
Jo
hn

 N
er

bo
nn

e
(e

di
to

r)
 1

99
7:

 L
in

gu
is

tic
 D

at
ab

as
es

, C
S

LI
 L

ec
tu

re
 N

ot
es

 #
 7

7

1

tsnlp | Test Suites for Natural

Language Processing

Stephan Oepen,

Klaus Netter, and Judith Klein

1.1 Introduction

Given the growing number of natural language applications, there is an

increasing demand for reference data other than the type of data found

in large collections of text corpora . Test suites have long been accepted

in the NLP context, because they provide for controlled data that is

systematically organized and documented. However, with increasing and

realistic applications of NLP technology a generation of general-purpose

test suites will be required that (i) have broad coverage, (ii) are multi-

lingual , and (iii) incorporate consistent and highly structured linguistic

annotations . Linguistic databases of this kind will not only facilitate

the deployment of test suites as diagnostic tools, but as well support

di�erent kinds of evaluation and serve as repositories for developers.

The objective of the tsnlp project

1

is to construct test suites in

1

The project was started in December 1993 and completed in March 1996; the

consortium is comprised of three academic partners | viz. the University of Essex

(UK), the Istituto Dalle Molle per gli Studii Semantici e Cognitivi ISSCO (Geneva,

Switzerland), and DFKI Saarbr�ucken (Germany) who have strong backgrounds in

machine translation, evaluation, and natural language processing respectively | and

the Common Research Center of Aerospatiale (Suresnes, France) as an industrial

partner.

Most of the project results (documents, bibliography, test data, and soft-

ware) as well as on-line access to the test suite database (see section 1.2.3)

can be obtained through the world-wide web from the tsnlp home page

http://tsnlp.dfki.uni-sb.de/tsnlp/.

The tsnlp project was funded within the Linguistic Research Engineering (LRE)

programme of the European Commission under research grant LRE-62-089; special

3

4 / John Nerbonne (editor): Linguistic Databases (forthcoming)

three di�erent languages building on a common basis and methodology.

Speci�cally, tsnlp addresses a range of issues related to the construction

and use of test suites. The main goals of the project are to:

� provide guidelines for the construction of test suites to facilitate a

coherent and systematic data collection ;

� develop a rich annotation schema that is maximally neutral with

respect to particular linguistic theories or speci�c evaluation and

application types (section 1.2.1);

� construct substantial test fragments in English, German, and

French that are applicable to di�erent NLP application types

(viz. parsers, grammar and controlled language checkers) (sec-

tion 1.2.2);

� design and implement an extensible linguistic database to store,

access, and manipulate the test data (section 1.2.3); and to

� investigate methods and tools for (semi-) automated test suite con-

struction.

Both the methodology and test data developed currently are valida-

ted in a testing and application phase (section 1.2.4).

To ensure the wide distribution and dissemination of tsnlp test sui-

tes, the results of the project will be made available to the public domain.

Ideally, the tsnlp annotation schema and database technology will serve

as a starting and reference point for future test suite e�orts, thus for the

�rst time allowing the interchange of test data and the comparison of

test and diagnostic results.

In the present paper the authors take the opportunity to present some

of the recent outcome of tsnlp to the community of language technology

developers as well as to potential users of NLP systems. Accordingly,

the presentation puts emphasis on practical aspects of applicability and

plausibility rather than on theoretically demanding research topics; the

tsnlp results presented are of both methodological and technological

interest.

1.1.1 Test Suites vs. Text Corpora

Test suites consisting of systematically constructed individual test items

are not the only source of reference data for testing and evaluating

NLP applications. In particular they clearly cannot replace test corpora

drawn from naturally occurring texts but rather have to be seen as ser-

ving di�erent and complementary purposes. Among the key di�erences

thanks to Dan Flickinger and John Nerbonne for the constructive peer reviews and

to Roger Havenith of the CEC.

tsnlp | Test Suites for Natural Language Processing / 5

between test suites and corpora are the following (see Balkan et al. 1994

for more details):

� Control over test data: While test suites allow the construction

of focussed test data using small vocabulary and illustrating spe-

ci�c phenomena in isolation or in controlled interaction, corpora

will always comprise arbitrary combinations of di�erent pheno-

mena. Although the combinations of phenomena found in corpora

may be empirically relevant, they do not allow for a focussed and

�ne-grained diagnosis of system performance.

� Systematic coverage: Test suites can provide test items which

illustrate systematic variations over a speci�c phenomenon. In a

corpus such variations are likely to occur only accidentally and

they will not be related to each other.

� Non-redundant representation: While well-constructed test

suites will list every phenomenon as concisely as possible, corpora

are clearly redundant, in that one and the same phenomenon can

occur over and over again.

� Inclusion of negative data: Ungrammatical examples do not

occur naturally (or occur unsystematically) in corpora. However,

for diagnostic purposes testing for negative data may be relevant

(especially, for example, with grammar and controlled language

checkers).

� Coherent annotation: As is exempli�ed in section 1.2.2, manu-

ally constructed test data can be associated with di�erent kinds of

systematic and coherent annotations . With few exceptions such

annotations are hard to �nd in combination with corpora.

For most of these aspects it could be argued that, for example, the

selection and combination of phenomena and the degree of variation

within some particular phenomenon as they are found in corpora re-

ect what is actually relevant in the real world. However, corpora |

regardless of their size | will only give a more or less representative

sample and do not allow for a systematic diagnosis. Ideally, test suites

and corpora should therefore stand in a complementary relation, with

the former building on the latter wherever possible and necessary (sec-

tion 1.3 brie
y sketches the plans for future research on relating test

suites and text corpora to each other).

1.1.2 tsnlp Objectives

The tsnlp project aims to construct test suites that address all of the

desiderata listed in section 1.1. There is a special emphasis on the coll-

6 / John Nerbonne (editor): Linguistic Databases (forthcoming)

ection of minimal sets of test items re
ecting the systematic variation of

a single parameter while others remain controlled.

In order to encourage the distribution and assessment of tsnlp re-

sults, the annotation schema and selection of test data has to be maxi-

mally neutral with respect to a particular theory of grammar or indi-

vidual languages. The test data construction and database technology

developed shall encourage developers and users of NLP technology to

tailor the test suites to their needs and to extend the database with user

or application speci�c information.

1.2 Results of tsnlp

In both test data construction and database design issues tsnlp could |

among others | build on experiences from the DiTo project previously

carried out at DFKI (Nerbonne et al. 1993). The DiTo e�ort produced

some 1500 systematically constructed and annotated sentences for four

syntactic phenomena of German; the test data were organized into a

simple relational database.

