.. Copyright (C) 2001-2012 NLTK Project .. For license information, see LICENSE.TXT ========================= Feature Grammar Parsing ========================= .. include:: ../../doc/definitions.rst Grammars can be parsed from strings. >>> import nltk >>> from nltk import grammar, parse >>> g = """ ... % start DP ... DP[AGR=?a] -> D[AGR=?a] N[AGR=?a] ... D[AGR=[NUM='sg', PERS=3]] -> 'this' | 'that' ... D[AGR=[NUM='pl', PERS=3]] -> 'these' | 'those' ... D[AGR=[NUM='pl', PERS=1]] -> 'we' ... D[AGR=[PERS=2]] -> 'you' ... N[AGR=[NUM='sg', GND='m']] -> 'boy' ... N[AGR=[NUM='pl', GND='m']] -> 'boys' ... N[AGR=[NUM='sg', GND='f']] -> 'girl' ... N[AGR=[NUM='pl', GND='f']] -> 'girls' ... N[AGR=[NUM='sg']] -> 'student' ... N[AGR=[NUM='pl']] -> 'students' ... """ >>> grammar = grammar.parse_fcfg(g) >>> tokens = 'these girls'.split() >>> parser = parse.FeatureEarleyChartParser(grammar) >>> trees = parser.nbest_parse(tokens) >>> for tree in trees: print tree (DP[AGR=[GND='f', NUM='pl', PERS=3]] (D[AGR=[NUM='pl', PERS=3]] these) (N[AGR=[GND='f', NUM='pl']] girls)) In general, when we are trying to develop even a very small grammar, it is convenient to put the rules in a file where they can be edited, tested and revised. Let's assume that we have saved feat0cfg_ as a file named ``'feat0.fcfg'`` and placed it in the NLTK ``data`` directory. We can inspect it as follows: .. _feat0cfg: http://nltk.svn.sourceforge.net/svnroot/nltk/trunk/nltk/data/grammars/feat0.fcfg >>> nltk.data.show_cfg('grammars/book_grammars/feat0.fcfg') % start S # ################### # Grammar Productions # ################### # S expansion productions S -> NP[NUM=?n] VP[NUM=?n] # NP expansion productions NP[NUM=?n] -> N[NUM=?n] NP[NUM=?n] -> PropN[NUM=?n] NP[NUM=?n] -> Det[NUM=?n] N[NUM=?n] NP[NUM=pl] -> N[NUM=pl] # VP expansion productions VP[TENSE=?t, NUM=?n] -> IV[TENSE=?t, NUM=?n] VP[TENSE=?t, NUM=?n] -> TV[TENSE=?t, NUM=?n] NP # ################### # Lexical Productions # ################### Det[NUM=sg] -> 'this' | 'every' Det[NUM=pl] -> 'these' | 'all' Det -> 'the' | 'some' | 'several' PropN[NUM=sg]-> 'Kim' | 'Jody' N[NUM=sg] -> 'dog' | 'girl' | 'car' | 'child' N[NUM=pl] -> 'dogs' | 'girls' | 'cars' | 'children' IV[TENSE=pres, NUM=sg] -> 'disappears' | 'walks' TV[TENSE=pres, NUM=sg] -> 'sees' | 'likes' IV[TENSE=pres, NUM=pl] -> 'disappear' | 'walk' TV[TENSE=pres, NUM=pl] -> 'see' | 'like' IV[TENSE=past] -> 'disappeared' | 'walked' TV[TENSE=past] -> 'saw' | 'liked' Assuming we have saved feat0cfg_ as a file named ``'feat0.fcfg'``, the function ``parse.load_parser`` allows us to read the grammar into NLTK, ready for use in parsing. >>> cp = parse.load_parser('grammars/book_grammars/feat0.fcfg', trace=1) >>> sent = 'Kim likes children' >>> tokens = sent.split() >>> tokens ['Kim', 'likes', 'children'] >>> trees = cp.nbest_parse(tokens) |.Kim .like.chil.| |[----] . .| [0:1] 'Kim' |. [----] .| [1:2] 'likes' |. . [----]| [2:3] 'children' |[----] . .| [0:1] PropN[NUM='sg'] -> 'Kim' * |[----] . .