple-

mentational decisions and optimisations based

on subtle properties of speci�c grammars can

[...] be more important than worst-case com-

plexity. [Carroll (1994)]

Contemporary lexicalized constraint-based

grammars (e.g. within the hpsg framework) with

wide grammatical and lexical coverage exhibit im-

mense conceptual and computational complexity;

as the grammatical framework aims to eliminate

redundancy and factor out generalizations, the in-

teraction of lexicon and phrase structure apparatus

can be subtle and make it hard to predict how even

modest changes to the grammar a�ect system be-

haviour. Additionally, in a distributed grammar

engineering setup (i.e. for a project where several

�

Part of the research reported presently was

funded by the German National Science Founda-

tion (DFG) within the Special Research Divison 378

(Resource-Adaptive Cognitive Processes) project B4

(perform) and by the German Federal Ministry of Ed-

ucation, Science, Research, and Technology (BMBF)

in the framework of the VerbMobil project under grant

FKZ:01IV7024.

people or even sites contribute to a single gram-

matical resource) it becomes necessary to assess

the impact of individual contributions, regularly

evaluate the quality of the overall grammar, and

compare it to previous versions.

Besides concise coverage (i.e. competence) judg-

ments, in most application scenarios e�ciency and

resource consumption play an increasingly impor-

tant role; hence, processing components typically

provide a (potentially) large inventory of control

parameters and preference settings. When tuning

the analysis component to improve system perfor-

mance, grammar writers often rely on introspec-

tion, knowledge of the grammar, and personal ex-

perience; yet, without systematic pro�ling and per-

formance analysis, processor optimization amounts

to guessing parameter settings and constant ex-

perimentation. In general, given the similarity in

setup (parsing with large-scale uni�cation gram-

mars), it is to be expected that the observations

of Carroll (1994) (see above) hold for hpsg-type

systems too.

2 Background: Test Suites in the Context

of Multi-Site Grammar Engineering

Despite the growing variety of approaches to NLP,

the development of computational grammars still

is a prerequisite for NLP systems that rely on (or at

least incorporate) what is often called deep (or full)

linguistic analysis. To allow developers to achieve

the grammatical coverage required for most real-

istic application contexts, substantial investments

into grammar engineering methodology and tools

have been made; hence, for most of the contem-

porary grammatical frameworks in computational

linguistics, there is a (sometimes large) number of

development environments to choose from.

At the same time, the improved methodology

and strict formalization, declarativity, and modu-

larity of grammatical resources facilitate the dis-

tribution of development across several grammar

writers and sometimes even sites. While in the

past (e.g. for purely rule-based systems) grammars

often were developed and maintained by a sin-

gle person over years or decades and ultimately

connected in life cycle to that one developer (see

Erbach and Uszkoreit (1990)), it is now more fre-



quently possible to view parts of a grammatical re-

source as (mostly) independent modules that can

be engineered by separate people. This, obviously,

not only holds the potential to shorten develop-

ment time but at the same time can greatly add to

the transparency and reusability of the resulting

resource.

Yet, it seems, comparatively little e�ort has been

put into systematic, let alone comparable, diagnos-

tic and pro�ling technology, such that the practical

evaluation of processors (for analysis as for gener-

ation components) remains an open issue. And

although the paradigm shift in grammar develop-

ment outlined above creates a number of both the-

oretical and practical challenges for quality assess-

ment, most grammar writing initiatives lack ap-

propriate methodology, test data, and tools to in-

tegrate regular, systematic, and in-depth pro�ling

of both grammatical competence and system per-

formance into the engineering cycle.

While corpus-driven e�orts along the parse-

val lines (see Black et al. (1991)) typically fo-

cus on quantitative system comparison and at

best give a coarse-grained analysis of system

performance, test suites (i.e. systematic collec-

tions of arti�cially constructed and manually

annotated reference data) have long been ac-

knowledged as suitable for �ne-grained diagnosis,

progress evaluation and benchmarking (see e.g.

Flickinger et al. (1987), Nerbonne et al. (1993),

and Sparck Jones and Galliers (1995)), most of

the available data sets follow the traditional design

as at text �les listing test sentences annotated

with, if at all, grammaticality judgements plus,

in some cases, informal section headings grouping

sets of sentences according to linguistic phenomena

(or sometimes application-speci�c criteria). Lack-

ing internal structure and annotations, these test

suites do not allow developers to (automatically)

classify, present, and interprete evaluation results

from various perspectives, which, it is argued, is

a crucial property of systematic competence and

performance pro�ling.

The following introductory sections (i) outline

an ongoing e�ort on distributed, multi-site hpsg

grammar engineering with (ii) its speci�c desider-

ata for quality assessment and (iii) summarize

a novel test suite package that recently became

publicly available from the tsnlp project. Sec-

tion 3 then reports on a wealth of empirical results

(in considerable detail) gained from experimenting

with the tsnlp package in a practical evaluation

environment over a period of about one year. From

this perspective section 4 can be seen as a con-

trol experiment that relates the experiences with

tsnlp to those obtained from adapting the test

data of the ten-year-old Hewlett-Packard (hp) test

suite (which had inuenced the tsnlp developers

in many respects). As technology building was an

important aspect within the tsnlp project, sec-

tion 5 gives a critical assessment of the quality of

the tools available and, thus, leads into a conclud-

ing discussion that summarizes a number of recom-

mendations to both test suite developers and users

building on the experiences reported here.

2.1 The erg Distributed Grammar

Development E�ort

The English Resource Grammar (erg) project

is a consortium of research groups

1

working within

the hpsg (Pollard and Sag (1994)) framework;

the consortium was initiated and is coordinated at

CSLI Stanford.

Research and implementation both at CSLI and

at collaborating sites include work on morphol-

ogy, lexicon, syntax, and semantics, along with

the necessary processing and analysis tools needed

in large-scale grammar engineering. The ultimate

goal of the consortium is to produce a multi-

purpose broad-coverage, precise, and reusable com-

putational grammar of English and to enable the

exchange of NL software development tools and

implementations of English grammar fragments,

thereby enhancing the e�ectiveness of each group

in doing its own focused research. Most of the de-

velopment is carried out within the page (Plat-

form for Advanced Grammar Engineering)

2

en-

vironment but some consortium members pursue

work on proprietary software systems in parallel.

As the actual grammar development is (at least

in part) distributed among several sites, the project

has established the following integration strategy:

� new versions of the erg grammar are released

(at least) twice a year;

� throughout a six-month development period con-

sortiummembers submit contributions to the co-

ordinator;

� acting as a benevolent csar, the coordinator ap-

proves and incorporates changes;

� the decisions made by the coordinator are re-

viewed by an advisory board of member institu-

tions;

1

See `http://hpsg.stanford.edu/' for details, on-

line access to the current system, and an up-to-date

list of consortium members.

2

The page system developed and maintained at the

German National Research Center for Arti�cial Intelli-

gence (DFKI GmbH) is an advanced NLP core engine

that especially facilitates the development of grammat-

ical resources building on typed feature logics (e.g. for

hpsg-style frameworks).

page comprises a fair number of various (and often

independent) modules and linguistic resources that al-

low for a exible con�guration according to di�erent

user requirements (see Uszkoreit et al. (1994) for de-

tails), of which primarily the uni�er, type system, and

parser play a role in the pro�ling experiments discussed

presently.



� a new grammar release is issued by the coordi-

nator.

For its �rst two years working on the erg gram-

mar, the consortium has mostly carried through

the methodology and release schedule as expected;

yet, the bulk of development and integration still

resides with the coordinator.

2.2 erg Evaluation Requirements

Obviously, in the evaluation of contributions and

the preparation of new releases a well-de�ned qual-

ity metric is required, to allow both the contribu-

tors and the coordinator to (i) assess individual

contributions and (ii) judge how changes to mod-

ules interact with the grammar as a whole; here,

the three most relevant dimensions in evaluation

are (i) grammatical coverage, (ii) overgeneration

(or accuracy) of analyses

3

, and (iii) system (i.e.

primarily analysis) performance.

A coarse-grained three-level evaluation along

those dimensions, however, is clearly insu�cient

for the erg contributors and especially the coordi-

nator in working towards a new grammar release.