2

The annotation schema and parts of the data developed in DiTo (for

German at least) served as a starting point for work done in tsnlp. At

the same time, however, the DiTo project had revealed two important

problems that prompted the tsnlp consortium to pursue more elaborate

approaches:

(i) Data construction in DiTo was directly carried out in the internal

format de�ned by the database: the test data authors had to know

and understand some of the database internals and produce the

appropriate format; the method, obviously, is ine�cient, laborious,

and error-prone.

(ii) Although the interpreted pattern matching language awk(1) as the

DiTo query engine provided for high-level string manipulation fa-

cilities, the hybrid combination with Un�x scripts and yacc(1)

programs imposed severe limitations on e�ciency as well as inter-

faces, portability, and simplicity.

Building on the experiences from theDiTo project, tsnlp put strong

emphasis on tool building | to support test data construction indepen-

dent of the database internal representation | as well as on scalable

database technology. Sections 1.2.1, 1.2.2, and 1.2.3 present the tsnlp

strategy in test data construction and database design respectively. Fi-

2

Basically, the database software was implemented through the Un�x commands

sort(1), uniq(1) and join(1) combined with a simple query engine (an awk(1)

script) and a query processor (realized in yacc(1) and lex(1)).

tsnlp | Test Suites for Natural Language Processing / 7

nally, in section 1.2.4 some initial results of the ongoing testing phase of

test data and methodology are reported.

1.2.1 The tsnlp Annotation Schema

Based on a survey of existing test suites (Estival et al. 1994) and the ty-

pes of annotations (if any) found, a detailed annotation schema has been

designed which neither presupposes some token linguistic theory nor a

particular evaluation type nor a limited range of suitable applications

(see Estival et al. 1994 for a complete presentation).

Test data and annotations in tsnlp test suites, basically, are orga-

nized at four distinct representational levels:

� Core data: The core of the data collection are the individual test

items (sentences, phrases et al.) together with all general, catego-

rial, and structural information that is independent of phenome-

non, application, and user parameters. Besides the actual string

of words, annotations at this level include (i) bookkeeping records

(date, author, origin, and item id), (ii) the item format, length, ca-

tegory, and wellformedness code, (iii) the (morpho-)syntactic cate-

gories and string positions of lexical and | where uncontroversial

| phrasal constituents, and (iv) an abstract dependency struc-

ture. Encoding a dependency or functor-argument graph rather

than a phrase structure tree avoids the need to impose a speci-

�c constituent structure but still can be mapped onto one (see

section 1.2.4.3).

� Phenomenon related data: Based on a hierarchical classi�ca-

tion of phenomena (e.g. verb valency being a subtype to general

complementation) each phenomenon description is identi�ed by its

phenomenon identi�er, supertype(s), interaction with other pheno-

mena, and presupposition of such. Moreover, the set of (syntactic)

parameters that is relevant in the analysis of a token phenomenon

(e.g. the number and type of complements in the case of verb va-

lency) is determined. Individual test items can be assigned to one

or several phenomena and annotated according to the respective

parameters.

� Test sets: As an optional descriptive level in between the test item

and phenomenon levels, pairs or sets of grammatical and ill-formed

items can be grouped into test sets. Thus, it can be encoded how,

for example, test items that originate from the systematic variation

of a single phenomenon parameter relate to each other.

� User and application parameters: Information that will typi-

cally correlate with di�erent evaluation and application types in

8 / John Nerbonne (editor): Linguistic Databases (forthcoming)

Test Item

item id: 24033 author: dfki-klein date: jan-94

register: formal format: none origin: invented

di�culty: 1 wellformedness: 1 category: S v2

input: Der Manager sieht den Pr�asidenten length: 5

comment:

position instance category function domain

0:2 Der Manager NP nom-sg subj 2:3

2:3 sieht V func 0:5

3:5 den Pr�asidenten NP acc-sg obj 2:3

Phenomenon

phenomenon id: 24 author: dfki-klein date: jan-94

name: C Complementation

supertypes: Complementation

presupposition: C Agreement, NP Agreement

restrictions: neutral interactions: none purpose: test

comment:

FIGURE 1 Sample instance of the tsnlp annotation schema for one test

item: annotations are given in tabular form for the test item, analysis,

and phenomenon levels. The function and domain attributes encode the

abstract dependency structure using (zero-based) substring positions to

refer to parts of the test item.

the use of a test suite is factored from the remainder of the data

into user & application pro�les . Currently, there are foreseen (i)

a centrality measure on a per phenomenon, test set, or even test

item basis (e.g. user x may in general consider phenomenon y to be

central but test set z to be marginal within y) and (ii) judgements

of relevance with respect to a speci�c application. To match the

results obtained from a token NLP system (a parser, say) against a

test suite, a formal or informal output speci�cation can be added

at the pro�le level.

In addition to the parts of the annotation schema that follow a more

or less formal speci�cation, there is room for textual comments at the

various levels in the above hierarchy to accommodate information that

cannot be formalized.

1.2.2 Test Data Construction

Following the tsnlp test suite guidelines (Balkan et al. 1996) and using

the annotation schema sketched in section 1.2.1, the construction of

tsnlp | Test Suites for Natural Language Processing / 9

Phenomenon English French German Total

C Complementation 117 j845 225 j639 218 j246 560 j1730

C Agreement 68 j55 104 j183 224 j175 396 j413

C Modi�cation 329 j63 329 j63

NP Complementation 12 j 28 12 j 28

NP Agreement 201 j993 272 j1082 299 j1732 772 j3807

NP Modi�cation 302 j509 53 j 60 355 j569

Diathesis 201 j61 176 j118 147 j148 524 j327

Tense Aspect Modality 157 j39 77 j 275 186 j134 420 j448

Sentence Types 80 j100 322 j454 105 j14 507 j568

Coordination 147 j186 379 j320 105 j429 631 j935

Negation 289 j129 62 j 106 82 j 210 433 j445

Word Order 7 j 7 60 j 160 67 j 167

Extragrammatical 24 j34 253 j0 277 j34

Total 1586 j2951 1965 j3275 1732 j3308 5283 j9534

FIGURE 2 Status of the data construction as of March 1996: relevance

and breadth of individual phenomena di�er for the three languages (the

�gures are grammatical vs. ungrammatical items respectively).

test data was based on a classi�cation of (syntactic) phenomena to be

covered. From judgements on linguistic relevance and frequency for the

individual languages

3

the following list of core phenomena for tsnlp

was compiled:

� complementation;

� agreement;

� modi�cation;

� diathesis;

� modality, tense, and aspect;

� sentence and clause types;

� topology and word order;

� coordination;

� negation; and

� extragrammatical (e.g. parentheticals and temporal expressions).