| [0:1] NP[NUM='sg'] -> PropN[NUM='sg'] * |[----> . .| [0:1] S[] -> NP[NUM=?n] * VP[NUM=?n] {?n: 'sg'} |. [----] .| [1:2] TV[NUM='sg', TENSE='pres'] -> 'likes' * |. [----> .| [1:2] VP[NUM=?n, TENSE=?t] -> TV[NUM=?n, TENSE=?t] * NP[] {?n: 'sg', ?t: 'pres'} |. . [----]| [2:3] N[NUM='pl'] -> 'children' * |. . [----]| [2:3] NP[NUM='pl'] -> N[NUM='pl'] * |. . [---->| [2:3] S[] -> NP[NUM=?n] * VP[NUM=?n] {?n: 'pl'} |. [---------]| [1:3] VP[NUM='sg', TENSE='pres'] -> TV[NUM='sg', TENSE='pres'] NP[] * |[==============]| [0:3] S[] -> NP[NUM='sg'] VP[NUM='sg'] * >>> for tree in trees: print tree (S[] (NP[NUM='sg'] (PropN[NUM='sg'] Kim)) (VP[NUM='sg', TENSE='pres'] (TV[NUM='sg', TENSE='pres'] likes) (NP[NUM='pl'] (N[NUM='pl'] children)))) The parser works directly with the underspecified productions given by the grammar. That is, the Predictor rule does not attempt to compile out all admissible feature combinations before trying to expand the non-terminals on the left hand side of a production. However, when the Scanner matches an input word against a lexical production that has been predicted, the new edge will typically contain fully specified features; e.g., the edge [PropN[`num`:feat: = `sg`:fval:] |rarr| 'Kim', (0, 1)]. Recall from Chapter 8 that the Fundamental (or Completer) Rule in standard CFGs is used to combine an incomplete edge that's expecting a nonterminal *B* with a following, complete edge whose left hand side matches *B*. In our current setting, rather than checking for a complete match, we test whether the expected category *B* will `unify`:dt: with the left hand side *B'* of a following complete edge. We will explain in more detail in Section 9.2 how unification works; for the moment, it is enough to know that as a result of unification, any variable values of features in *B* will be instantiated by constant values in the corresponding feature structure in *B'*, and these instantiated values will be used in the new edge added by the Completer. This instantiation can be seen, for example, in the edge [NP [`num`:feat:\ =\ `sg`:fval:] |rarr| PropN[`num`:feat:\ =\ `sg`:fval:] |dot|, (0, 1)] in Example 9.2, where the feature `num`:feat: has been assigned the value `sg`:fval:. Feature structures in NLTK are ... Atomic feature values can be strings or integers. >>> fs1 = nltk.FeatStruct(TENSE='past', NUM='sg') >>> print fs1 [ NUM = 'sg' ] [ TENSE = 'past' ] We can think of a feature structure as being like a Python dictionary, and access its values by indexing in the usual way. >>> fs1 = nltk.FeatStruct(PER=3, NUM='pl', GND='fem') >>> print fs1['GND'] fem We can also define feature structures which have complex values, as discussed earlier. >>> fs2 = nltk.FeatStruct(POS='N', AGR=fs1) >>> print fs2 [ [ GND = 'fem' ] ] [ AGR = [ NUM = 'pl' ] ] [ [ PER = 3 ] ] [ ] [ POS = 'N' ] >>> print fs2['AGR'] [ GND = 'fem' ] [ NUM = 'pl' ] [ PER = 3 ] >>> print fs2['AGR']['PER'] 3 Feature structures can also be constructed using