Instead, in both overall progress evaluation and

�ner-grained diagnostics developers need a large

degree of exibility to view and analyze evaluation

results from various perspectives. In general, eval-

uators want to classify (aggregate) and summarize

data into meaningful subsets (which may or may

not correspond to what is taken to mean a mod-

ule in the underlying grammar) and thus exibly

adjust the granularity in evaluation to their actual

needs.

In contrast, traditional test suite approaches

(like the still widely used hp test suite that will

be taken as a reference point for comparison

presently) typically only foresaw either the inspec-

tion of processing results on an individual (per

item) level or the production of overall (average)

results for a full test suite run. Without further

information (i.e. linguistic or extra-linguistic dis-

tinctions) explicitly represented in the test suite,

this restriction is impossible to overcome.

A �nal observation that, again, suggests a more

eloborate evaluation setup is that in any typical

NLP development context the engineering environ-

ment and processing components will change si-

multaneously to the grammar writing. Thus, not

only will changes to the grammar itself potentially

have a strong impact on system performance, but

so too will changes made to system parameters or

the actual software (e.g. a new version of the gram-

mar development platform released by the external

3

In information extraction terminology, the cover-

age and overgeneration dimensions correspond to the

familiar recall vs. precision distinction. For the present

discussion, both are often subsumed under the term

grammatical competence and contrasted with the third

dimension: system performance.

developer). Progress evaluation in such a setup is

of an inherently iterative nature and has to control

for numerous, often orthogonal, parameters.

2.3 tsnlp | Test Suites for Natural

Language Processing

Recently, the Test Suites for Natural Language

Processing (tsnlp)

4

project has delivered a multi-

purpose and multi-language test suite package ad-

dressing the increasing demand in the NLP com-

munity (among developers and users alike) for ref-

erence data to evaluate various types of language

technology applications.

The project produced the methodology and tech-

nology for the development and application of sys-

tematic test suites (see Lehmann et al. (1996b)

and Oepen et al. (1997)). Substantial test suites

of some 4500 items each were built for English,

French, and German covering central syntactic

phenomena. Test items are annotated using a rich

annotation schema that is designed to be mostly

neutral to linguistic theories and speci�c types of

applications.

In comparison to �rst generation (or traditional)

test suites, the tsnlp approach is novel in that the

concept of a test suite as a monolithic set of test

items has been abandoned in favour of a notion

of a complex and highly structured test suite; the

tsnlp test suites are implemented as a database in

which test items are stored together with a rich in-

ventory of associated linguistic and non-linguistic

annotations. Thus, the test suite database serves

as a virtual (or meta) test suite that provides

the means to extract the relevant subset of the

test data suitable for a speci�c task. Since the

database concept allows the storage of application-

speci�c coverage and performance measures as a

precise and contiguous record of how various sys-

tem and grammar versions (at various times) per-

form, it easily facilitates progress evaluation, re-

gression testing, and comparative report genera-

tion.

3 A Case Study: tsnlp and erg

From this brief summary of the tsnlp test suite

package it already follows that in its design it

should have the potential to address most, if not

all, of the evaluation requirements in the erg |

and any similar | (distributed) grammar engineer-

ing setup. However, as tsnlp was designed as a

multi-purpose tool (i.e. useful in di�erent evalua-

tion scenarios with di�erent application types), it

seemed interesting to evaluate its adequacy accord-

ing to the speci�c needs found in this one particular

environment. Only if the test data and tools prove

exible and (easily) adaptable, can the approach

4

Most of the project results and informa-

tion on the consortium can be obtained from

`http://tsnlp.dfki.uni-sb.de/tsnlp/'.



aiming for general, reusable test suite packages be

fully validated.

3.1 Setup: Connecting tsnlp to the page

Grammar Development System

To take full advantage of the tsnlp virtual test

suite concept and to allow for regular and exi-

ble pro�ling and experimentation, the test suite

database (tsdb) has been seamlessly integrated into

the page system; through a bidirectional interface

the development platform is given full access to

tsdb, thus enabling it to retrieve and store arbi-

trary data. For storing application- or user-speci�c

data, the tsnlp data model foresees what is called

a user & application pro�le, i.e. the ability to add

new relations to the database in order to accom-

modate, for instance, additional annotations, spec-

i�cations of expected output, and any number of

result and performance metrics that the applica-

tion wants recorded (see below for details).

The close coupling of the grammar engineering

system and test suite apparatus adds (among oth-

ers) the following functionality to page:

(i) interactive retrieval and browsing of tsnlp test

items using a simpli�ed SQL-type query lan-

guage;

(ii) listing of test suite vocabulary (and frequency of

occurrence), expansion of necessary lexicon en-

tries, and checking for missing items;

(iii) selection of (a subset of the available) test data,

fail-tolerant batch processing, and storage of

performance measures (�gure 1 gives an excerpt

from the resulting log); and

(iv) report generation summarizing grammar cover-

age and system performance in (simple) descrip-

tive statistics (all �gures used in this paper were

automatically generated from this machinery).

While batch processing a selection from the test

data, a large number of system-speci�c perfor-

mance parameters are recorded in the database (as-

sociated with the respective test item and current

test suite run); besides those shown in �gure 1,

these include: the total and per reading numbers

of succeeding, failed, and �ltered parser tasks (see

section 3.5), and the time used, resulting feature

structure size, derivation (tree), and semantic for-

mula for each reading obtained.

Thus, the database not only serves as a data pool

for various exible views (report generation and

statistical analysis) on the results obtained from a

single test suite run, but just as well as a contiguous

history of system development that, at any time,

allows the assessment of previous competence and

performance including comparative progress eval-

uation.

Regarding test suite vocabulary, the erg lexicon

was extended to incorporate the necessary lexical

material used in tsnlp (some 580 word forms).

Given the strict limitation in lexical variation in

the test suite and the overall glass box evalua-

tion scenario, it turned out simpler to adapt the

application (i.e. the erg lexicon) rather than the

test suite because (i) tsnlp provides no support

for automated lexical replacement to customize the

test data (and customization in general remains an

open problem) and (ii) the erg consortium aims

for a small but representative core lexicon anyway,

to distribute it as part of the grammar (while larger

lexicons developed at individual sites can in prin-

ciple preserve a proprietary status). In identifying

and adding missing lexical entries, the tsdb to page

integration already proved useful, in that it allowed

the grammar writer to extract the necessary vo-

cabulary from the test suite, feed it word by word

through morphological and lexical processing, and

obtain a list of lexical gaps.

Some of the phenomena in the tsnlp test suite

(see below), however, inherently make reference

to lexical properties: testing complementation pat-

terns, for example, in an hpsg-type setup mostly

amounts to testing the lexicon. And although the

distinction between lexical and non-lexical compe-

tence in the grammar is somewhat blurred, the pri-

mary use of the tsnlp test suites is not seen in

evaluating lexical coverage; thus, especially when

adding lexicon entries for verbal complementa-

tion patterns (the tsnlp C Complementation phe-

nomenon), the grammar writers were allowed to

inspect full test items (i.e. the context in which a

particular word form occurs) to determine which

usage of some verb was actually intended. Aim-

ing for in-depth diagnosis and progress evaluation

of how grammatical competence and system per-

formance evolve rather than a competitive com-

parison among several applications, this approach

seems to have no negative impact on the results

obtained.

3.2 Grammatical Coverage

The linguistic coverage of a grammar is de-

scribed within the tsnlp framework in terms of

classes of phenenomena, with a top-level division

into ten or so broad categories which can be further

re�ned to arbitrary levels of precision. While the

classes chosen do not of course exhaustively cover

the range of important phenomena for a language,

they will serve well enough for this study, to illus-

trate how a grammar developer can extract use-

ful generalizations about the current state of the

grammar from test data that facilitates the anal-

ysis in various degrees of granularity. In Figure 2

the ten categories chosen for the English tsnlp

test items are shown with data from a run of the

erg grammar in October 1997, and include results



'

&

$

%

(22290101) `She arranges with him to work .' [0] --- 1 (2.0|0.4:1.7 s) <24:223> (11.8M) [0].