3

Given the very limited resources for corpora studies in tsnlp (see

Dauphin et al. 1995a), the choice of syntactic phenomena for the three languages

was primarily based on subjective assessments obtained from experienced linguists

and grammar engineers. Naturally, the current list is incomplete and cannot be

considered exhaustive.

10 / John Nerbonne (editor): Linguistic Databases (forthcoming)

A further sub-classi�cation of phenomena relates to the relevant syn-

tactic domains in which a phenomenon occurs; for the above list these

are sentences (S), clauses (C), noun phrases (NP), adjectival phrases

(AP), prepositional phrases (PP), and adverbial phrases (AdvP). Cross-

classi�ed phenomena names are composed by attaching the syntactic

domain as a pre�x to the phenomenon name (e.g. C Complementation,

NP Agreement et al.) and can be further sub-classi�ed according to

phenomenon-internal dimensions.

Figure 2 gives a survey of the test material constructed in tsnlp (as

of March 1996); although | because of language-speci�c di�erences and

the parallel construction of the data | coverage varies across the three

languages, all three test suites have a comparable breadth of analysis

for each of the phenomena (each totaling some 4500 test items). The

vocabulary used in the tsnlp test suites in general is drawn from the

business domain and aims for a minimally-sized lexicon (complete voca-

bulary lists for the three languages are given in Lehmann et al. 1996);

current lexicon sizes range between 550 and 900 in
ected forms of (on

average) some 400 lexemes.

As the identi�cation of relevant parameters for each of the pheno-

mena turned out to be di�cult and arguable in several cases, not all

of the test data are annotated to the same depth on the phenomenon-

speci�c level. Nevertheless, for the phenomena agreement, complemen-

tation, and topology and word order (and in part for sentence and clause

types as well) the set of relevant parameters has been determined and

used in annotating the test data. The ungrammatical test items for each

phenomenon are coarsely classi�ed according to the source of ungram-

maticality (ideally resulting from the variation of a single parameter).

Following is an example for the C Complementation (verbal go-

vernment) phenomenon which is characterized by two parameters: (i)

the total number of (obligatory) complements; and (ii) a summary of

the actual valency frame.

4

For the sentence Der Manager sieht den

Pr�asidenten. (`the manager sees the president.'), for example, the para-

meter values are:

4

Obviously, both of the C Complementation parameters are redundant with respect

to the information that is already encoded in the phenomenon-independent analysis

part of the test item annotations. However, making the valency information explicit

as two separate per phenomenon parameters allows one to explain the source of

ungrammaticality in ill-formed test items quite straightforwardly. Additionally, the

parameters (at least intuitively) correspond to the procedures that can be applied to

grammatical test items in order to derive ill-formed examples: in the case of verbal

government ungrammatical items either result from the deletion of complements or

from a violation of the governed properties.

tsnlp | Test Suites for Natural Language Processing / 11

Category German Example

S imp-v1 Denke an den Test!

S non-imp-v1 Denkt der Manager an den Test?

S wh-v2 Wer kommt?

S v2 Der Manager denkt an den Test.

S cpl(dass)-v�nal Da� der Student nur ja an den Test denkt.

C cpl(dass)-v�nal Der Manager glaubt, da� der Student arbeitet.

C cpl(ob)-v�nal Es ist fraglich, ob der Student arbeitet.

C v2 Der Manager sagt, der Chef halte den Vortrag.

C wh-v2 Der Manager fragt: Wer h�alt den Vortrag?

C wh-v�nal Der Manager fragt, wer den Vortrag h�alt.

C rel-v�nal Der Manager, der kompetent ist, arbeitet.

FIGURE 3 Excerpt from the list of categories used in annotations at the

sentential and clausal levels: lexical properties (e.g. the type of comple-

mentizer) appear in parentheses; language-speci�c dimensions (e.g. the

verb-initial vs. verb-second vs. verb-�nal distinction for German) are

cast into su�xes.

number of complements: 2

valency frame: h subj (NP nom) ; obj (NP acc) i

The corrsponding ill-formed test items derived from this example

*Der Manager sieht.

*Der Manager sieht [dem Pr�asidenten]

dat

.

are classi�ed according to the respective parameter violated and linked

to the positive example into a test set (see section 1.2.1).

In order to enforce consistency of annotations across the three lan-

guages| even though the test data construction is carried out in parallel

| a canonical list of categories and functions used in the description of

categorial and dependency structure had to be established; �gures 3 and

4 present a (small) excerpt from the two lists. The dimensions chosen

in the classi�cation attempt to avoid properties that presuppose very

speci�c assumptions of a particular theory of grammar (or language),

and rather try to capture those distinctions that evidently are relevant

across the set of tsnlp core phenomena; thus, the subclassi�cation of

German clause types (see �gure 3), for example, mostly corresponds to

what is actually realized as clausal complements for the verbal govern-

ment phenomenon.

To ease the laborious test data construction and to reduce erratic

variations in �lling in the tsnlp annotation schema, a graphical test

suite construction tool (tsct) has been implemented. The tool instan-

12 / John Nerbonne (editor): Linguistic Databases (forthcoming)

Function German Example

func Der Manager arbeitet.

func Es liegt daran, da� der Manager arbeitet.

subj Der Manager arbeitet.

p-obj(um) Der Manager bittet um den Test.

p-obj-loc Der Manager wohnt in der Stadt.

subj-pred-adj Der Manager ist krank.

mod-loc-place Der Manager arbeitet in der Stadt.

mod-temp-duration Der Manager arbeitet den ganzen Tag.

mod-manner Das alte Projekt

spec Alle diese Manager arbeiten.

FIGURE 4 Excerpt from the list of functions used in dependency structure

annotations: examples of functors, arguments, modi�ers, and speci�ers.

tiates the annotation schema as a form-based input mask and provides

for (limited) consistency checking of the �eld values. Additionally, tsct

allows the reuse of previously constructed and annotated data, as often

when constructing a series of test items it will be easier to duplicate and

adapt a similar item rather than producing annotations from scratch.

1.2.3 The Test Suite Database

One of the primary technological objectives of tsnlp was to design and

implement a linguistic database that can ease the storage, maintenance

and retrieval of natural language test data.