the ``parse()`` method of the ``nltk.FeatStruct`` class. Note that in this case, atomic feature values do not need to be enclosed in quotes. >>> f1 = nltk.FeatStruct("[NUMBER = sg]") >>> f2 = nltk.FeatStruct("[PERSON = 3]") >>> print nltk.unify(f1, f2) [ NUMBER = 'sg' ] [ PERSON = 3 ] >>> f1 = nltk.FeatStruct("[A = [B = b, D = d]]") >>> f2 = nltk.FeatStruct("[A = [C = c, D = d]]") >>> print nltk.unify(f1, f2) [ [ B = 'b' ] ] [ A = [ C = 'c' ] ] [ [ D = 'd' ] ] Feature Structures as Graphs ---------------------------- Feature structures are not inherently tied to linguistic objects; they are general purpose structures for representing knowledge. For example, we could encode information about a person in a feature structure: >>> person01 = nltk.FeatStruct("[NAME=Lee, TELNO='01 27 86 42 96',AGE=33]") >>> print person01 [ AGE = 33 ] [ NAME = 'Lee' ] [ TELNO = '01 27 86 42 96' ] There are a number of notations for representing reentrancy in matrix-style representations of feature structures. In NLTK, we adopt the following convention: the first occurrence of a shared feature structure is prefixed with an integer in parentheses, such as ``(1)``, and any subsequent reference to that structure uses the notation ``->(1)``, as shown below. >>> fs = nltk.FeatStruct("""[NAME=Lee, ADDRESS=(1)[NUMBER=74, STREET='rue Pascal'], ... SPOUSE=[NAME=Kim, ADDRESS->(1)]]""") >>> print fs [ ADDRESS = (1) [ NUMBER = 74 ] ] [ [ STREET = 'rue Pascal' ] ] [ ] [ NAME = 'Lee' ] [ ] [ SPOUSE = [ ADDRESS -> (1) ] ] [ [ NAME = 'Kim' ] ] There can be any number of tags within a single feature structure. >>> fs3 = nltk.FeatStruct("[A=(1)[B=b], C=(2)[], D->(1), E->(2)]") >>> print fs3 [ A = (1) [ B = 'b' ] ] [ ] [ C = (2) [] ] [ ] [ D -> (1) ] [ E -> (2) ] >>> fs1 = nltk.FeatStruct(NUMBER=74, STREET='rue Pascal') >>> fs2 = nltk.FeatStruct(CITY='Paris') >>> print nltk.unify(fs1, fs2) [ CITY = 'Paris' ] [ NUMBER = 74 ] [ STREET = 'rue Pascal' ] Unification is symmetric: >>> nltk.unify(fs1, fs2) == nltk.unify(fs2, fs1) True Unification is commutative: >>> fs3 = nltk.FeatStruct(TELNO='01 27 86 42 96') >>> nltk.unify(nltk.unify(fs1, fs2), fs3) == nltk.unify(fs1, nltk.unify(fs2, fs3)) True Unification between `FS`:math:\ :subscript:`0` and `FS`:math:\ :subscript:`1` will fail if the two feature structures share a path |pi|, but the value of |pi| in `FS`:math:\ :subscript:`0` is a distinct atom from the value of |pi| in `FS`:math:\ :subscript:`1`. In NLTK, this is implemented by setting the result of unification to be ``None``. >>> fs0 = nltk.FeatStruct(A='a') >>> fs1 = nltk.FeatStruct(A='b') >>> print nltk.unify(fs0, fs1) None Now, if we look at how unification interacts with structure-sharing, things become really interesting. >>> fs0 = nltk.FeatStruct("""[NAME=Lee, ... ADDRESS=[NUMBER=74, ... STREET='rue Pascal'], ... SPOUSE= [NAME=Kim, ... ADDRESS=[NUMBER=74, ... STREET='rue Pascal']]]""") >>> print fs0 [ ADDRESS = [ NUMBER = 74 ] ] [ [ STREET = 'rue Pascal' ] ] [ ] [ NAME = 'Lee' ] [ ] [ [ ADDRESS = [ NUMBER = 74 ] ] ] [ SPOUSE = [ [ STREET = 'rue Pascal' ] ] ] [ [ ] ] [ [ NAME = 'Kim' ] ] >>> fs1 = nltk.FeatStruct("[SPOUSE=[ADDRESS=[CITY=Paris]]]") >>> print nltk.unify(fs0, fs1) [ ADDRESS = [ NUMBER = 74 ] ] [ [ STREET = 'rue Pascal' ] ] [ ] [ NAME = 'Lee' ] [ ] [ [ [ CITY = 'Paris' ] ] ] [ [ ADDRESS = [ NUMBER = 74 ] ] ] [ SPOUSE = [ [ STREET = 'rue Pascal' ] ] ] [ [ ] ] [ [ NAME = 'Kim' ] ] >>> fs2 = nltk.FeatStruct("""[NAME=Lee, ADDRESS=(1)[NUMBER=74, STREET='rue Pascal'], ... SPOUSE=[NAME=Kim, ADDRESS->(1)]]""") >>> print fs2 [ ADDRESS = (1) [ NUMBER = 74 ] ] [ [ STREET = 'rue Pascal' ] ] [ ] [ NAME = 'Lee' ] [ ] [ SPOUSE = [ ADDRESS -> (1) ] ] [ [ NAME = 'Kim' ] ] >>> print nltk.unify(fs2, fs1) [ [ CITY = 'Paris' ] ] [ ADDRESS = (1) [ NUMBER = 74 ] ] [ [ STREET = 'rue Pascal' ] ] [ ] [ NAME = 'Lee' ] [ ] [ SPOUSE = [ ADDRESS -> (1) ] ] [ [ NAME = 'Kim' ] ] >>> fs1 = nltk.FeatStruct("[ADDRESS1=[NUMBER=74, STREET='rue Pascal']]") >>> fs2 = nltk.FeatStruct("[ADDRESS1=?x, ADDRESS2=?x]") >>> print fs2 [ ADDRESS1 = ?x ] [ ADDRESS2 = ?x ] >>> print nltk.unify(fs1, fs2) [ ADDRESS1 = (1) [ NUMBER = 74 ] ] [ [ STREET = 'rue Pascal' ] ] [ ] [ ADDRESS2 -> (1) ] >>> sent = 'who do you claim that you like' >>> tokens = sent.split() >>> cp = parse.load_parser('grammars/book_grammars/feat1.fcfg', trace=1) >>> trees = cp.nbest_parse(tokens) |.w.d.y.c.t.y.l.| |[-] . . . . . .| [0:1] 'who' |. [-] . . . . .| [1:2] 'do' |. . [-] . . . .| [2:3] 'you' |. . . [-] . . .| [3:4] 'claim' |. . . . [-] . .| [4:5] 'that' |. . . . . [-] .| [5:6] 'you' |. . . . . . [-]| [6:7] 'like' |# . . . . . . .| [0:0] NP[]/NP[] -> * |. # . . . . . .| [1:1] NP[]/NP[] -> * |. . # . . . . .| [2:2] NP[]/NP[] -> * |. . . # . . . .| [3:3] NP[]/NP[] -> * |. . . . # . . .| [4:4] NP[]/NP[] -> * |. . . . . # . .| [5:5] NP[]/NP[] -> * |. . . . . . # .| [6:6] NP[]/NP[] -> * |. . . . . . . #| [7:7] NP[]/NP[] -> * |[-] . . . . . .| [0:1] NP[+WH] -> 'who' * |[-> . . . . . .| [0:1] S[-INV] -> NP[] * VP[] {} |[-> . . . . . .| [0:1] S[-INV]/?x[] -> NP[] * VP[]/?x[] {} |[-> . . . . . .| [0:1] S[-INV] -> NP[] * S[]/NP[] {} |. [-] . . . . .| [1:2] V[+AUX] -> 'do' * |. [-> . . . . .| [1:2] S[+INV] -> V[+AUX] * NP[] VP[] {} |. [-> . . . . .| [1:2] S[+INV]/?x[] -> V[+AUX] * NP[] VP[]/?x[] {} |. [-> . . . . .| [1:2] VP[] -> V[+AUX] * VP[] {} |. [-> . . . . .| [1:2] VP[]/?x[] -> V[+AUX] * VP[]/?x[] {} |. . [-] . . . .| [2:3] NP[-WH] -> 'you' * |. . [-> . . . .| [2:3] S[-INV] -> NP[] * VP[] {} |. . [-> . . . .| [2:3] S[-INV]/?x[] -> NP[] * VP[]/?x[] {} |. . [-> . . . .| [2:3] S[-INV] -> NP[] * S[]/NP[] {} |. [---> . . . .| [1:3] S[+INV] -> V[+AUX] NP[] * VP[] {} |. [---> . . . .| [1:3] S[+INV]/?x[] -> V[+AUX] NP[] * VP[]/?x[] {} |. . . [-] . . .| [3:4] V[-AUX, SUBCAT='clause'] -> 'claim' * |. . . [-> . . .| [3:4] VP[] -> V[-AUX, SUBCAT='clause'] * SBar[] {} |. . . [-> . . .| [3:4] VP[]/?x[] -> V[-AUX, SUBCAT='clause'] * SBar[]/?x[] {} |. . . . [-] . .