(22290102) `He is arranged with to work .' [0] (1 gc);

(22290102) `He is arranged with to work .' =[0] --- (4.0:1.0|3.5 s) <47:306> (17.2M) [=1].

(22290103) `He is arranged with by her to work .' [0] --- (5.5:1.0|4.7 s) <52:485> (27.0M) [0].

(22290104) `*To work is arranged with him .' [0] --- (4.2:0.7|3.7 s) <47:336> (19.9M) [0].

(22290105) `*To work is arranged with him by him .' [0] --- (13.0:6.5|12.2 s) <51:596> (36.7M) [0].

(22290106) `*It is arranged with him to work .' [0] --- 7 (6.7:0.9|0.9:5.9 s) <49:627> (36.4M) [0].

(22290107) `It is arranged with him by him to work .' [0] --- 15 (23.8:12.6|1.0:20.6 s) <53:1199> (70.5M) [0].

(22300101) `He considers him a competitor .' [0] --- 1 (0.6|0.1:0.4 s) <9:82> (4.3M) [0].

(22300102) `He is considered a competitor .' [0] --- 1 (2.5|0.8:2.0 s) <32:257> (14.8M) [0].

(22300103) `He is considered a competitor by him .' [0] --- 3 (5.7|1.4:5.2 s) <36:559> (32.7M) [0].

(22300104) `*A competitor is him considered .' [0] --- (1.5|1.1 s) <32:178> (10.3M) [0].

(22300105) `*A competitor is him considered by him .' [0] (1 gc);

(22300105) `*A competitor is him considered by him .' =[0] --- (4.0:0.9|3.5 s) <36:334> (20.4M) [=1].

(22310101) `He considers him as a competitor .' [0] --- 3 (1.3|0.2:1.0 s) <13:174> (9.0M) [0].

(22310102) `He is considered as a competitor .' [0] --- 4 (5.5:1.2|0.5:5.0 s) <36:461> (26.7M) [0].

(22310103) `He is considered as a competitor by him .' [0] (1 gc);

(22310103) `He is considered as a competitor by him .' =[0] --- 14 (16.9:2.8|0.8:14.7 s) <40:1436> (84.9M) [=1].

(22320104) `*Good is found the building .' [0] --- (1.7|1.3 s) <32:152> (9.1M) [0].

(22320105) `*Good is found the building by him .' [0] --- (6.9:3.7|6.0 s) <36:280> (17.2M) [0].

Figure 1: Snapshot from batch processing tsnlp test items. The log format aims to give a compact summary of

some of the information gathered; besides the input string and an upper limit for chart edges (given in square

brackets if available) the information following the triple dash is: the number of readings obtained, the time used to

�nd the �rst reading and overall (exhaustive search) processing time (in parentheses) the number of lexical items

involved and total number of edges in the chart (angle brackets), the amount of memory used, and the number of

(global) garbage collections while parsing (square brackets); a leading `=' sign indicates that the garbage collector

was explicitly called before parsing this item which can either be triggered when reparsing an item because of a

prior garbage collection during the parse process or by an explicit speci�cation in the database.

total positive word lexical parser total overall

Phenomenon items items string items analyses results coverage

] ] � � � ] %

S Types 175 75 4.55 20.65 1.24 72 96.0

C Agreement 123 68 4.79 14.94 3.28 54 79.4

C Complementation 1011 148 5.07 15.41 2.44 124 83.8

C Diathesis-Active 57 54 5.17 16.33 2.09 44 81.5

C Diathesis-Passive 220 99 7.00 33.67 4.47 53 53.5

C Tense-Aspect-Modality 196 157 4.51 21.14 1.53 133 84.7

C Negation 418 289 5.23 27.63 4.64 224 77.5

NP Agreement 1196 201 2.51 5.12 1.11 118 58.7

NP Modi�cation 782 300 6.28 14.06 1.40 244 81.3

NP Coordination 333 147 4.32 9.63 2.92 109 74.1

Total 4511 1538 4.96 17.57 2.49 1175 76.4

Figure 2: erg Coverage Pro�le as of oct-97. Columns are (from left to right): tsnlp phenomenon name, total

number of test items, number of grammatical test items, average test item length, average number of lexical

entries per test item, average number of readings per test item, total number of test items successfully parsed,

percentage of grammatical items parsed. Comparing columns 4 and 5 provides a measure of lexical ambiguity,

while column 6 indicates syntactic ambiguity. For example, passive test items exhibit signi�cant lexical ambiguity

because of multiple lexical entries for the copula and the passive participle; the latter also contributes to the

higher measure of syntactic ambiguity for passives.



on examples testing sentence types, several clausal

properties including agreement, verb complemen-

tation, some diathesis, tense and aspect, and nega-

tion, as well as some NP-internal properties includ-

ing agreement, modi�cation, and coordination (see

Lehmann et al. (1996a) for a precise account of

the phenomena classi�cation used in tsnlp).

The test results summarized in Figure 2 show,

for each phenomenon type, the total number of test

items available, the number of grammatical items,

the average number of words in each example, the

average number of lexical items retrieved, the av-

erage number of distinct analyses obtained, the

total number of grammatical examples that were

successfully parsed, and the percentage of gram-

matical examples parsed. The criteria for deciding

that a parse was successful can of course be com-

plex, but for this table we merely record whether

or not at least one parse was found for the given

item. More informative metrics might record the

correctness of labeled bracketings or the semantic

representations computed, but these require more

detailed annotations that are not yet available for

the full suite. The lack of these annotations can

quickly give rise to misleading results in a sum-

mary like that in Figure 2; for example, a grammar

might completely lack an analysis of passives with

a by-phrase, yet still provide a successful parse for

such examples by treating the by-phrase as a sim-

ple locative. Such a lack of coverage might be visi-

ble in the record of the average number of analyses

found, but will not be reected in the percentage

score for overall coverage at present. A more �ne-

grained classi�cation of phenomena would also help

to reveal that the relatively lower score on coverage

of passives is due in large part to two inadequacies

in the current grammar: a lack of an analysis im-

plemented for pseudopassives, and an overly �xed

ordering constraint on optional by-phrases relative

to modi�er phrases within the VP; besides, some

of the valency frames used in constructing passive

examples are (still) missing from the erg lexicon

(see below).

More generally, even though the test items were

designed with the intention of excluding the pres-

ence of irrelevant analyses, this is di�cult to guar-

antee for a wide-coverage grammar, and indeed

many of the test items do admit of what are

clearly unanticipated analyses. Obviously, an it-

erative process of re�nement of the test suite is

desired, where the grammar developer discovers

test items that show unintended ambiguity, and

replaces those with more carefully chosen exam-

ples. An alternative approach would be to anno-

tate the overly ambiguous examples as they are

identi�ed, marking certain analyses as irrelevant.

Some systematic unwanted analyses might also be

eliminated by imposing phenomena-wide restric-

tions, such as an injunction that for the comple-

mentation and diathesis examples, all PPs are to

be taken only as complements, thus eliminating the

unwanted analysis of passive by-phrases as modi-

�ers for those test items.

In general, the ability to break down a com-

plete test run into smaller units, e.g. subsets of

the test items corresponding to the tsnlp phenom-

ena classi�cation (or other aggregation schemes),

often allowed the developers to spot unexpected

behaviour within one class and then use the test

suite database for further inspection of smaller ag-

gregates or individual test items.

3.3 Overgeneration

The converse of measuring successful analyses

for grammatical examples is to gather metrics on

overgeneration, where the parser is not restrictive

enough to exclude true ungrammatical examples.

Here again, a rough measure of the lack of precision

can be computed simply by seeing what percentage

of the ungrammatical test items are assigned at

least one successful analysis.