1.2.3.1 Motivation

According to the speci�c tsnlp requirements (see section 1.1.2), the key

desiderata of the database design are:

� usability: to facilitate the application of the methodology, techno-

logy and test data developed in tsnlp to a wide variety of diagnosis

and evaluation purposes of di�erent applications by developers or

users with varied backgrounds;

� suitability: to meet the speci�c necessities of storing and maintai-

ning natural language test data (e.g. in string processing) and to

provide maximally
exible interfaces;

� extensibility: to enable and encourage users of the database to

add test data and annotations according to their needs without

changes to the underlying data model;

� portability and simplicity: to make the results of tsnlp availa-

ble on several di�erent hard- and software platforms free of royal-

ties and easy to use.

tsnlp | Test Suites for Natural Language Processing / 13

Although the hierarchical organization of phenomena and the con-

cept of per-phenomenon parameters (see section 1.2.1) seem to suggest a

data model incorporating inheritance relations (as they are known from

object-oriented or taxonomical databases), hierarchical relations are of

only limited signi�cance in the annotation schema. Therefore | and

also to most closely approximate the �ve desiderata | the tsnlp data-

base takes a conservative approach building on plain relational database

technology.

Because it is expected that the applicability and acceptance of the

tools (i.e. the technology) produced by the project will be one of the keys

to the wide distribution and deployment of the methodology and test

data developed, a special emphasis in the database design was put on

aspects of
exibility and interfaces (to both people and programs). As a

matter of fact, however, the technological requirements of developers or

users from an academic background typically di�er substantially from

those in an industrial environment. To account for the two di�erent

areas of application, the tsnlp database was implemented taking a dual

strategy.

Firstly, to produce a tool that is well tailored to the purpose of sto-

ring and retrieving tsnlp test data, highly
exible in its interfaces and

portable and free of royalties at the same time, a small and simple re-

lational database engine in plain ANSI C (which we presently call tsdb

1

using the subscript to distinguish between the two parallel implementa-

tions of tsdb; see section 1.2.3.4) was implemented. Since the expected

size of the database as well as major parts of the database schema are

known in advance, it seemed plausible to impose a few restrictions on

the full generality of the relational algebra that allow �ne-tuning and

simpli�cation of both the program and especially the query language.

Secondly, an alternative implementation was carried out through the

exploitation of a commercial database product (called tsdb

2

; see sec-

tion 1.2.3.5) to produce a tool that meets the demands of potential users,

especially in a non-academic context. Because commercially available

database systems have di�erent assets (and typically many more featu-

res) than the home-grown implementation tsdb

1

, the dual realizations of

the tsnlp database carried out in parallel nicely complement each other

and provide for valuable feedback and comparison.

5

5

Recently, in an extension to the original tsnlp work plan, a third implementation

of the test suite database has been started at the University of Essex; building on

the popular Microsoft Access database package, this version of tsdb has very similar

design goals and features to the tsdb

2

realization.

14 / John Nerbonne (editor): Linguistic Databases (forthcoming)

Output Speci�cations

i-id

i-id

s-id

i-id

�

�

�

i-id

�

�

�

s-id

p-id

p-id

ip-id

item

analysis

set

phenomenon

�

�

�

�

Q

Q

Q

Q

Q

Q

Q

Q

�

�

�

�

item

set

�

�

�

�

Q

Q

Q

Q

Q

Q

Q

Q

�

�

�

�

item

phenomenon

Per Phenomenon Parameters

FIGURE 5 Graph representation of the tsnlp database schema. Distinct

relationship types (viz. item-set and item-phenomenon are postulated

for m� n relations where necessary.

1.2.3.2 The Database Schema

While the data format deployed in the test data construction tool tsct

mirrors the rough four-level classi�cation given in section 1.2.1 and is

primarily motivated by data construction considerations, the require-

ments for the abstract tsnlp data model (and analogously for the tsdb

database schema) were somewhat di�erent. Although the classi�cation

into four basic tables (corresponding to the four tsct windows) serves

very well for data input purposes, it falls short from a data storage and

maintenance perspective in that (because of the tsct reuse and duplicate

facilities) the resulting data �les are highly redundant (i.e. repetitive

information is stored over and over with the individual items).

Accordingly, during the database import the four-level classi�cation

given in section 1.2.1 had to be re�ned and cast into more speci�c re-

lations that allow for the elimination of redundancy and (i) factor the

basic entity (or object) types from the relationship types and (ii) make

this distinction explicit, in order to allow for variable logical views on

the data and to enable the retrieval engine to compute the appropriate

combined (or virtual) relations required to process complex queries. As

another interesting facet of the import procedure, list- or multi-valued

tsnlp | Test Suites for Natural Language Processing / 15

attributes which typically are not foreseen in plain relational databases

are normalized as multiple records in a separate relation.

6

Figure 5 presents the core of the database schema (in an abstract

entity-relationship graph representation) as it is currently in use; still

missing in the presentation is an account of how user & application

pro�les are linked to the core data (see section 1.2.4 for an example).

1.2.3.3 Query and Retrieval: Some Examples

For the tsnlp test data the basic purpose of the relational database

retrieval facilities are:

� to dynamically construct test suite instances according to an arbi-

trary selection from the data; and

� to employ the query engine to compute appropriate virtual (join)

relations that contain everything relevant for a particular task, but

at the same time hide all internal, bookkeeping or irrelevant data.

| Following are a few retrieval examples | formulated in the simpli�ed

SQL-like query language that is interpreted by the home-grown imple-

mentation tsdb

1

(see section 1.2.3.4) | that demonstrate some of the

exibility of the annotations and retrieval engine (see Oepen et al. 1996

for more examples and complete documentation on the database and

query language):

7

� �nd all grammatical verb-second sentences relevant to the pheno-

menon of clausal (i.e. subject verb) agreement:

retrieve i-input

where i-wf = 1 && i-category = "S_v2" &&

p-name = "C_agreement"

� collect all grammatical sentences with pronominal subjects to-

gether with their identi�ers and categories:

6

For example the tsct representation of test sets | relating a comma-separated

list of positive test items (or rather their identi�ers) to a set of negative items | is

transformed into multiple data records that relate the individual items to one and the

same test set (again, its identi�er). Because the lists of positive and negative items

may not match up pairwise, the polarity (positive or negative) for each of the items

is cast as an attribute of its own (the new polarity attribute rather than the i-wf

grammaticality judgement) in order to allow for test sets in which well-formed items

can serve as negative examples or vice versa; in testing a controlled language checker,

for example, it may be desirable to construct test sets containing grammatical items

that still are assigned negative polarity because they are not part of the controlled

target language (e.g. based on a distinction between active vs. passive voice).