| [4:5] Comp[] -> 'that' * |. . . . [-> . .| [4:5] SBar[] -> Comp[] * S[-INV] {} |. . . . [-> . .| [4:5] SBar[]/?x[] -> Comp[] * S[-INV]/?x[] {} |. . . . . [-] .| [5:6] NP[-WH] -> 'you' * |. . . . . [-> .| [5:6] S[-INV] -> NP[] * VP[] {} |. . . . . [-> .| [5:6] S[-INV]/?x[] -> NP[] * VP[]/?x[] {} |. . . . . [-> .| [5:6] S[-INV] -> NP[] * S[]/NP[] {} |. . . . . . [-]| [6:7] V[-AUX, SUBCAT='trans'] -> 'like' * |. . . . . . [->| [6:7] VP[] -> V[-AUX, SUBCAT='trans'] * NP[] {} |. . . . . . [->| [6:7] VP[]/?x[] -> V[-AUX, SUBCAT='trans'] * NP[]/?x[] {} |. . . . . . [-]| [6:7] VP[]/NP[] -> V[-AUX, SUBCAT='trans'] NP[]/NP[] * |. . . . . [---]| [5:7] S[-INV]/NP[] -> NP[] VP[]/NP[] * |. . . . [-----]| [4:7] SBar[]/NP[] -> Comp[] S[-INV]/NP[] * |. . . [-------]| [3:7] VP[]/NP[] -> V[-AUX, SUBCAT='clause'] SBar[]/NP[] * |. . [---------]| [2:7] S[-INV]/NP[] -> NP[] VP[]/NP[] * |. [-----------]| [1:7] S[+INV]/NP[] -> V[+AUX] NP[] VP[]/NP[] * |[=============]| [0:7] S[-INV] -> NP[] S[]/NP[] * >>> for tree in trees: print tree (S[-INV] (NP[+WH] who) (S[+INV]/NP[] (V[+AUX] do) (NP[-WH] you) (VP[]/NP[] (V[-AUX, SUBCAT='clause'] claim) (SBar[]/NP[] (Comp[] that) (S[-INV]/NP[] (NP[-WH] you) (VP[]/NP[] (V[-AUX, SUBCAT='trans'] like) (NP[]/NP[] ))))))) A different parser should give the same parse trees, but perhaps in a different order: >>> cp2 = parse.load_parser('grammars/book_grammars/feat1.fcfg', trace=1, ... parser=parse.FeatureEarleyChartParser) >>> trees2 = cp2.nbest_parse(tokens) |.w.d.y.c.t.y.l.| |[-] . . . . . .| [0:1] 'who' |. [-] . . . . .| [1:2] 'do' |. . [-] . . . .| [2:3] 'you' |. . . [-] . . .| [3:4] 'claim' |. . . . [-] . .| [4:5] 'that' |. . . . . [-] .| [5:6] 'you' |. . . . . . [-]| [6:7] 'like' |> . . . . . . .| [0:0] S[-INV] -> * NP[] VP[] {} |> . . . . . . .| [0:0] S[-INV]/?x[] -> * NP[] VP[]/?x[] {} |> . . . . . . .| [0:0] S[-INV] -> * NP[] S[]/NP[] {} |> . . . . . . .| [0:0] S[-INV] -> * Adv[+NEG] S[+INV] {} |> . . . . . . .| [0:0] S[+INV] -> * V[+AUX] NP[] VP[] {} |> . . . . . . .| [0:0] S[+INV]/?x[] -> * V[+AUX] NP[] VP[]/?x[] {} |> . . . . . . .| [0:0] NP[+WH] -> * 'who' {} |[-] . . . . . .| [0:1] NP[+WH] -> 'who' * |[-> . . . . . .| [0:1] S[-INV] -> NP[] * VP[] {} |[-> . . . . . .| [0:1] S[-INV]/?x[] -> NP[] * VP[]/?x[] {} |[-> . . . . . .| [0:1] S[-INV] -> NP[] * S[]/NP[] {} |. > . . . . . .| [1:1] S[-INV]/?x[] -> * NP[] VP[]/?x[] {} |. > . . . . . .| [1:1] S[+INV]/?x[] -> * V[+AUX] NP[] VP[]/?x[] {} |. > . . . . . .| [1:1] V[+AUX] -> * 'do' {} |. > . . . . . .| [1:1] VP[]/?x[] -> * V[-AUX, SUBCAT='trans'] NP[]/?x[] {} |. > . . . . . .| [1:1] VP[]/?x[] -> * V[-AUX, SUBCAT='clause'] SBar[]/?x[] {} |. > . . . . . .| [1:1] VP[]/?x[] -> * V[+AUX] VP[]/?x[] {} |. > . . . . . .| [1:1] VP[] -> * V[-AUX, SUBCAT='intrans'] {} |. > . . . . . .| [1:1] VP[] -> * V[-AUX, SUBCAT='trans'] NP[] {} |. > . . . . . .| [1:1] VP[] -> * V[-AUX, SUBCAT='clause'] SBar[] {} |. > . . . . . .| [1:1] VP[] -> * V[+AUX] VP[] {} |. [-] . . . . .