Like the metrics for positive examples, however,

this kind of measure can be misleading, since it

obscures several sources of confusion. First, as we

saw with the grammatical examples above, it is

di�cult for the test suite developer to ensure that

the ungrammatical item will not receive some kind

of parse from the system, suggesting again that an

iterative tuning process for the test suite itself will

be a necessary part of the regular use of such tech-

nology in grammar development. A second source

of confusion in measuring overgeneration with the

coarse classi�cations we have adopted here comes

from the lack of a notion of prerequisite proper-

ties in the test item speci�cations. For example,

the numbers in Figure 3 show that in the October

1997 version of the erg grammar, negation scores

very well in not allowing any overgeneration at all,

but an examination of the relevant items shows

that the ungrammatical ones all test just one sin-

gle property: the not must not appear before the

�nite verb that it negates. A similar kind of con-

fusion reected in the numbers in Figure 3 sup-

ports the idea that prerequisite properties should

be identi�ed for each test item, so the classi�ca-

tion of a failure can be correctly assigned to the

right phenomena. For example, NP Modi�cation

in Figure 3 shows massive overgeneration by the

grammar, but a look at the individual test items

shows that almost all of the 400 or so ungrammat-

ical examples are admitted by the grammar due to

a single aw: the relative pronouns who and that

are wrongly allowed to appear in pied piping rel-

ative clauses as in `the road on that she traveled.'

(in contrast to `the road that she traveled on.') If

these NP Modi�cation examples had been anno-

tated to require that lexical complementation prop-

erties must �rst be satisi�ed, then the failure of the



total negative word lexical parser total overall

Phenomenon items items string items analyses results coverage

] ] � � � ] %

S Types 175 95 4.75 18.17 1.22 49 51.6

C Agreement 123 50 4.42 14.06 2.43 7 14.0

C Complementation 1011 705 4.50 14.60 1.91 70 9.9

C Diathesis-Active 57 2 8.50 23.50 5.00 2 100.0

C Diathesis-Passive 220 111 6.59 33.86 2.83 18 16.2

C Tense-Aspect-Modality 196 38 4.08 21.21 5.25 28 73.7

C Negation 418 129 5.47 23.90 0.00 0 0.0

NP Agreement 1196 928 2.95 5.85 1.09 131 14.1

NP Modi�cation 782 482 6.51 14.68 1.66 412 85.5

NP Coordination 333 180 4.51 10.14 1.70 63 35.0

Total 4511 2720 4.46 12.77 1.73 780 28.7

Figure 3: erg Overgeneration Pro�le as of oct-97. The columns have the same meaning as in Figure 2 except

for the di�erence in the underlying selection from the tsnlp test data: column three gives the number of test

items marked as ungrammatical; hence, column eight is to be interpreted as coverage of illformed examples,

i.e. overgeneration. In general, the ungrammatical test items are somewhat shorter (because the derivation of

ungrammatical examples often builds on deletion of an obligatory element) and exhibit substantially less lexical

and structural ambiguity.

oct-96 oct-97

Phenomenon lexical parser in out lexical parser in out

� � % % � � % %

S Types 12.50 2.16 78.7 40.0 19.63 1.23 96.0 51.6

C Agreement 12.15 1.33 58.8 10.0 14.75 3.25 79.4 14.0

C Complementation 10.85 2.19 62.2 12.1 14.00 1.90 83.8 9.9

C Diathesis-Active 12.26 2.56 66.7 0.0 16.81 2.26 81.5 100.0

C Diathesis-Passive 24.21 2.87 25.3 8.1 33.57 4.14 53.5 16.2

C Tense-Aspect-Modality 12.01 1.57 66.9 73.7 21.11 2.17 84.7 73.7

C Negation 17.90 2.12 74.7 0.0 26.48 4.64 77.5 0.0

NP Agreement 4.48 1.06 47.8 14.8 5.84 1.09 58.7 14.1

NP Modi�cation 12.63 1.58 75.7 82.0 14.44 1.56 81.3 85.5

NP Coordination 6.63 1.72 74.1 15.0 9.90 2.49 74.1 35.0

Total 10.63 1.75 65.3 26.6 14.31 2.15 76.4 28.7

Figure 4: erg Competence Progress Pro�le comparing oct-96 to oct-97. The contrastive view summarizes

key characteristics from both the coverage and overgeneration pro�les, thus facilitating a comparison among two

evolution stages; the `in' and `out ' columns indicate coverage and overgeneration, respectively.



grammar to block who and that as complements of

prepositions could have been identi�ed �rst, and

the grammar developer would have been led more

directly to the source of the trouble.

This example of NP Modi�cation shows up a

third kind of confusion in the numbers in Fig-

ure 3, one that comes from the lack of a balance in

the raw numbers of examples illustrating each phe-

nomenon. Since the overall coverage percentage is

computed in terms of raw numbers of wrongly an-

alyzed ungrammatical examples, one might expect

that each variant of a given phenomenon would be

illustrated by a handful of examples, and then an-

other variant would be introduced. However, in

the tsnlp test suite, like in others, some partic-

ular phenomenon can get far more examples than

the next, partly because of necessary systematic

variation, partly simply because the test suite de-

veloper chose to richly illustrate the �rst but not

the second.

A fourth source of confusion in the overall cover-

age numbers can be more di�cult to correct, since

it arises from errors in the de�nitions of particu-

lar lexical entries. Since one of the design crite-

ria for the test suite was to keep the number of

lexical entries small, an error in any one of the

included entries can a�ect a large number of test

items across phenomena classes, obscuring the dis-

tinctions these classes attempt to draw. For ex-

ample, an error in the entry for an auxiliary verb

like did could lead to overgeneration for any exam-

ple using this word, but would be hard to detect

in test results at any granularity coarser than for

individual lexical entries. For the results reported

in Figure 3, one such lexical error is present, but

fortunately does manifest itself even in the coarse

classi�cation scheme used, since its distribution in

the test data is quite restricted, namely to the ex-

amples for C Tense-Aspect-Modality. For this phe-

nomenon class, the overgeneration percentage is

surprisingly high in Figure 3, but the inspection of

individual test items showed that the lexical entries

for negative contracted auxiliaries (such as won't)

contain an error in their morphology, leading to

multiple spurious analyses for each such test item.

In this case diagnosis of the problem was simpli-

�ed by the fortunate accident that these negative

contracted auxiliaries are not widely used for test

items in other phenomena classes.

3.4 Progress Evaluation

As errors are diagnosed and corrected, or as the

grammar is modi�ed to extend coverage to addi-

tional phenomena, the developer often needs to

see how a new instance of the grammar compares

to a previous version. This evaluation of progress

in grammar development is helped signi�cantly by

the ability to construct summary reports that con-

cisely contrast salient characteristics for the two

versions. One such view of progress is given in

Figure 4, showing how grammatical competence

changed over the course of one year with the erg

grammar with respect to the standard ten phenom-

ena and key metrics from both the coverage and

overgeneration pro�les.

Some useful inferences about the status of the

grammar can be drawn from even super�cial ex-

amination of the test data. For example, it is re-

assuring to see that the coverage of sentence types

improved while the average number of analyses for

these test items dropped. In contrast, while cov-

erage of sentence-level agreement also rose, so did

the average number of analyses, suggesting that

there may be a noticeable problem with overgen-

eration for these items in the October 1997 version

of the grammar (and indeed, overgeneration was

increased by a factor of 1:4).

An inspection of the two coverage (`in') columns

shows that, as one would hope, coverage has im-

proved for almost every phenomenon type, with

the exception of NP Coordination, which stayed

at (though a more detailed examination of the

test results for this phenomenon revealed that two

somewhat di�erent sets of items are admitted in

the two versions of the grammar, and accidentally

result in the same number of correct items). Fortu-

nately, while overgeneration also increased as cov-

erage grew, it did not increase very much, and in-

deed fell for some phenomena, su�ering severely

only for NP Coordination. Through the elimina-

tion of disjunctions from the grammar (see be-

low), the average number of lexical entries grew

markedly across the board, and while the aver-

age number of syntactic analyses also grew, the

table shows much more variation in analyses by

phenomenon.

Three of the phenomena which showed the

largest increase in lexical ambiguity (Diathesis-

Passive, Tense-Aspect-Modality, and Negation) all

feature auxiliary verbs, suggesting that other sys-

tematic errors may have been introduced in these

lexical entries (beyond the negative contraction

aw mentioned above), leading to spurious lexical

ambiguity. Here the classi�cation by phenomena

along only one dimension partially obscures what

may be a single source of error in the auxiliary

verb system; this illustrates the potential bene�t

to the developer of allowing multiple classi�cations

of phenomena for particular test items. On the

other hand, this comparison at the coarse-grained

level provides the developer with a reassuring brief

overview of system behavior at two time points,

and would quickly reveal any systematic errors cor-

responding to the chosen phenomena.