7

Attribute names incorporate the �rst character of the de�ning (or base) relation

as a pre�x: thus, i-input, for example, corresponds to the input �eld of the test item

relation (see �gures 1 and 5).

16 / John Nerbonne (editor): Linguistic Databases (forthcoming)

ASCII

Query

Interpreter

Network

Database

Server

Graphical

Browser

Tool

: : :

?

6

?

6

?

6

Library of Interface Functions

Database Inference Engine

?

6

?

6

?

6

?

6

�

�

�

�

�

�

�

�

�

�

�

�
English

Test Data

�

�

�

�

�

�

�

�

�

�

�

�

French

Test Data

�

�

�

�

�

�

�

�

�

�

�

�

German

Test Data

Data Files

Database

Kernel

(Server)

Client &

Application

Programs

FIGURE 6 Rough sketch of the modular tsdb

1

design: the database kernel

is separated from client programs through a layer of interface functions.

retrieve i-id i-input i-category

where i-wf = 1 &&

a-function = "subj" && a-category � "PRON"

1.2.3.4 Implementing tsdb

1

: Building it Ourselves

Although tsnlp had no intention to compete with commercial database

products in terms of e�ciency and generality, there are good reasons

speaking in favour of the proprietary implementation of tsdb

1

within

the project:

+ the database software and query language can be �ne-tuned to the

test suite extraction task; because the focus of natural language

test data retrieval is on string manipulation, the tsdb

1

implementa-

tion is enriched with regular expression matching (a concept that

is often unavailable in standard relational database products);

+ both data and software can be made available free of royalties;

+ the database can be given a
exible and well-documented interface

allowing the connection to arbitrary (client) applications within or

outside of tsnlp; the applicability of the interface so far has been

exempli�ed in three cases (viz. the ASCII query interpreter, the

network server, and the DFKI HPSG system);

+ the data format can be made transparent (similar to the tsct ASCII

�les) and thus accessible to standard Un�x text processing tools.

Figure 6 gives an overview of the tsdb

1

architecture: the database

kernel is constituted by the inference engine and a separate layer of

interface functions that are organized into a library of C functions.

tsnlp | Test Suites for Natural Language Processing / 17

Any application that is capable of interfacing to a library of external

functions (e.g. programs that can be statically linked with the library

or Common-Lisp or Prolog applications by use of the foreign function

interface) can be given full bidirectional access to the database. Within

tsnlp, two of the client applications have been developed: (i) an ASCII-

based query interpreter that allows the retrieval of data in a subset of

the SQL query language (�gure 7 shows a screen dump from a retrie-

val session using tsdb

1

) and (ii) a network database server that allows

(read-only) access to the database from remote machines in a TCP/IP

network. The tsdb

1

query language provides for the standard numeric

and string comparison operations plus regular expression matching, boo-

lean connectives (conjunction, disjunction, and negation of conditions),

and a dynamic query result storage.

Other applications to connect to the tsnlp database include a lexical

replacement tool built by Essex (see Arnold et al. 1994) which so far

reads and writes data �les in the tsct format and possibly a graphical

browser for test data derived from tsct itself.

8

The implementation of tsdb

1

is in ANSI C and supports (among

others) Un�x workstations as well as Macintosh and Intel x86-based

personal computers. The interface speci�cation is as a C header �le to

be included by client programs.

1.2.3.5 Implementing tsdb

2

: Commercial Database Software

Even though the ANSI C implementation of tsdb

1

allows one to deploy

the tool in a standard personal computer environment, an alternative

implementation of tsdb based on a commercial database product was

carried out in parallel in order to produce a tool that has a look +

feel familiar to personal computer users from typical o�ce software;

additionally, building on common standard software the tsnlp results

will be better accessible to users who have to rely on the availability of

on-site technical support.

Based on the evaluation of several low- and medium-priced com-

mercially available database systems for Macintosh and Intel x86-based

personal computers running under Microsoft Windows, the product of

choice was Microsoft FoxPro (in its current version 2.6) because it (i)

is available for both platforms, (ii) comes with high-level interface buil-

ding support for a graphical front end to the tsnlp database, and (iii)

is reasonably priced. The parallel implementation of two tsdb versions

8

However, it rather seems that the implementation of tsdb based on the commercial

database software Microsoft FoxPro (see section 1.2.3.5 for details) will naturally be

superior in terms of convenient graphical browsing of the test data, as FoxPro comes

with high-level support for graphical interfaces.

18 / John Nerbonne (editor): Linguistic Databases (forthcoming)

FIGURE 7 Screen dump of a tsdb

1

session: the query interpreter (topmost

three lines) has command line editing, input history and relation and

attribute name completion facilities.

is possible because both tsdb

1

and tsdb

2

use exactly the same database

schema (see section 1.2.3.2); thus the two resulting databases come out

as one-to-one replicas of each other such that data can be freely exchan-

ged between them at any time.

While the home-grown implementation of tsdb

1

scores high for its

exible functional interface (to client software), the FoxPro version tsdb

2

has a more advanced user interface (see �gure 8 for a screen dump of

one of the windows in the current development version). Since FoxPro

encourages the implementation of graphical, mouse- and menu-based

forms that hide away technical details of the underlying database, tsdb

2

comes with a sophisticated graphical browser and editor for the tsnlp

test data that is (at least) equivalent in its functionality to the X11-based

test data construction tool.

1.2.4 Putting it to the Test

To validate the tsnlp annotation schema and test data, the project re-

sults have been tested against three di�erent application types: a gram-

mar checker (Le Correcteur for French), a controlled language checker

tsnlp | Test Suites for Natural Language Processing / 19

FIGURE 8 Screen dump of the development version of tsdb

2

: the FoxPro

database software has high-level support for graphical browsing of the

data.

(SECC for English) and a parser (the HPSG system developed at DFKI

9

for German). Following is a brief summary of some of the testing results

obtained for the German test suite (for testing results for the other two

test suites and applications see Dauphin et al. 1995b).