| [1:2] V[+AUX] -> 'do' * |. [-> . . . . .| [1:2] S[+INV]/?x[] -> V[+AUX] * NP[] VP[]/?x[] {} |. [-> . . . . .| [1:2] VP[]/?x[] -> V[+AUX] * VP[]/?x[] {} |. [-> . . . . .| [1:2] VP[] -> V[+AUX] * VP[] {} |. . > . . . . .| [2:2] VP[] -> * V[-AUX, SUBCAT='intrans'] {} |. . > . . . . .| [2:2] VP[] -> * V[-AUX, SUBCAT='trans'] NP[] {} |. . > . . . . .| [2:2] VP[] -> * V[-AUX, SUBCAT='clause'] SBar[] {} |. . > . . . . .| [2:2] VP[] -> * V[+AUX] VP[] {} |. . > . . . . .| [2:2] VP[]/?x[] -> * V[-AUX, SUBCAT='trans'] NP[]/?x[] {} |. . > . . . . .| [2:2] VP[]/?x[] -> * V[-AUX, SUBCAT='clause'] SBar[]/?x[] {} |. . > . . . . .| [2:2] VP[]/?x[] -> * V[+AUX] VP[]/?x[] {} |. . > . . . . .| [2:2] NP[-WH] -> * 'you' {} |. . [-] . . . .| [2:3] NP[-WH] -> 'you' * |. [---> . . . .| [1:3] S[+INV]/?x[] -> V[+AUX] NP[] * VP[]/?x[] {} |. . . > . . . .| [3:3] VP[]/?x[] -> * V[-AUX, SUBCAT='trans'] NP[]/?x[] {} |. . . > . . . .| [3:3] VP[]/?x[] -> * V[-AUX, SUBCAT='clause'] SBar[]/?x[] {} |. . . > . . . .| [3:3] VP[]/?x[] -> * V[+AUX] VP[]/?x[] {} |. . . > . . . .| [3:3] V[-AUX, SUBCAT='clause'] -> * 'claim' {} |. . . [-] . . .| [3:4] V[-AUX, SUBCAT='clause'] -> 'claim' * |. . . [-> . . .| [3:4] VP[]/?x[] -> V[-AUX, SUBCAT='clause'] * SBar[]/?x[] {} |. . . . > . . .| [4:4] SBar[]/?x[] -> * Comp[] S[-INV]/?x[] {} |. . . . > . . .| [4:4] Comp[] -> * 'that' {} |. . . . [-] . .| [4:5] Comp[] -> 'that' * |. . . . [-> . .| [4:5] SBar[]/?x[] -> Comp[] * S[-INV]/?x[] {} |. . . . . > . .| [5:5] S[-INV]/?x[] -> * NP[] VP[]/?x[] {} |. . . . . > . .| [5:5] NP[-WH] -> * 'you' {} |. . . . . [-] .| [5:6] NP[-WH] -> 'you' * |. . . . . [-> .| [5:6] S[-INV]/?x[] -> NP[] * VP[]/?x[] {} |. . . . . . > .| [6:6] VP[]/?x[] -> * V[-AUX, SUBCAT='trans'] NP[]/?x[] {} |. . . . . . > .| [6:6] VP[]/?x[] -> * V[-AUX, SUBCAT='clause'] SBar[]/?x[] {} |. . . . . . > .| [6:6] VP[]/?x[] -> * V[+AUX] VP[]/?x[] {} |. . . . . . > .| [6:6] V[-AUX, SUBCAT='trans'] -> * 'like' {} |. . . . . . [-]| [6:7] V[-AUX, SUBCAT='trans'] -> 'like' * |. . . . . . [->| [6:7] VP[]/?x[] -> V[-AUX, SUBCAT='trans'] * NP[]/?x[] {} |. . . . . . . #| [7:7] NP[]/NP[] -> * |. . . . . . [-]| [6:7] VP[]/NP[] -> V[-AUX, SUBCAT='trans'] NP[]/NP[] * |. . . . . [---]| [5:7] S[-INV]/NP[] -> NP[] VP[]/NP[] * |. . . . [-----]| [4:7] SBar[]/NP[] -> Comp[] S[-INV]/NP[] * |. . . [-------]| [3:7] VP[]/NP[] -> V[-AUX, SUBCAT='clause'] SBar[]/NP[] * |. [-----------]| [1:7] S[+INV]/NP[] -> V[+AUX] NP[] VP[]/NP[] * |[=============]| [0:7] S[-INV] -> NP[] S[]/NP[] * >>> sorted(trees) == sorted(trees2) True Let's load a German grammar: >>> cp = parse.load_parser('grammars/book_grammars/german.fcfg', trace=0) >>> sent = 'die Katze sieht den Hund' >>> tokens = sent.split() >>> trees = cp.nbest_parse(tokens) >>> for tree in trees: print tree (S[] (NP[AGR=[GND='fem', NUM='sg', PER=3], CASE='nom'] (Det[AGR=[GND='fem', NUM='sg', PER=3], CASE='nom'] die) (N[AGR=[GND='fem', NUM='sg', PER=3]] Katze)) (VP[AGR=[NUM='sg', PER=3]] (TV[AGR=[NUM='sg', PER=3], OBJCASE='acc'] sieht) (NP[AGR=[GND='masc', NUM='sg', PER=3], CASE='acc'] (Det[AGR=[GND='masc', NUM='sg', PER=3], CASE='acc'] den) (N[AGR=[GND='masc', NUM='sg', PER=3]] Hund)))) Grammar