3.5 System Performance

While the tsnlp tools clearly hold the potential

for signi�cant bene�t to the grammar developer in



analyzing linguistic coverage, or competence pro-

�ling, they also enable the recording and analysis

of detailed performance characteristics of a parser

for a given grammar. As with competence proper-

ties, performance measures can be stored and re-

trieved at several levels of granularity, including

broad phenomena, particular test items, or indi-

vidual readings. These measures can include the

time required to compute a parse, the number of

parsing tasks attempted and completed, and the

space consumed during parsing or in the resulting

data structures.

Within the page development system, several

user-settable parameters are available for tuning

the performance of the parser and uni�er to the

particular properties of the grammar. Parame-

ters include the order of instantiation for daughters

in a rule, the relative priority of individual rules,

and even arbitrary properties of phrases such as

the number of words they span, as well as sim-

pli�cation steps to be taken after uni�cation of

feature structures. Since the interactions among

these parameters can be complex and even experi-

enced grammar engineers often �nd their intuitions

about the system behaviour incomplete, the devel-

oper must experiment with a variety of settings to

derive the best performance from the system. The

tsnlp tools enable the developer to approach the

tuning task systematically, maintaining a rich, ac-

curate record of past experimental results, in a uni-

form representation that allows performance prop-

erties to be associated with linguistic phenomena

of varied granularity.

To take a familiar example in processing head-

driven grammars, one can derive signi�cant e�-

ciency bene�ts by choosing the order in which the

daughters in each rule are picked up: although ex-

perimenting with distinct rule expansion strategies

con�rmed the (rather obvious) prediction that an

hpsg grammar will bene�t in parsing from a head-

�rst strategy, it also pointed the developer to a

�ner-grained tuning process where some particu-

lar rule schemata actually do better with an id-

iosyncratic ordering. When the data are studied

on a rule-by-rule level (again taking advantage of

the granularity variation supplied by the pro�ling

machinery), they suggest, for example, that of the

three speci�c �ller-head schemata in the grammar,

the two for WH and relative clauses reduce the av-

erage number of parser tasks if the nonhead (the

�ller) is picked up �rst, in contrast to the declara-

tive variant, for ordinary topicalization. What the

integrated pro�ling mechanism provides is a means

to determine for a non-trivial grammar which lex-

ical heads in which constructions should be picked

up �rst in order to minimize processing costs.

Another longer-term experiment took advantage

of the modular design of the page environment and

the fact that the erg grammar does not deploy the

full expressivity of the page formalism. As | for

both theoretical and practical reasons | the gram-

mar makes no recourse to disjunctive or negated

constraints, it allowed the erg coordinator to sub-

stitute a simpli�ed and optimized uni�er in place

of the standard page uni�cation engine.

While implementing and tuning the lightweight

uni�er and its interface to the type system and

parser, the precise measurement of the resulting

decrease in both space and time usage across rule

and phenemona types allowed the identi�cation of

initial bugs in the algorithm | even though these

only showed up in rare circumstances | and it

also provided a detailed pro�le of which param-

eters have a strong impact on uni�cation costs.

Thus both competence and performance properties

of the experimental module could be derived, pro-

viding guidance to ensure correctness of the algo-

rithm, and presenting further targets for improved

e�ciency.

Figure 5 summarizes an intermediate stage of

system optimization (as of October 1997) com-

pared to an earlier version of the erg grammar and

page software. Aggregating test items by string

length demonstrates that input size has an obvious

e�ect on processing costs (as is to be expected). Ig-

noring the relatively sparse populated class of test

items with more than nine words for a moment, it

seems to be the case that the speedup in process-

ing time and reduction of memory usage manifests

itself relatively uniformly across the classes; espe-

cially when normalized with respect to the increase

in parser tasks (i.e. looking at the average time per

parser action by crediting column nine to column

ten), all four classes in fact show a time reduction

between 75 and 83 %.

Yet, the classi�cation by item length is primarily

chosen to allow the comparison to a random sample

of 96 sentences drawn from the English VerbMobil

5

corpus, a collection of task-oriented appointment

scheduling dialogues. In general, there is an open

question about whether performance metrics ob-

tained on test suite data | which was arti�cially

constructed to reduce ambiguity and phenomena

interaction | can at all be meaningful for appli-

cation pro�ling and optimization; obviously, some

of the challenges in real-world (e.g. corpus) data

are eliminated in a well-designed test suite. The

pro�ling machinery discussed in section 3.1, how-

ever, is not restricted to the tsnlp (or hp) test

data. For VerbMobil grammar development, for in-

stance, the same engine is used to store and process

application-speci�c corpora such that both types of

data are available from a uniform source and can

5

VerbMobil is a large-scale research project on spo-

ken dialogue machine translation funded by the Ger-

man national government. Some of the erg grammar

engineering at CSLI is carried out within the VerbMo-

bil context.



total oct-96 oct-97 reduction

Aggregate items tasks time space tasks time space tasks time space

] � � (s) � (kb) � � (s) � (kb) % % %

9 � length � 12 80 1553 6.5 34872 4832 5.2 25522 -211.1 19.9 26.8

6 � length < 9 1343 1098 5.8 27331 1599 1.5 8837 -45.6 74.2 67.7

3 � length < 6 2849 467 2.1 14196 671 0.6 4027 -43.7 73.6 71.6

0 � length < 3 239 131 0.4 5235 162 0.1 988 -23.7 72.8 81.1

Total 4511 653 3.2 17932 999 0.9 5705 -53.0 71.5 68.2

Corpus 96 1684 32.8 68629 3885 8.4 24373 -130.7 74.5 64.5

Figure 5: erg Performance Progress Pro�le comparing oct-96 to oct-97. tsnlp test items are aggregated

into four classes (by string length) that directly correlate with the number of parser tasks, average processing

time, and memory usage. All classes demonstrate a signi�cant reduction in time and space resource consumption

(by about a factor of four) even though by (i) extending coverage between the two grammar releases and (ii)

eliminating disjunctive constraints lexical and structural ambiguity (reected in the number of parser tasks here)

were substantially increased. The bottom line relates the performance comparison for the arti�cially constructed

test items to results obtained for a random sample of 96 sentences from the VerbMobil corpus (average sentence

length: 8.4 words); although for the corpus data processing costs are in general higher because of more ambiguity,

it is reassuring that the proportions in columns nine to eleven are mostly comparable.

total positive word lexical parser total overall

Phenomenon items items string items analyses results coverage

] ] � � � ] %

S Types 235 179 6.83 24.15 2.91 118 65.9

C Agreement 68 49 6.00 16.92 1.95 41 83.7

C Complementation 179 108 5.46 16.78 2.46 99 91.7

C Diathesis-Passive 35 27 6.63 26.78 5.50 24 88.9

C Tense-Aspect-Modality 83 79 5.39 18.49 3.47 66 83.5

C Negation 58 44 5.23 16.32 2.63 41 93.2

C Coordination 79 57 8.33 23.84 5.42 43 75.4

C Modi�cation 174 121 7.14 21.39 2.65 80 66.1

NP Agreement 46 37 4.86 17.03 2.48 31 83.8

NP Modi�cation 83 71 7.08 20.35 3.05 56 78.9

NP Coordination 55 26 5.38 12.58 4.74 23 88.5

Total 1095 798 6.40 20.32 3.12 622 77.9

Figure 6: erg Coverage Pro�les (on hp test suite) as of oct-97; see Figure 2 for comparison.

total negative word lexical parser total overall

Phenomenon items items string items analyses results coverage

] ] � � � ] %

S Types 235 56 7.11 25.25 2.50 8 14.3

C Agreement 68 19 3.42 8.63 1.18 11 57.9

C Complementation 179 71 5.52 16.87 3.00 18 25.4

C Diathesis-Passive 35 8 7.37 29.62 2.00 4 50.0

C Tense-Aspect-Modality 83 4 6.50 21.00 4.75 4 100.0

C Negation 58 14 4.71 11.00 0.00 0 0.0

C Coordination 79 22 8.05 23.18 4.57 7 31.8

C Modi�cation 174 53 6.51 20.96 3.89 19 35.8

NP Agreement 46 9 4.22 14.89 1.75 4 44.4

NP Modi�cation 83 12 7.92 21.58 1.00 1 8.3

NP Coordination 55 29 4.90 11.31 3.15 20 69.0

Total 1095 297 6.07 18.83 3.03 96 32.3

Figure 7: erg Overgeneration Pro�les (on hp test suite) as of oct-97; see Figure 3 for comparison.



deploy similar report generation techniques.