1.2.4.1 A Glass Box: Connecting tsnlp to an HPSG System

Whereas for the grammar and controlled language checkers there was

no or only limited access to internal datas tructures or the control
ow

within the application (i.e. the application as a whole seen from the out-

side is a black box), the evaluation situation was di�erent for the page

9

The page (Platform for Advanced Grammar Engineering) system has continuously

been developed over more than �ve years by the DFKI Computational Linguistics

group. The current development version combines

� a powerful state-of-the-art grammar development system including a rich ty-

ped feature formalism and uni�er, a parameterizable parser and generator, a

command shell, and several development tools;

� linguistic competence for German (morphology, syntax and, semantics);

� new methods for linguistic performance modelling; and

� an interesting sample application for appointment and calendar management.

The system has been delivered to several international research institutions (in-

cluding CSLI Stanford, Simon Fraser, Ohio State, and Brandeis Universities, and

German sites taking part in the international VerbMobil machine translation pro-

ject); see Uszkoreit et al. 1994 for more details.

20 / John Nerbonne (editor): Linguistic Databases (forthcoming)

parser for German: since the test suite and the parser have been develo-

ped by the same group, there was full access to the internal structures

of individual modules as well as to the
ow of control. Testing tsnlp

results in this setup amounted to an ideal glass box evaluation.

In order to take full advantage of this favourable evaluation situa-

tion when connecting the page system to the tsnlp test suites and

diagnosing the German HPSG grammar, individual steps were to

� identify and tailor relevant test data (including lexical replacement

where necessary);

� establish a bidirectional interface to the tsnlp database allowing

the application to retrieve and store data (through the Common-

Lisp foreign function interface and the tsdb

1

interface library);

� supplementarily: add output speci�cations (the number of rea-

dings, phrase structural or semantic representations et al.) to a

page user & application pro�le (see section 1.2.4.2);

� at the application side: investigate a mapping between structures

derived from the grammar and the tsnlp morpho-syntactic and

relational annotations (see section 1.2.4.3);

� run automated retrieve, process, and compare cycles in grammar

diagnosis and progress evaluation; and to

� deploy the tsnlp database to store additional application-speci�c

data (e.g. performance measures).

Given this bidirectional connection to the test suite, the DFKI page

system presumably is one of the few grammar development platforms

seamlessly integrated with a multi-purpose , multi-lingual test suite

10

,

thus enriching the grammar engineering environment with a validated

and comparable evaluation facility and highly valuable coverage and per-

formance measures for the ongoing grammar development for (currently)

German and English.

11

Additionally, initial work done on the automated mapping of HPSG

feature structures as they are derived by the page grammar into the

tsnlp annotations at lexical and phrasal levels (see section 1.2.4.3 be-

10

Although in the Hewlett-Packard NL system already there was a close connection to

the Hewlett-Packard test suite (see Flickinger et al. 1987), the link was unidirectional

rather than bidirectional: since the HP test suite (similar to most �rst generation

test suites) is organized as a set of ASCII �les, the NL system would retrieve a set

of test items, process them in a batch job, and compare the results to the (shallow)

annotations available.

11

A similar degree of integration is currently aimed for in a cooperation with the

developers of the ALEP (Advanced Linguistic Engineering Platform) grammar deve-

lopment system funded by the European Commission.

tsnlp | Test Suites for Natural Language Processing / 21

i-id system version readings �rst total user date error

11001 page 4711 1 0.9 2.0 oe 23-sep-1995

11006 page 4711 2 3.6 8.8 oe 23-sep-1995

11178 page 4711 -1 oe 23-sep-1995 bus error

i-id nll (normalized meaning representation)

11001 direct(theme:̂ (9 ?x ?y addressee(instance:?x) work(instance:?y agent:?x)))

11006 direct(theme:̂ (9 ?x ?y addressee(instance:?x) work(instance:?y agent:?x)))

11006 ask(theme:̂ (9 ?x ?y addressee(instance:?x) work(instance:?y agent:?x)))

FIGURE 9 Information added in customizing the German test suite for

testing the page HPSG grammar: the page user & application pro�le

records processing measures (e.g. the grammar version and date of te-

sting, the number of readings obtained, the processing times for �nding

the �rst reading and overall total, and the type of processing error where

applicable) for each of the test items. Rather than bracketed phrase

structure trees, a normalized semantic representation serves as an out-

put speci�cation allowing judgements on the quality of analyses and to

identify spurious ambiguities.

low) into allowed for the validation of the type and depth of annotations

chosen.

1.2.4.2 Diagnostic Results Obtained

In order to facilitate a continuous progress evaluation (i.e. the automa-

ted comparison of actual system performance in terms of coverage and

e�ciency after changing the software or grammar to the expected or

former behaviour) for grammar development in page, the German test

suite was customized and extended following the user & application pro-

�le approach (see section 1.2.1): all information speci�c to page and the

German HPSG grammar is stored into a designated place in the data-

base (viz. two speci�c and separate relations) such that the generality of

the overall test suite is not a�ected; �gure 9 gives an excerpt from the

resulting page user & application pro�le.

Using the customized German test suite and the test data available

at the beginning of the testing phase (3674 test items for 9 phenomena)

three complete test cycles (each of more than a full day in processing

time

12

) were carried out allowing to (i) debug the interface and data-

base technology, (ii) determine the system coverage and precision and to

12

In order to obtain comparable e�ciency measures, the system is run in development

mode and reset to its initial state for each of the test items; hence, even though the

actual parsing time totals less than two hours, the batch processing mode adds a

substantial time overhead.

22 / John Nerbonne (editor): Linguistic Databases (forthcoming)

elimininate data
aws, and (iii) compute reference data for future dia-

gnosis (including manual inspection and correction of the NLL output

speci�cations).

Feedback for the Test Suite The overall feedback from testing the

German test suite with the page system was very positive: both, the test

data and the database technology have proven highly adequate and su�-

ciently
exible to provide for a valuable diagnostic tool in the (progress)

evaluation of a constraint-based parser. The test suite, annotations,

and software could be taken as-is, yet allowing the smooth and seamless

integration into a complex grammar development system.

Besides the feedback for the application, comparing the German test

data to the analyses derived by the page HPSG grammar revealed some

encoding mistakes in the test data (often resulting from human failures

| typing errors and misclassi�cations | that were not detected during

the import and consistency checking), concerning above all unexpected

and unintended ambiguities detected by the system as well as other

inconsistencies. However, even without this additional validation and

feedback the test data already turned out to be of very high quality.

Feedback for the Application Although the testing within tsnlp

proper had its focus on the validation of the project methodology, test

data, and technology, naturally, several diagnostic results for the appli-

cation were obtained at the same time.