with Binding Operators ------------------------------ The `bindop.fcfg`_ grammar is a semantic grammar that uses lambda calculus. Each element has a core semantics, which is a single lambda calculus expression; and a set of binding operators, which bind variables. .. _bindop.fcfg: http://nltk.svn.sourceforge.net/svnroot/nltk/trunk/nltk/data/grammars/bindop.fcfg In order to make the binding operators work right, they need to instantiate their bound variable every time they are added to the chart. To do this, we use a special subclass of `Chart`, called `InstantiateVarsChart`. >>> from nltk.parse.featurechart import InstantiateVarsChart >>> cp = parse.load_parser('grammars/sample_grammars/bindop.fcfg', trace=1, ... chart_class=InstantiateVarsChart) >>> print cp.grammar() Grammar with 15 productions (start state = S[]) S[SEM=[BO={?b1+?b2}, CORE=]] -> NP[SEM=[BO=?b1, CORE=?subj]] VP[SEM=[BO=?b2, CORE=?vp]] VP[SEM=[BO={?b1+?b2}, CORE=]] -> TV[SEM=[BO=?b1, CORE=?v]] NP[SEM=[BO=?b2, CORE=?obj]] VP[SEM=?s] -> IV[SEM=?s] NP[SEM=[BO={?b1+?b2+{bo(?det(?n),@x)}}, CORE=<@x>]] -> Det[SEM=[BO=?b1, CORE=?det]] N[SEM=[BO=?b2, CORE=?n]] Det[SEM=[BO={/}, CORE=<\Q P.exists x.(Q(x) & P(x))>]] -> 'a' N[SEM=[BO={/}, CORE=]] -> 'dog' N[SEM=[BO={/}, CORE=]] -> 'cat' N[SEM=[BO={/}, CORE=]] -> 'mouse' IV[SEM=[BO={/}, CORE=<\x.bark(x)>]] -> 'barks' IV[SEM=[BO={/}, CORE=<\x.bark(x)>]] -> 'eats' IV[SEM=[BO={/}, CORE=<\x.bark(x)>]] -> 'walks' TV[SEM=[BO={/}, CORE=<\x y.feed(y,x)>]] -> 'feeds' TV[SEM=[BO={/}, CORE=<\x y.feed(y,x)>]] -> 'walks' NP[SEM=[BO={bo(\P.P(John),@x)}, CORE=<@x>]] -> 'john' NP[SEM=[BO={bo(\P.P(John),@x)}, CORE=<@x>]] -> 'alex' A simple intransitive sentence: >>> from nltk.sem import logic >>> logic._counter._value = 100 >>> trees = cp.nbest_parse('john barks'.split()) |. john.barks.| |[-----] .| [0:1] 'john' |. [-----]| [1:2] 'barks' |[-----] .| [0:1] NP[SEM=[BO={bo(\P.P(John),z101)}, CORE=]] -> 'john' * |[-----> .| [0:1] S[SEM=[BO={?b1+?b2}, CORE=]] -> NP[SEM=[BO=?b1, CORE=?subj]] * VP[SEM=[BO=?b2, CORE=?vp]] {?b1: {bo(\P.P(John),z2)}, ?subj: } |. [-----]| [1:2] IV[SEM=[BO={/}, CORE=<\x.bark(x)>]] -> 'barks' * |. [-----]| [1:2] VP[SEM=[BO={/}, CORE=<\x.bark(x)>]] -> IV[SEM=[BO={/}, CORE=<\x.bark(x)>]] * |[===========]| [0:2] S[SEM=[BO={bo(\P.P(John),z2)}, CORE=]] -> NP[SEM=[BO={bo(\P.P(John),z2)}, CORE=]] VP[SEM=[BO={/}, CORE=<\x.bark(x)>]] * >>> for tree in trees: print tree (S[SEM=[BO={bo(\P.P(John),z2)}, CORE=]] (NP[SEM=[BO={bo(\P.P(John),z101)}, CORE=]] john) (VP[SEM=[BO={/}, CORE=<\x.bark(x)>]] (IV[SEM=[BO={/}, CORE=<\x.bark(x)>]] barks))) A transitive sentence: >>> trees = cp.nbest_parse('john feeds a dog'.split()) |.joh.fee. a .dog.| |[---] . . .| [0:1] 'john' |. [---] . .| [1:2] 'feeds' |. . [---] .| [2:3] 'a' |. . . [---]| [3:4] 'dog' |[---] . . .