Going back to Figure 5, the comparison between

the averages for the tsnlp data and the VerbMo-

bil results reveals that indeed processing costs are

in general much higher for the corpus sentences;

thus, the test suite results cannot be taken as a di-

rect predictor on analysis complexity relative to the

input string length. Still, the VerbMobil data indi-

cate a very similar overall time and space reduction

as the corresponding class (six to nine words) in the

tsnlp test suite; besides providing reassurance to

the developers, it is demonstrated that the test-

ing and optimization of the new lightweight uni�er

(and other modules) can often rely on comparative

pro�ling using the arti�cally constructed data. Af-

ter all, parsing the test suite data is much faster

and cheaper than for most corpus sentences. Gen-

erally speaking, it is not at all clear where perfor-

mance pro�les obtained from test suites can be rep-

resentative for a speci�c application and domain

and where not. And while many of the metrics pre-

sented earlier should allow the developer to make

an informed prediction about in which respects a

particular (new) data sample and the available ref-

erence data di�er and what e�ect there should be

on system behaviour, clearly this area requires fur-

ther investigation.

4 Comparing tsnlp to the hp Test Suite

Though the tsnlp test suite developers derived

some design ideas and some test items from the hp

test suite released in 1987, they pursued a more rig-

orous methodology in the construction of the data

set, which should be visible in a comparison of the

same erg grammar against both suites (serving as

a control experiment for the practical results re-

ported earlier). For this purpose the hp test data

was imported into the tsnlp test suite database

and augmented with the minimal annotations re-

quired for the comparison. Above all, these in-

cluded the classi�cation into top-level tsnlp phe-

nomena which was sometimes intricate because (i)

the hp developers when constructing the data had

assumed an underlying system that makes a num-

ber of grammar-speci�c distinctions and (ii) some

of the hp items present multiple phenomena in

(mostly unsystematic) combination, a state of af-

fairs that, though potentially very rewarding, was

deliberately excluded in the tsnlp data. Still,

about 90 % of the hp data set could be mean-

ingfully classi�ed and taken into account for the

comparison.

The data in Figures 6 and 7 summarizes the re-

sults of running the erg grammar against the hp

suite, and the list of phenomena is similar to that

for the tsnlp suite, but with passive as the only

example of diathesis alternations, and with the ad-

dition of two phenomena classes, for clause-level

coordination and modi�cation.

One quickly noticeable di�erence between the

tsnlp and the hp sets is that the length of the av-

erage test item in the tsnlp collection is less than

that of the hp examples, yet the average lexical

ambiguity per test item is nearly the same for the

two. Also obvious is the fact that there are propor-

tionately about �ve times as many ungrammatical

examples in the tsnlp suite as there are in the hp

one. Although this is a natural consequence of the

tsnlp methodology aiming for a systematic and

exhaustive derivation of negative (i.e. ill-formed)

test items, it will lead to a potential skewing of the

results on overgeneration.

Other less obvious di�erences between the two

suites which help to account for the variability in

numbers comparing Figures 2 and 6 and Figures 3

and 7, respectively, are the following:

� there are no examples of stand-alone NPs in the

hp test data;

� there are examples of sentence-level coordination

in the hp but not in tsnlp, which contributes

to longer average string length;

� there are no negative contractions in the hp suite

(which helps boost the overall coverage);

� the hp suite contains examples of adverbial mod-

i�cation;

� there is almost no diathesis in the hp suite; and

� much less care was taken with the hp suite in try-

ing to avoid unintended analyses for test items.

These signi�cant di�erences in coverage of phe-

nomena types and in methodology of construction

make the comparison of the two test suites more

di�cult, but it is still reassuring that the percent-

age of overall coverage is very nearly the same for

the two suites.

One striking di�erence between the two sets of

numbers is that there is slightly greater lexical am-

biguity in the tsnlp examples, in spite of a �rm

intent to minimize such ambiguity in the construc-

tion of test items. In contrast, another of the de-

sign goals of the tsnlp e�ort is vindicated by com-

parison: there is less structural ambiguity in the

tsnlp items than in the hp sentences which, in

fact, was among the inadequacies criticized more

frequently.

While the comparison of the numbers in the two

tables presents a strong parallelism of results for

the erg grammar, a more careful study of the

test items themselves reveals that the tsnlp design

presents the developer with the means to tune the

items so they provide more illuminating data about

the grammar being tested. More importantly, the



developer can exploit the rich annotation capabili-

ties provided in the tsnlp framework to dramati-

cally improve the precision of the successful analy-

sis notion for a given test item. Since unintended

ambiguity, both lexical and structural, continues

to be exhibited in both test suites built ten years

apart, it seems clear that this ability to provide an-

notations about what properties of an item should

be of interest will be crucial in making the test

suite results even more revealing to the grammar

developer.

5 Technological Assessment

Though it was not initially planned, the tsnlp

project has devoted some e�ort to software build-

ing for test suite construction, maintenance, and

application; among the main motives for including

a set of test suite tools into the tsnlp package were

that the consortium in an initial survey on pub-

licly available test suites had found that virtually

no specialized technology was available and, hence,

the reuse, adaptation, extension, and application of

existing test data is often severely hindered.

Judging from close to a full year of regular usage

of the evaluation machinery sketched earlier, the

most central tool from the tsnlp package, viz. the

test suite database tsdb, has been found highly ad-

equate in some ways and substantially limited in

others. Oepen et al. (1997) give the reasons for

implementing tsdb as a home-grown standalone re-

lational database with a simpli�ed query language

as (i) suitability, (ii) extensibility, (iii) portability,

and (iv) simplicity.

From the four desiderata, items (i), (iii) and (iv)

are mostly met: the database compiles on a va-

riety of platforms and is available in binary form

for the most common (Un�x) installations. Despite

the lack of complete, detailed, and up-to-date user-

level documentation, tsdb is easy to install and use;

the simpli�ed query language, though greatly re-

stricted in functionality compared to full SQL, en-

ables users to take advantage of the test suite struc-

ture and annotations without a full or even tech-

nical understanding of the underlying data model.

The storage of tsdb data �les in an ASCII represen-

tation that is directly accessible to standard Un�x

text processing utilities (grep(1) et al.) is often

noted to increase the transparency and exibility

of the data set.

From an interface design perspective, integration

into the page grammar development environment

was straightforward, using tsdb as a background

process that communicates with page through

a standard (�fo) input and output channel.

6

Through a layer of wrapper functions in the

(Common-Lisp) page universe most of the tsdb

6

A similar approach proved feasible in integrating

tsdb into the EU-funded alep grammar development

system; see Oepen and Groenendijk (1997) for details.

functionality (retrieval and storage of data, setting

parameters et al.) is made available to other mod-

ules (e.g. the report generator) as well as through

the page command-level user interface. Because

the database does not require a centrally adminis-

tered server process or other special privileges (as

is the case for larger database systems), it can be

distributed in binary form as part of the standard

page releases, such that someone installing and us-

ing the grammar engineering environment need not

even be aware of the existence of the database.

Regarding extensibility, the user & application

pro�le concept made it very easy to add relations

to the database as needed to store page- and erg-

speci�c pro�ling results and output speci�cations.