Fundamental in both judging the current status of the application

as well as for the continuous progress evaluation while the system evol-

ves is the classi�cation of output mismatches, i.e. test items for which

the expected performance of the application is di�erent from the actual

result obtained. Using the information stored in the page user & ap-

plication pro�le and the results obtained in the second and third test

cycles, the database retrieval engine allows one to extract and count

classes of output mismatches:

mismatches of expected vs. actual output 2

nd

cycle 3

rd

cycle

wellformed items without analysis 868 751

illformed items with analysis 235 43

spurious ambiguities (� 3 readings) 27 19

fatal system errors 7 0

total reduction of mismatches 29 %

While the �rst class of output mismatches (grammatical test items

that could not be analyzed by page) is mostly determined by lexical gaps

in the grammar

13

and restrictions on the treatment of coordination, the

13

Since the testing for di�erent complementation patterns (e.g. verbal complemen-

tsnlp | Test Suites for Natural Language Processing / 23

second class (supposedly ill-formed test items that nevertheless have one

or more analyses) predominantly indicates overgeneration in the applica-

tion and allowed the grammar writer to identify two systematic sources

of failure (viz. spurious rule application and lexical misclassi�cation) Be-

sides, two serious software failures were identi�ed that in several years

of (unsystematic) manual testing had not manifested.

1.2.4.3 Mapping HPSG structures into tsnlp Categories

In order to maximally pro�t from the tsnlp annotations when testing

the HPSG analyses produced by the page parser, it becomes necessary to

map the HPSG typed feature structures onto the atomic category names

used in the tsnlp database and to compute appropriate dependency

relations from a derivation tree (a parsing result).

Building on a typed feature structure rewrite engine (the zebra sy-

stem (see Konrad 1995) developed at DFKI) that allows the compilation

and recursive application of individual or groups of rewrite rules over

typed feature structures, an incomplete version of a suitable mapping

procedure for page result structures has been implemented. Without

caring for the details of HPSG (see Pollard and Sag 1994), in the fol-

lowing the method and technology are illustrated by a few simpli�ed

examples.

In general, by partitioning rewrite rules into disjoint sets that are ap-

plied sequentially, it is possible to process heavily nested feature struc-

tures inside-out; for example for the mapping into tsnlp annotations it

seems plausible (i) to rewrite embedded categories (i.e. lexical and phra-

sal nodes) �rst, then (ii) to deploy another set of rewrite rules to collect

the results from step (i), and (iii) �nally to compute the dependency

relations in a third stage.

Example (1) is a simpli�ed version of the rule that rewrites the HPSG

representation of a (dative singular) saturated noun phrase into the ts-

nlp equivalent.

14

The context for an application of rule (1) (i.e. the

pattern on the left hand side) is strictly local: it is restricted to the

token phrase being rewritten.

tation in the C Complementation phenomenon) is partly a matter of lexical rather

than of syntactic overage, obviously further test suite or grammar customization will

be required.

14

Although in the rewrite rule examples for expository reasons type names are omit-

ted where they are not strongly required to constrain the context, in the zebra system

each of the embedded feature structures is assumed to bear an appropriate type. Be-

cause the types used in the speci�cation of rewrite rules can be taken from exactly the

same hierarchy that constitutes the parsing grammar itself, the set of tsnlp rewrite

rules can be interpreted as a proper and declarative extension to the page grammar.

24 / John Nerbonne (editor): Linguistic Databases (forthcoming)

(1)

sign

2

6

6

6

6

4

CAT j LOC j SYN

2

6

6

6

6

4

SPEC hi

COMPS hi

HEAD

noun

"

AGR

�

CASE dat

NUM sg

�

#

3

7

7

7

7

5

3

7

7

7

7

5

�! NP dat-sg

For the extraction of dependecy structures from larger phrases and

sentences, typically a larger context is required. In order to identify the

subject and object(s) of a verbal head (a functor in the tsnlp sense), for

example, the entire phrase structure tree headed by the verb (the domain

of the functor) has to be taken into account: even though the grammati-

cal functions can be determined from the valency features of the verbal

head (structure

1

in example (2)), the remainder of the derivation tree

(represented in (2) as a HPSG DTRS structure) contains the information

about the actual realization of the subcategorized complements and the

corresponding string positions.

15

(2)

4

sign

2

6

6

6

6

6

6

4

DTRS

2

6

6

6

6

6

4

H-DTR j DTRS

2

6

6

4

H-DTR

1

2

4

CAT j LOC j SYN

"

SUBJ

2

�

COMPS

3

�

#

3

5

C-DTR

3

3

7

7

5

S-DTR

2

3

7

7

7

7

7

5

3

7

7

7

7

7

7

5

�!

a-position a-category a-function a-domain

j

1

j

1

func j

4

j

j

2

j

2

subj j

1

j

j

3

j

3

obj j

1

j

As of March 1996 a categorial mapping for root categories of tsnlp

test items (i.e. the category �eld in the item relation) has been esta-

blished and used to automatically compare the results obtained from

page with the annotations found in the tsnlp test suite. Analogously

to the grammaticality results, the categorial information in several cases

has proven to be valuable in testing the page application. Regarding

feedback for the test suite, the mapping of HPSG feature structures into

tsnlp categories made it possible to detect two systematic error sources

in the data: �rstly, it greatly helped in spotting incorrect or inconsi-

15

In example (2) the notation ` j

1

j ' is used to indicate the position of the substring

corresponding to the feature structure

1

. String positions in HPSG can in general

be read o� the PHON feature (a glossed list-valued representation); however, since the

page system incorporates a chart-based parsing algorithm, a more straightforward

option is to extract the position values immediately from the chart.

tsnlp | Test Suites for Natural Language Processing / 25

stent categorial annotations (e.g. two di�erent test data authors had

used slightly distinct categories for the same lexical item and type of

construction); secondly, it provided the basis for the identi�cation of ca-

tegorial ambiguities that test data authors had not been aware of (e.g.

the use of the form arbeiten (`work') as both a verb and a noun).

However, unless the similar exercise is completed for tsnlp func-

tional annotations, it remains di�cult to judge to what extent an ex-

haustive mapping onto the tsnlp annotations can be established and

inhowfar the granularity of test data and level of annotations su�ce

for the thorough and automated matching against a highly formalized

theory of grammar such as HPSG.

1.3 Future Work: Beyond tsnlp

An issue that has been discussed several times is that general-purpose

test suites normally list items on a par without rating them in terms of

frequency or even relevance with respect to an application. Clearly, test

suites without this information cannot serve as the basis of an evaluation

in the same way as application-, task- or domain-speci�c corpora do,

unless a human evaluator assigns a personal ranking to the test data.