| [0:1] NP[SEM=[BO={bo(\P.P(John),z102)}, CORE=]] -> 'john' * |[---> . . .| [0:1] S[SEM=[BO={?b1+?b2}, CORE=]] -> NP[SEM=[BO=?b1, CORE=?subj]] * VP[SEM=[BO=?b2, CORE=?vp]] {?b1: {bo(\P.P(John),z2)}, ?subj: } |. [---] . .| [1:2] TV[SEM=[BO={/}, CORE=<\x y.feed(y,x)>]] -> 'feeds' * |. [---> . .| [1:2] VP[SEM=[BO={?b1+?b2}, CORE=]] -> TV[SEM=[BO=?b1, CORE=?v]] * NP[SEM=[BO=?b2, CORE=?obj]] {?b1: {/}, ?v: } |. . [---] .| [2:3] Det[SEM=[BO={/}, CORE=<\Q P.exists x.(Q(x) & P(x))>]] -> 'a' * |. . [---> .| [2:3] NP[SEM=[BO={?b1+?b2+{bo(?det(?n),@x)}}, CORE=<@x>]] -> Det[SEM=[BO=?b1, CORE=?det]] * N[SEM=[BO=?b2, CORE=?n]] {?b1: {/}, ?det: } |. . . [---]| [3:4] N[SEM=[BO={/}, CORE=]] -> 'dog' * |. . [-------]| [2:4] NP[SEM=[BO={bo(\P.exists x.(dog(x) & P(x)),z103)}, CORE=]] -> Det[SEM=[BO={/}, CORE=<\Q P.exists x.(Q(x) & P(x))>]] N[SEM=[BO={/}, CORE=]] * |. . [------->| [2:4] S[SEM=[BO={?b1+?b2}, CORE=]] -> NP[SEM=[BO=?b1, CORE=?subj]] * VP[SEM=[BO=?b2, CORE=?vp]] {?b1: {bo(\P.exists x.(dog(x) & P(x)),z2)}, ?subj: } |. [-----------]| [1:4] VP[SEM=[BO={bo(\P.exists x.(dog(x) & P(x)),z2)}, CORE=<\y.feed(y,z2)>]] -> TV[SEM=[BO={/}, CORE=<\x y.feed(y,x)>]] NP[SEM=[BO={bo(\P.exists x.(dog(x) & P(x)),z2)}, CORE=]] * |[===============]| [0:4] S[SEM=[BO={bo(\P.P(John),z2), bo(\P.exists x.(dog(x) & P(x)),z3)}, CORE=]] -> NP[SEM=[BO={bo(\P.P(John),z2)}, CORE=]] VP[SEM=[BO={bo(\P.exists x.(dog(x) & P(x)),z3)}, CORE=<\y.feed(y,z3)>]] * >>> for tree in trees: print tree (S[SEM=[BO={bo(\P.P(John),z2), bo(\P.exists x.(dog(x) & P(x)),z3)}, CORE=]] (NP[SEM=[BO={bo(\P.P(John),z102)}, CORE=]] john) (VP[SEM=[BO={bo(\P.exists x.(dog(x) & P(x)),z2)}, CORE=<\y.feed(y,z2)>]] (TV[SEM=[BO={/}, CORE=<\x y.feed(y,x)>]] feeds) (NP[SEM=[BO={bo(\P.exists x.(dog(x) & P(x)),z103)}, CORE=]] (Det[SEM=[BO={/}, CORE=<\Q P.exists x.(Q(x) & P(x))>]] a) (N[SEM=[BO={/}, CORE=]] dog)))) Turn down the verbosity: >>> cp = parse.load_parser('grammars/sample_grammars/bindop.fcfg', trace=0, ... chart_class=InstantiateVarsChart) Reuse the same lexical item twice: >>> trees = cp.nbest_parse('john feeds john'.split()) >>> for tree in trees: print tree (S[SEM=[BO={bo(\P.P(John),z2), bo(\P.P(John),z3)}, CORE=]] (NP[SEM=[BO={bo(\P.P(John),z104)}, CORE=]] john) (VP[SEM=[BO={bo(\P.P(John),z2)}, CORE=<\y.feed(y,z2)>]] (TV[SEM=[BO={/}, CORE=<\x y.feed(y,x)>]] feeds) (NP[SEM=[BO={bo(\P.P(John),z105)}, CORE=]] john))) >>> trees = cp.nbest_parse('a dog feeds a dog'.split()) >>> for tree in trees: print tree (S[SEM=[BO={bo(\P.exists x.(dog(x) & P(x)),z2), bo(\P.exists x.(dog(x) & P(x)),z3)}, CORE=]] (NP[SEM=[BO={bo(\P.exists x.(dog(x) & P(x)),z106)}, CORE=]] (Det[SEM=[BO={/}, CORE=<\Q P.exists x.(Q(x) & P(x))>]] a) (N[SEM=[BO={/}, CORE=]] dog)) (VP[SEM=[BO={bo(\P.exists x.(dog(x) & P(x)),z2)}, CORE=<\y.feed(y,z2)>]] (TV[SEM=[BO={/}, CORE=<\x y.feed(y,x)>]] feeds) (NP[SEM=[BO={bo(\P.exists x.(dog(x) & P(x)),z107)}, CORE=]] (Det[SEM=[BO={/}, CORE=<\Q P.exists x.(Q(x) & P(x))>]] a) (N[SEM=[BO={/}, CORE=]] dog))))