Yet, database size and e�ciency impose some lim-

itations: given the wealth of information gathered

during a single test run, it is not feasible to build

up a progress pro�le reecting several test runs in

a single database. Instead individual test runs are

stored as separate databases (i.e. directories), a de-

sign that delegates most of the bookkeeping over

test runs into the �lesystem; since comparative re-

port generation is implemented within page (in

Common-Lisp) rather than within tsdb, the sepa-

ration of databases poses no practical problem (and

often simpli�es queries). However, in a production

environment where greater scalability was required

| for example if developers wanted to store large

amounts of data (e.g. complete features structures

obtained as parsing results) as part of a pro�le | it

might be desirable to substitute a full-blown (com-

mercial) database system for tsdb; besides the ex-

tra installation and maintenance cost there should

be no principled obstacle but a considerable gain in

e�ciency and general database functionality (full

SQL).

Another important aspect in handling the test

suites is visualization and editing support. tsnlp

includes a graphical (form-based) editor for the

core test data (test items, phenomena classi�ca-

tion, and test sets); however, the tool does not al-

low the production or inspection of user & applica-

tion pro�le data, because these can be of variable

format. And although the bulk of the user & ap-

pliation pro�le is typically not produced manually

(but gathered from a test suite run), at least the

output speci�cations (e.g. the number of analyses

expected for a test item, particular semantic for-

mulae, upper limits for parser tasks or garbage col-

lections) often require manual editing; as it stands,

this currently amounts to text editing the ASCII

representation of tsdb tables. Similar to the ex-

isting test data editor, a customizable browser and

editor for the user & application pro�le layer of the

annotation schema would be required.

In general, user interfaces remain an open issue.

As both tsdb and the page development shell are

purely command- (or ASCII)-based, they nicely



match in their default mode of operation and give

developers direct and full control over the capabil-

ities of the underlying machinery. Yet, it can be

di�cult to train less experienced users (e.g. stu-

dents experimenting with the grammar as part of

a practical class; let alone linguistics professors)

and enable them to bene�t from the pro�ling en-

gine and report generation facilities; the set of pa-

rameters in both creating a new database, doing

a test suite run, and especially identifying the ap-

propriate view on the data for report generation

is substantial; here, again, a specialized graphical

tool that visually presents the set of choices and

hardwires a number of common interactions with

the machinery would be expected to greatly en-

hance usability and acceptability. Strictly speak-

ing, however, such a tool cannot be implemented

as part of the test suite per se (and thus provided

in the tsnlp package) because it closely interacts

with the development system (i.e. the application

to be evaluated). Here, again it seems, an inher-

ent mutual dependency of the evaluation tool and

system under evaluation manifests itself.

6 Conclusion: A Few Recommendations

to Test Suite Developers and Users

The general conclusion on experimenting with the

tsnlp data and tools within the erg consortium

is very positive. The test suite machinery proved

to be an essential tool in practical grammar engi-

neering and has enabled the developers to (i) pre-

cisely identify several (often systematic) de�cien-

cies in various evolution steps of the erg grammar

and lexicon and (ii) greatly improved their under-

standing of the overall resource and thus guided

and focussed the work on improving the grammat-

ical competence and system performance. Above

all, the tsnlp test data and technology were found

su�ciently mature and exible for regular deploy-

ment in a production environment; the methodol-

ogy is sound and highly scalable.

Besides the criticism and suggestions for im-

provement presented in the earlier discussion, the

following paragraphs summarize a few more gen-

eral observations (and recommendations) that may

be of interest to future test suite developers and

users alike.

Iteration It is often assumed that application

development and test suite construction should be

completely independent processes (as was the case

for most of the tsnlp e�ort) and that once a com-

plete test suite is produced it will serve as a gold-

standard reference. Obviously, this approach is im-

practical and, we argue, often just as much the-

oretically undesirable (a similar case is made in

Gamb�ack (1997) for what is called composition-

ality evaluation there). At least for the grammar

engineering evaluation scenario, a prototypical test

run will provide feedback to the current state of

the grammar, the processing components, the test

data, and the evaluation machinery itself.

In initially setting up the testing environment,

for example, a number of iterations (spread out

over several months) were needed to

� implement and debug the tsdb to page integra-

tion;

� add missing vocabulary to the erg lexicon;

� identify useful competence and performance

metrics and extract them from the processing

components;

� make the test run processing fault-tolerant to

various types of system errors;

� customize and correct the test data;

� de�ne appropriate report generation strategies

that present test results at di�erent levels of

granularity.

Obviously, both the grammar (plus development

environment) and the test suite itself bene�t signif-

icantly throughout each iteration. Thus, it seems

plausible to integrate a similar process| invert the

standard conception of the world and use a wide-

coverage grammar as an evaluation metric for the

test data | into future test suite building.

Use of Annotations One important use of

annotations on test items is to make the intended

use (or interpretation) of an item explicit, even

if that item proves to have other analyses not

considered by the developer. In the process of

systematic derivation of ill-formed examples from

grammatical test items, for example, within the

C Complementation (verb valency) phenomenon

the developers have regularly applied a procedure

of elimination of obligatory arguments. Accord-

ingly, there is a large number of test items of the

type `*Accounts for her.' or `*Battles against it.'

(resulting from subject deletion) marked as un-

grammatical, where apparently the test data au-

thors either expected the initial capitalization to

block a noun phrase analysis, or were simply un-

aware of the alternative reading. The erg gram-

mar (partly designed for processing speech recog-

niser output that has no reliable capitalization in-

formation), however, makes no use of the spelling

or punctuation clues. Therefore, the pro�ling ma-

chinery records the noun phrase readings as gen-

uine overgeneration.

Yet, the tsnlp annotations include an indica-

tion of the root category for all test items, such

that the coverage and overgeneration scoring could

easily be adjusted if the evaluators supplied a map-

ping from the categories derived by the erg gram-

mar (hpsg feature structures) to the annotations



used in the test suite (atomic labels for morpho-

syntactic categories). Although such a transfor-

mation is trivially implemented (in fact, for the

erg grammar part of it already exists to allow the

printing of phrase structure trees with atomic node

labels), it is obviously dependent on the grammar

and, again, requires maintenance as the grammar

evolves throughout iterations.

Another obvious candidate to vastly improve the

accuracy of automatically computed pro�les would

be the inclusion of further annotations | espe-

cially the underspeci�ed dependency structure rep-

resentation, chosen by the tsnlp developers as a

(mostly) theory-neutral intermediate format that

abstracts from idiosyncratic phrase structure as-

sumptions | from the test suite into the scoring

of results. Again, a mapping from actual parsing

results to the format used in the test suite database

would be required. As this mapping of hpsg tree

representations into functor { argument structures

is a non-trivial task however, it seems it will only be

worth the e�ort if the dependency structure anno-

tations in the test suite were complete and consis-

tent; unfortunately, for all three (English, French,

and German) test suites delivered by tsnlp this

is not the case. Many test items have no or only

incomplete dependency structure annotations; be-

sides, manual inspection suggests there are remain-

ing inconsistencies.

Summing up, the requirements on annotations

imposed in a fully automated pro�ling approach

are much higher than those for simple browsing of

the test suite database. While the existing annota-

tions already serve well to (i) explicate the underly-

ing structure of the data (and some of the method-

ology applied to their construction) and (ii) facil-

itate the formation of various subsets that can be

meaningfully interpreted, a better quality would be

required for inclusion into the automated interpre-

tation. Once more, it seems, an iterative approach

building on mutual feedback and comparison be-

tween a large-scale grammar and the test suite de-

velopment should be highly bene�cial in improving

the overall value of the diagnostic resource; after

all, much of the knowledge and competence needed

for test data writing is very similar to that required

in grammar engineering.

Phenomena Dependencies As

observed above, evaluation results can be signi�-

cantly skewed where test items reect more than

one phenomenon being measured, unless the de-

pendencies among phenomena are made explicit.

While the tsnlp annotation schema already fore-

sees marking one phenomenon as dependent on an-

other (by means of a presupposition attribute in

the phenomena description), this is often insu�-

cient to capture individual relations between test

items (from various phenomena), as would be re-

quired to allow the automated adjustment in cov-

erage and overgeneration scoring.