As to relevance, presumably a manual linguistic judgement will al-

ways be required, since a relevant phenomenon need not necessarily be

a frequent phenomenon.

16

As to frequency, one of the major challenges in constructing and ap-

plying test suites is the combination of the controlled test suite environ-

ment with information about the frequency of individual constructions

and classes of phenomena to be found in text corpora. One approach

envisaged to extend the tsnlp approach into this direction is to match

tagged test items against analogously tagged corpora, such that the

matching abstracts away from additional material in the corpus, taking

into account only the relevant parts of a sentence. Quite obviously, rela-

ting test suites to text corpora along these lines is a long-term scienti�c

goal that will require future research.

Additional straightforward extensions of tsnlp results will be to in-

crease the coverage of the test data and to apply the methodology to

more languages.

Acknowledgements

Most of the tsnlp results presented originate from joint research of the

tsnlp consortium; besides, many of the underlying ideas | especially

16

The correct analysis of negated constructions, for example, can be crucial to an

application even though the type of construction may be relatively infrequent.

26 / John Nerbonne (editor): Linguistic Databases (forthcoming)

relating to the kind of linguistic resource and type of annotations requi-

red | and the initial project stimulus are due to Hans Uszkoreit.

The authors are most grateful for the constructive cooperation and

acknowledge the contributions of the partners Doug Arnold, Lorna Bal-

kan, Frederik Fouvry, and Siety Meijer (University of Essex, UK), Domi-

nique Estival, Kirsten Falkedal, and Sabine Lehmann (ISSCO, Geneva,

Switzerland) and Eva Dauphin, Veronika Lux, and Sylvie R�egnier-Prost

(Aerospatiale, France).

Major parts of the test data construction and implementation work at

DFKI have been and still continue to be carried out by diligent research

assistants; the authors gratefully appreciate the enthusiasm of Judith

Baur, Tom Fettig, Fred Oberhauser, and Andrew P. White.

Bibliography

Arnold, Doug, Martin Rondell, and Frederik Fouvry. 1994. Design and Imple-

mentation of Test Suite Tools. Report to LRE 62-089 D-WP5.1. University

of Essex, UK.

Balkan, Lorna, Frederik Fouvry, and Sylvie Regnier-Prost (editors). 1996. ts-

nlp User Manual. Volume 1: Background, Methodology, Customization,

and Testing. Technical report. University of Essex, UK.

Balkan, Lorna, Klaus Netter, Doug Arnold, and Siety Meijer. 1994. Test

Suites for Natural Language Processing. In Proceedings of the Language

Engineering Convention. Paris.

Dauphin, Eva, Veronika Lux, Sylvie Regnier-Prost (principal authors), Doug

Arnold, Lorna Balkan, Frederik Fouvry, Judith Klein, Klaus Netter, Ste-

phan Oepen, Dominique Estival, Kirsten Falkedal, and Sabine Lehmann.

1995a. Checking Coverage against Corpora. Report to LRE 62-089 D-

WP3.2. University of Essex, UK.

Dauphin, Eva, Veronika Lux, Sylvie Regnier-Prost, Lorna Balkan, Frederik

Fouvry, Kirsten Falkedal, Stephan Oepen (principal authors), Doug Ar-

nold, Judith Klein, Klaus Netter, Dominique Estival, Kirsten Falkedal,

and Sabine Lehmann. 1995b. Testing and Customisation of Test Items.

Report to LRE 62-089 D-WP4. University of Essex, UK.

Estival, Dominique (principal author), Kirsten Falkedal, Lorna Balkan, Siety

Meijer, Sylvie Regnier-Prost, Klaus Netter, and Stephan Oepen. 1994. Sur-

vey of Existing Test Suites. Report to LRE 62-089 D-WP1. Istituto Dalle

Molle per gli Studii Semantici e Cognitivi (ISSCO) Geneva, Switzerland.

Estival, Dominique, Kirsten Falkedal, Sabine Lehmann (principal authors),

Lorna Balkan, Siety Meijer, Doug Arnold, Sylvie Regnier-Prost, Eva Dau-

phin, Klaus Netter, and Stephan Oepen. 1994. Test Suite Design | An-

notation Scheme. Report to LRE 62-089 D-WP2.2. University of Essex,

UK.

Flickinger, Daniel, John Nerbonne, Ivan A. Sag, and Thomas Wassow. 1987.

Toward Evaluation of NLP Systems. Technical report. Hewlett-Packard

Laboratories. Distributed at the 24

th

Annual Meeting of the Association

27

28 / John Nerbonne (editor): Linguistic Databases (forthcoming)

for Computational Linguistics (ACL).

Konrad, Karsten. 1995. Abstrakte Syntaxtransformation mit getypten

Merkmalstermen. Technical report. Deutsches Forschungszentrum f�ur

K�unstliche Intelligenz. forthcoming.

Lehmann, Sabine, Dominique Estival, Kirsten Falkedal, Herv�e Compagnion,

Lorna Balkan, Frederik Fouvry, Judith Baur, and Judith Klein. 1996. ts-

nlp User Manual. Volume 3: Test Data Documentation. Technical report.

Istituto Dalle Molle per gli Studii Semantici e Cognitivi (ISSCO) Geneva,

Switzerland.

Nerbonne, John, Klaus Netter, Kader Diagne, Ludwig Dickmann, and Judith

Klein. 1993. A Diagnostic Tool for German Syntax. Machine Translation

8:85{107.

Oepen, Stephan, Frederik Fouvry, Klaus Netter, Tom Fettig, and Fred Ober-

hauser. 1996. tsnlp User Manual. Volume 2: Core Test Suite Technology.

Technical report. Deutsches Forschungszentrum f�ur K�unstliche Intelligenz

(DFKI) Saarbr�ucken, Germany.

Pollard, Carl, and Ivan A. Sag. 1994. Head-Driven Phrase Structure Grammar.

Studies in Contemporary Linguistics. Stanford, California: The University

of Chicago Press.

Uszkoreit, Hans, Rolf Backofen, Stephan Busemann, Abdel Kader Diagne,

Elizabeth A. Hinkelman, Walter Kasper, Bernd Kiefer, Hans-Ulrich Krie-

ger, Klaus Netter, G�unter Neumann, Stephan Oepen, and Stephen P.

Spackman. 1994. DISCO | An HPSG-based NLP System and its Appli-

cation for Appointment Scheduling. In Proceedings of the 15

th

Conference

on Computational Linguistics (COLING). Kyoto.