To return to the example of passives discussed

earlier, individual inspection of grammatical items

that are rejected by the grammar reveals that the

disappointing coverage for this phenomenon (see

Figure 2) is partly due to missing complementa-

tion patterns in the lexicon; so, a number of failing

test items are falsely charged to the passive analy-

sis, even though they are essentially ruled out lexi-

cally already. And for phenomenon-internal mo-

tives it may even be the case that a particular

verb frame has more statistical weight (i.e. a higher

frequency in tokens) among the passive examples

than in the C Complementation phenomenon it-

self. Therefore, a simple-minded comparison of

overall coverage on the phenomenon level cannot

illuminate this issue.

Besides, the fact that the passive phenomenon

lists complementation as a general presupposition

is equally uninstructive for these cases. Instead

it would be necessary to make the dependency

among items explicit at the level of individual to-

kens. Thus, if and only if a passive item had an

overt link to the corresponding usage of its matrix

verb within the complementation data, the pro-

�ling machinery could detect where the failure of

analysis originates and then automatically adjust

the scoring. Clearly, this approach cannot be fea-

sible for all types of dependencies that one may

postulate between test items and may ultimately,

at least in part, be speci�c to a particular appli-

cation or grammar; it remains to be seen, to what

extend the approach can be implemented.

The tsnlp annotation schema already foresees

the grouping of (positive or negative) items into

what is called a test set. For the existing data

test sets are primarily used to relate (sets of)

ungrammatical examples to the underlying well-

formed item(s) from which the negative item(s)

were derived. In principle, the same approach

could be used to record dependencies across phe-

nomena with only one extension that would be

required, viz. to ag test sets for the nature (or

purpose) of grouping that they represent. If such

an attribute was added to the test set description,

there could then be multiple layers of test item

groupings, each encoding a di�erent dependency

type (purpose); the obvious example of passives,

for instance, could use a label like `presupposition'

to specialize the overall dependency relation be-

tween phenomena classes on the test item level.

Additional mechanisms may be needed to allow

the developer to establish e�ciently the relevant

dependencies for a new test item, for example to

support transitivity (or inheritance) of dependency

relations, which would permit the automatic com-

putation of the relevant background dependencies

given some phenomenon.



Future Work While the present study is

based on the hand-built tsnlp data, the tools

are in fact well-suited for detailed analysis of data

drawn from corpora, with the associated greater

demands of larger vocabulary and greatly increased

ambiguity. Since the test items can be readily an-

notated for alternate syntactic bracketings and se-

mantic interpretations, the tsnlp machinery en-

ables the developer to precisely monitor develop-

ment of the grammar as it grows to accommodate

such real-world data.

Based on a generalized notion of performance

pro�ling for hpsg-type grammars (along the lines

of section 3.5), it is expected that the close cou-

pling of grammar development platform(s) and the

tsnlp database approach will allow for an im-

proved understanding of the inherent computa-

tional complexity in processing and key factors in

processing costs. Aiming for an improved perfor-

mance model, the pro�ling methods discussed will

be used as an experimentation environment to eval-

uate how specialized control, learning, and compi-

lation techniques can improve system behaviour.

Thus, frequent pro�ling, analysis, and adaptation

cycles become an integral part of regular system

and grammar development.

Acknowledgements The research and im-

plementation work has been carried out in

close collaboration between CSLI Stanford and

Saarbr�ucken University over the past few years.

The authors are greatly indebted to numerous col-

leagues at the two institutions and their scienti�c

vicinities for invaluable discussions and productive

criticism. To name only a few, the feedback pro-

vided by John Carroll, Anne Copestake, Marius

Groenendijk, Tibor Kiss, Sabine Lehmann, John

Nerbonne, and Hans Uszkoreit has greatly con-

tributed to the present results. In addition, audi-

ences at Potsdam, Tusnad, Stuttgart, Tbilisi, and

Heidelberg and several anonymous reviewers have

given important comments on various versions of

this paper.

Throughout the submission and a number of re-

vision stages for the manuscript, Rob Gaizauskas

has always been an exemplary editor | one

equipped with a rare combination of patience, ex-

ibility, and accuracy.

References

Black, Ezra, Steven Abney, Daniel P. Flickenger,

C. Gdaniec, R. Grishman, P. Harrison, D. Hindle,

R. Ingria, F. Jelinek, J. Klavans, M. Liberman,

M. Marcus, S. Roukos, B. Santorini, and T. Strza-

lkowski. 1991. A procedure for quantitatively com-

paring the syntactic coverage of English grammars.

In Proceedings of the 4

th

DARPA Speech and Natu-

ral Language Workshop. Paci�c Grove, CA. Margan

Kaufmann.

Carroll, John. 1994. Relating Complexity to Practical

Performance in Parsing with Wide-Coverage Uni�-

cation Grammars. In Proceedings of the 31

th

Meet-

ing of the Association for Computational Linguistics

(ACL), 287 { 294. Las Cruces, New Mexico.

Erbach, Gregor, and Hans Uszkoreit. 1990. Grammar

Engineering: Problems and Prospects. Technical Re-

port 1. Saarbr�ucken: Computerlinguistik an der Uni-

versit�at des Saarlandes.

Flickinger, Daniel, John Nerbonne, Ivan A. Sag, and

Thomas Wassow. 1987. Toward Evaluation of NLP

Systems. Technical report. Hewlett-Packard Lab-

oratories. Distributed at the 24

th

Annual Meet-

ing of the Association for Computational Linguistics

(ACL).

Gamb�ack, Bj�orn. 1997. Processing Swedish Sentences.

A Uni�cation-Based Grammar and Some Applica-

tions. Technical Report (SICS Dissertation Series #

21). Swedish Institute of Computer Science.

Lehmann,

Sabine, Dominique Estival, Kirsten Falkedal, Herv�e

Compagnion, Lorna Balkan, Frederik Fouvry, Judith

Baur, and Judith Klein. 1996a. tsnlp User Manual.

Volume 3: Test Data Documentation. Technical re-

port. Istituto Dalle Molle per gli Studii Semantici e

Cognitivi (ISSCO) Geneva, Switzerland.

Lehmann, Sabine, Stephan Oepen, Sylvie Regnier-

Prost, Klaus Netter, Veronika Lux, Judith Klein,

Kirsten Falkedal, Frederik Fouvry, Dominique Esti-

val, Eva Dauphin, Herv�e Compagnion, Judith Baur,

Lorna Balkan, and Doug Arnold. 1996b. tsnlp |

Test Suites for Natural Language Processing. In Pro-

ceedings of COLING 1996. Kopenhagen.

Nerbonne, John, Klaus Netter, Kader Diagne, Ludwig

Dickmann, and Judith Klein. 1993. A Diagnostic

Tool for German Syntax. Machine Translation 8:85{

107.

Oepen, Stephan, and Marius Groenendijk. 1997. To-

wards Systematic Testing and Diagnosis Integrating

tsnlp and alep. In Proceedings of 3

rd

Alep User

Group Workshop. Saarbr�ucken.

Oepen, Stephan, Klaus Netter, and Judith Klein. 1997.

tsnlp | Test Suites for Natural Language Process-

ing. In Linguistic Databases, ed. John Nerbonne.

CSLI Lecture Notes. Center for the Study of Lan-

guage and Information.

Pollard, Carl, and Ivan A. Sag. 1994. Head-Driven

Phrase Structure Grammar. Studies in Contempo-

rary Linguistics. Stanford, California: The Univer-

sity of Chicago Press.



Sparck Jones, Karen, and Julia Rose Galliers. 1995.

Evaluating Natural Language Processing Systems.

An Analysis and Review. Lecture Notes in Arti�cial

Intelligence, Vol. 1083. Berlin - Heidelberg - New

York: Springer.

Uszkoreit, Hans, Rolf Backofen, Stephan Busemann,

Abdel Kader Diagne, Elizabeth A. Hinkelman, Wal-

ter Kasper, Bernd Kiefer, Hans-Ulrich Krieger,

Klaus Netter, G�unter Neumann, Stephan Oepen,

and Stephen P. Spackman. 1994. DISCO | An

HPSG-based NLP System and its Application for

Appointment Scheduling. In Proceedings of the 15

th

Conference on Computational Linguistics (COL-

ING). Kyoto.


